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Quantum device simulation with a generalized tunneling formula
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We present device simulations based on a generalized tunneling theory. The theory is com
with standard coherent tunneling approaches and significantly increases the variety of devic
can be simulated. Quasi-bound and continuum states in the leads are treated on the same
Quantum charge self-consistency is included in the leads and the central device region. We co
the simulatedI–V characteristics with the experimentalI–V characteristics for two complex
quantum device structures and find good agreement. ©1995 American Institute of Physics.
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Many resonant tunneling based semiconductor devic
have complicated structure in the emitter or collector regio
due to electrostatic band bending or heteroepitax
confinement1,2 ~see Figs. 1 and 2!. For such devices, the
usual coherent tunneling approaches compared by Landh
and Aers3 are inadequate. Neither the approach of Cah
et al. 4 nor the approach of Onishiet al.5 can model electron
injection from quasi-bound states in the emitter. The tre
ments of scattering described by Lake and Datta,6 Roblin and
Liou,7 or Chevoir and Vinter8 are insufficient either in prin-
ciple, e.g., the first-order approach of Chevoir and Vinter,8 or
in practice due to the computational and memory requi
ments of modeling a long structure with extreme thermaliz
tion of the carriers.6,7 There have been a number of efforts t
model injection from emitter quasi-bound states,9,10 but the
resulting theory isad hocand treats the emitter quasi-boun

FIG. 1. ~a! Conduction band profile for a Al0.4Ga0.6As/GaAs resonant tun-
neling diode~RTD! from Ref. 1. Dashed line in the emitter indicates th
Fermi level. The structure is divided into 3 regions: left and right reserv
and a central ‘‘device’’ region.~b! Spectral function of the resonant tunnel
ing diode close to the central device region plotted versus longitudinal
ergy and position. Magnitude increases with shading. Emitter quasi-bo
states in the triangular potential well are evident.

a!Corporate R&D, Texas Instruments Incorporated, Dallas, TX 75265.
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states in a different manner from the emitter continuum
states. The generalized tunneling formula described by La
et al.11 allows a general, unified treatment of emitter quas
bound states and emitter continuum states. It allows one
partition, when appropriate, a long structure into two larg
reservoirs with spatially varying potentials and a short ‘‘de
vice’’ ~see Figs. 1 and 2!. The theory treats thermalization
and scattering induced broadening in the reservoirs with n
more effort than the standard coherent tunnelin
approaches.3 We present simulations based on the theory. W
find the device simulator to be capable of modeling a wide
range of devices than those based on the standa
approaches,3 and we obtain good agreement between the e
perimental data and the numerical results.

We present a brief overview of the theory used to obta
the generalized tunneling formula. The Hamiltonian is writ
ten as the sum of three terms:Ho5Ho

D1Ho
L1Ho

R which rep-
resent the Hamiltonian of the device, the left reservoir, an
the right reservoir, respectively. The Hamiltonian matrix i
written in terms of the tight-binding basis
^r uk,n&5eik•rfn(z)/AA wherek is the transverse wavevec-
tor, A is the cross-sectional area, andfn(z) is a localized

ir

n-
nd

FIG. 2. Conduction band profile and spectral function plotted versus long
tudinal energy and position of an InGaAs/AlAs Opto-RTD~ORTD! similar
to the one in Ref. 2. Magnitude of spectral function increases with shadin
Multiple states in the emitter potential well are evident.
2539)/2539/3/$6.00 © 1995 American Institute of Physics
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~Wannier! function localized around site ‘‘n’’. The
matrix elements ofHo are ^k,i uHouk, j &5ekid i , j2t i , jd i , j61 .
The site energies and hopping elements can
related to the discretized effective mass Hamiltonia
Ho5 2\2/2 d/dz 1/m* (z) d/dz1Vk(z) in the usual
way.11,12

For a device consisting of sites 1,...,N, the effect of the
left and right reservoirs, and the coupling to the reservo
t0,1 andtN,N11 , are treatedexactlyusing Dyson’s equation to
obtain the boundary self energies:11,13

S1,1
RB5g0,0

R ut0,1u2 and SN,N
RB 5gN11,N11

R utN,N11u2, ~1!

