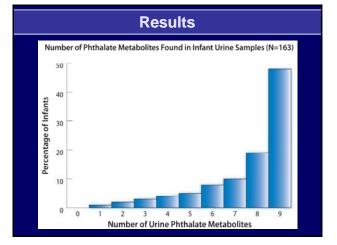
Infant Phthalate Exposures and Potential Developmental Impacts

Study For Future Families:

Cohort of Mother/Baby Pairs from Missouri, California, and Minnesota Shanna Swan PhD – Primary Investigator

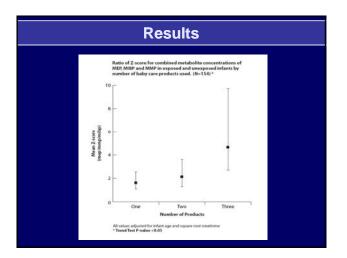
Sheela Sathyanarayana MD MPH Acting Assistant Professor University of Washington Department of Pediatrics

Research Questions


 Is Infant Personal Care Product Use Associated with Urine Phthalate Concentrations?

Is Maternal Phthalate Exposure Associated with Developmental Outcomes in Infants?

Demographic Characteristics


Cohort: 163 Infants

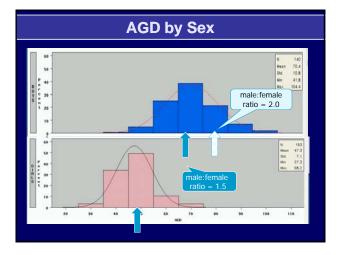
Sex		Race	
Females	52%	White	80%
Males	48%	Hispanic/Latino	11%
		Asian	5%
Geographic		African American	3%
Minnesota	48%	Native American	1%
California	26%		
Missouri	26%	Socio-Economic Status	
		Health Insurance	91%
Ages (mo)		No Health Insurance	9%
2-8	25%		
9-16	50%		
17 – 24	25%		

Results Distribution of Phthalates (mcg/L)			
Monoethyl (MEP)	98	64.5	
Monobutyl (MBP)	99	19.3	
Monomethyl (MMP)	66	1.8	
Mono-3-carboxypropyl (MCPP)	83	4.0	
Monobenzyl (MBZP)	94	14.9	
Monoisobutyl (MiBP)	85	3.5	
Mono-2-ethyl-5-oxohexyl (MEOHP)	94	11.4	
Mono-2-ethylhexyl (MEHP)	76	2.9	
Mono-2-ethyl-5-hydroxyhexyl (MEHHP)	93	13.7	

Results					
		Combined Phthalat by Age in Exposed			
	Product Type	Mean Z-score	Mean Z-score	Mean Z-score	
		$\frac{\text{Subgroup} \qquad N \qquad \%}{<= 8 \text{ months} \qquad 42 (26)}$	$\frac{\text{Subgroup}}{> 8 \text{ months}} \frac{N}{112} (74)$	Subgroup N % All Infants 154 (100)	
Strong/ Significant	Baby Powder	2.7* (1.3, 5.9)	2.0* (1.02, 4.0)	2.1* (1.3, 3.6)	
	Baby Lotion	5.6* (1.7, 18.3)	1.5 (0.8, 2.6)	2.1* (1.3, 3.4)	
	Baby Shampoo	2.1 (0.6, 7.4)	1.4 (0.4, 4.3)	1.6* (1.03, 2.4)	
Weak/Not Significant	Desitin/Diaper Cream	1.4 (0.5, 3.9)	0.7 (0.6, 1.6)	1.1 (0.7, 1.7)	
	Baby Wipes	2.1 (0.4, 11.1)	1.4 (0.4, 4.3)	1.4 (0.5, 3.6)	
All values adjuste *p-value <0.05	d for infant age, and squ	are root creatinine, nine infants h	ad missing creatinine values are v	were not included in analysis	

Conclusions

- Phthalate exposure is widespread and distribution varied in infants
- Reported infant exposure to lotion, powder, and shampoo significantly increased urinary concentrations of MEP, MMP, and MiBP and associations are strongest in younger infants
- Dermally applied baby products significantly contribute to infant phthalate body burden



Is Maternal Phthalate Exposure Associated with Developmental Outcomes in Infants?

Anogenital Distance

- Significance marker of masculinization in animals
- length ratio 2:1 for Males : Females in rats
- shortened AGD associated with genital tract abnormalities

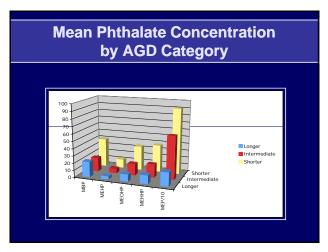
Analysis of Male Anogenital Distance

- AGD increases with both age and weight
- These are strongly correlated (R² = 0.88, p<0.0001)
- We used standard growth curves to adjust for body size (CDC, 2000)
- Weight percentile (WT%) calculated for each boy at each visit
- Expected AGD modeled for male infants:
 - Using all visits (mixed model)
 - WT% and age were the only significant predictors
 - Residual AGD = Observed Expected → categorized into short, intermediate, and longer

Results of Regression Analysis*:

Significant (p-value) MBP (0.048) MEP (0.005) DEHP metabolites MEHP (0.017) MEOHP (0.001) MEHHP (0.002)

Borderline MMP (0.053) MiBP (0.097)


Not Significant MBzP (0.826) MCPP (0.591)

* Mixed model including 106 boys and 165 visits

Odds Ratio (95% CI) for Shorter AGD

Exposure	Medium : Low *	High : Low *
MBP	5.7 (1.2, 27.3)	9.2 (1.8, 46.2)
MEHP	1.7 (0.5, 5.2)	3.2 (0.9, 11.5)
MEOHP	10.2 (1.3, 82.5)	29.1 (3.4, 245.6)
МЕННР	4.8 (1.0, 22.9)	13.0 (2.6, 66.4)
MEP	4.6 (1.0, 21.6)	7.9 (1.5, 41.3)

*Low < 25th %, High >=75th%, Medium, other

AGD Category

Phthalate Score	Shorter	Longer	P-value*
Low	0	11	Referent
Medium	16	14	0.0014
ligh	13	1	< 0.0000

* Fisher's Exact Test

Clinical Implications

In Rodents

- At birth: Shorter AGD, impaired testicular descent, hypospadias
- Later: Low sperm count, rarely testicular tumors

Our Study of Humans Suggests

 At birth: Shorter AGD (some, but most NS, decrease in testicular descent, smaller penile volume)

Future studies needed to determine clinical correlates in humans

Acknowledgements

U Rochester Shanna Swan Fan Liu

U Washington Catherine Karr Paula Lozano Fred Rivara Harvey Checkoway

U MO Robin Kruse, Sara Stewart, Lynn Teague

UCLA Christina Wang, Cathy Mao CDC Dana Barr, Antonia Calafat

UC Davis Jim Overstreet, Charlene Brazil

U Copenhagen Katharina Main

U MN Bruce Redmon, Chris Ternand

UIA Amy Sparks, Shannon Sullivan

Funded by grants from the National Institute of Environmental Health Sciences and the US Environmental Protection Agency