G1,1
B 5a0,0ut0,1u2 and GN,N

B 5aN11,N11utN,N11u2, ~2!

wheregR is the Green function of the reservoir unconnect
to the device (t0,15tN,N1150) anda is the corresponding
spectral function,a522ImgR. The boundary self-energie
SRB and GB are valid even if the reservoirs have spatia
varying potentials. The self-energies in Eqs.~1!–~2! are zero
for sites$ i , j %Þ$1,1% or $N,N%.

The equation of motion forGR in the device becomes~in
matrix notation! (E2Ho

D2SRB)GR51. An explicit repre-
sentation of the retarded Green function for a device of th
sites is

@GR#5F E2ek,12S1,1
RB t1,2 0

t2,1 E2ek,2 t2,3

0 t3,2 E2ek,32S3,3
RB
G 21

.

~3!

To calculate the self energiesS1,1
RB andG1,1

B , we needg0,0
R .

For a left reservoir in which the semi-infinite uniform pote
tial region begins at site22, g0,0

R is found from

g0,0
R 5F 2tLe

2 ig22D t22,21 0

t21,22 E2ek,21 t21,0

0 t0,21 E2ek,0
G
0,0

21

, ~4!

where g is the longitudinal propagation factor of the le
contact andD is the site spacing.11,12The desired elements o
GR andgR needed for the calculation of the self-energies,
electron density, and the current can be obtained from E
~3! and ~4! by any matrix inversion technique, but we fin
the recursive Green function algorithm14 to be the most effi-
cient.

True bound states may be present in the spectrum
g0,0
R sincet0,150. To avoid this, an energy dependent optic
potential,2 is, is added to the site energies,ek,i , in the
reservoirs. The optical potential is set to zero for energ
below the conduction band edge to avoid unrealistic ba
tails. Any spatial or energy dependence can be used, and
plan to explore more realistic models. Physically, the opti
potential represents the scattering induced broadening; i
emitter quasi-bound state is to act as a reservoir, it mus
coupled to the continuum of states to the left through inel
tic channels. The optical potential is an approximation for
imaginary part of the retarded self energy due to scatterin
the reservoirs. The values ofs used for the simulation of the
devices shown in Figs. 1 and 2 were empirically taken to
6.6 meV and 15 meV, respectively. These values are sim
2540 Appl. Phys. Lett., Vol. 67, No. 17, 23 October 1995
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to the ones used by Chenet al.10 who discuss the physical
validity of these values, and, like Chenet al., we also find
that a good quantitative fit is impossible if the broadening
not taken into account. We also find that the effective broa
ening introduced by proper integration over the transver
momentum15 is not sufficient to obtain good agreement with
the experimental data when emitter quasi-bound states
present. The optical potential is non-zero only in the rese
voirs ~see Fig. 2! and zero in the device. Therefore, in the
device, where current is calculated, current is conserved.

We calculate the electrostatic potential profile bot
in the Thomas–Fermi approximation16 and in the Hartree
approximation by solving Poisson’s equation self
consistently with the quantum charge. For the self-consiste
calculation, the electron density is calculated from

Ni5
1

AD (
k

E dE

2p
ni~k,E!.

In the reservoirs,ni is calculated from the equilibrium rela-
tion, ni5 f L(R)(22)ImGi ,i

R where GR is the exact Green
function of theconnectedreservoir, and in the device,ni is
calculated from ni5 f LG1,1

B uGi ,1
R u21 f RGN,N

B uGi ,N
R u2 where

f L(R) is the Fermifactor of the left~right! contact.
With a converged solution ofNi and the electrostatic

potential, the current is then calculated. The expression f
the current can be cast into the form of the usual tunnelin
formula with a generalized Fisher-Lee form for the transmis
sion coefficient,11

J1/25
2e

\A(
k
E dE

2p
G1,1
B GN,N

B uG1,N
R u2~ f L2 f R!. ~5!

In Eq. ~5!, theGB’s are no longer simply factors of velocity,
but take into account the effect of spatially varying poten
tials.

The Fermi factors of the contacts appear for the first tim
in the equations for the electron density and the curren
These expressions are valid provided that the reservoir
gions in Figs. 1 and 2 are well equilibrated with then1

contacts at the left and right of the structures.
We model two different devices at room

temperature ~300 K!. The first is an experimental
GaAs/Al0.4Ga0.6As resonant tunneling diode~RTD! corre-
sponding to Fig. 2~d! of Ref. 1. Figure 1 shows the conduc-
tion band profile and corresponding spectral function
A(E,k50)522ImGR(E,k50), calculated around the cen-
tral quantum region. Several closely spaced emitter qua
bound states forming an electron accumulation layer are e
dent. Figure 3 compares our simulation results to th
experimental data.1 Figure 1~b! shows the quantum well
resonance aligned with the second emitter quasi-bound st
at a bias of about 1 V. This alignment results in the step-lik
feature of theI–V plot. Our simulations confirm the argu-
ments presented in Ref. 1 that the step feature results fro
the alignment of the second emitter quasi-bound state w
the resonant state in the well and that the main peak resu
from the alignment of the lowest emitter quasi-bound sta
with the resonant state in the well.

The Thomas-Fermi approximation gives rough agree
ment with the experimental data with a computation time o
Klimeck et al.
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about 0.75 sec per bias point on an HP 735 workstat
Hartree self-consistency increases the accuracy at a co
30 times the cpu time. The peak current remains about
lower than the experimental result. Preliminary calculatio
indicate that this deviation results from band-structure effe
which we will address in the future.

The second device we model is an InP lattice matc
InGaAs/InAlAs opto-RTD~ORTD! with strained AlAs bar-
riers similar to the one described in Ref. 2. The struct
consists of a 5.5 nm InGaAs well and 2.6 nm AlAs barrie
The emitter barrier has an additional 2.3 nm InAlAs pr
barrier. The emitter consists of a 40 nm InGaAs well dop
at 1018 cm23, preceded by a 200 nm InAlAs layer doped
531018 cm23 graded to a 500 nm InGaAs layer doped
531018 cm23 and the InP substrate. The collector consists
a 100 nm undoped InGaAs and a 30 nm 1018 cm23 doped
InGaAs spacer, a 200 nm InAlAs window and a 40 n
InGaAs cap both doped at 531018 cm23. Fig. 2 shows the
conduction band profile and corresponding spectral func
for the ORTD truncated in the emitter and collector InAlA
regions. Figure 4 compares the simulation results us
Thomas–Fermi and Hartree self-consistent electrostatic
culations against the experimental data. While the Thom
Fermi simulation follows the general trend of the experime
tal data, the Hartree self-consistent calculation provides
better quantitative comparison. The features in the turn-o
the peak current result from the quantized states in the e
ter aligning with the state in the well.

In summary, we have presented a device simulator wh
implements a generalized tunneling theory based on a n
treatment of the contacts. The theory takes the form of s

FIG. 3. Experimental and simulatedI–V characteristics for the RTD corre
sponding to Fig. 1. The thick gray line is the experimental data that we h
digitized from Ref. 1. The short dashed line results from a Thomas–Fe
calculation of the electrostatic potential. The solid results from a Har
self-consistent calculation of the electrostatic potential throughout the w
structure.
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dard coherent tunneling approaches, Eq.~5!. The novel treat-
ment of the contacts, Eqs.~1!–~4!, combined with Hartree
self consistency is sufficient to obtain reasonable quantitativ
agreement with a number of complex quantum device
which are modeled poorly by the standard approaches.3

We acknowledge the benefit of many conversations with
D. Jovanovic.
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FIG. 4. Experimental and simulatedI–V characteristics based on new
boundary conditions for the ORTD corresponding to Fig. 2. The gray line is
the experimental data. The dashed line is the simulation resulting from
Thomas-Fermi calculation of the electrostatic potential. The thin solid line i
the simulation resulting from a Hartree self-consistent calculation of the
electrostatic potential throughout the whole structure.
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