US CE Stellarator Program: HSX, CTH, QPS

J.F. Lyon, ORNL

FY 2005 Budget Planning Meeting March 19, 2003

US CE-Level Experiments Complement PoP-level NCSX

- NCSX has R = 1.4 m, a = 0.33 m, R/a = 4.3, B = 2 T, P = 3–6 MW and quasi-toroidal symmetry
 - aims at reduction of anomalous transport, disruption suppression, $\beta > 4\%$

	HSX	СТН	QPS
Device parameters	R = 1.2 m, a = 0.15 m, B = 1 T, P = 0.2–0.55 MW	R = 0.75 m, a = 0.2 m B = 0.5 T, I = 50 kA	R = 0.9–1 m, a = 0.3–0.4 m B = 1 ± 0.2 T, P = 2–4 MW
Status	Operating	Under construction, operate in late 2003	In conceptual design, operate in 2007/8
Magnetic configuration	Quasi-helical symmetry, R/a = 8	Torsatron with Ohmic current, R/a = 3.8	Quasi-poloidal symmetry, R/a > 2.3
Program issues	Reduction of neo- classical transport, E _r control, anomalous transport and turbulence, β limits	3-D reconstruction, disruption suppression, effect of islands on stability	Reduction of neoclass- ical transport, poloidal flow damping, flux surface robustness, low R/a, ballooning β limits

HSX Explores Improved Neoclassical Transport with Quasi-helical Symmetry

R = 1.2 m, <a> = 0.15 m, B = 1.0 T ECH: 28 GHz, 200 kW (additional 350 kW at 53 GHz in progress) University of Wisconsin-Madison

Worlds First Test of Quasi-symmetry

- Test reduction of direct loss orbits and electron thermal conductivity
- Demonstrate lower parallel viscous damping of plasma flows
- Explore E_r control through plasma flow and ambipolarity constraint
- Investigate turbulence and anomalous transport
- Test stability limits to Mercier and ballooning modes

HSX Progress

- Physics results demonstrate improved confinement with quasi-helical symmetry
 - Demonstrated reduced direct losses with quasisymmetry
 *faster ECH plasma breakdown
 - *collector plates near ECH antenna show fewer losses
 - Longer damping time for plasma flows due to reduced parallel viscosity
 - Better confinement of energetic particles: larger HX flux, longer ECE decay rates
- Good start on diagnostics needed for physics understanding
 - First results with 1 point Thomson scattering: 350 eV at 1 x 10^{12} cm⁻³ up to 600 eV at 5 x 10^{11} with 50 kW input power
 - 4 channel ECE, 16 channels H_{α} , SX and HX detectors, UV lon Doppler spectroscopy, ECH absorbed power monitors

HSX Plans

• FY 2004

- Complete 10 channels TS, extend ECE to 8 channels
- Preparations for operation at B = 1 T
- Determine quasi-symmetry effect on $\chi_e(r)$
- Edge probe study of turbulence (in collaboration with TJ-K)
- Site modifications, transmission line, power supplies for 53-GHz, 350-kW gyrotron
- Begin collaboration with ORNL/PPPL on ICRF, if funded
- FY 2005
 - Improve magnet current control; Operate at B = 1.0 T
 - Operate at lower v^* to test for improved neoclassical transport
 - Compare HX and SX spectrum to Fokker-Planck modeling of ECH
 - Begin commissioning of 53-GHz system
 - Microwave scattering and ECEI systems for core turbulence studies, if funded
 - Implement lower power ICRF prototype, if funded

HSX FY05 Budget Planning

- Extensive peer review of 3-year renewal (effective 2/1/2002) supported a FY03 budget at \$1720K ; presently funded at \$1601K
- The present budget provides for operations, but constrains our ability to increase diagnostic capability
- 10% reduction to \$1441K
 - Operations at a reduced level, cut 1 post-doc position and scale back the associated turbulence program
- Level funding (at \$1601K)
 - Maintain the present pace of the program with minimal diagnostic improvements
- Increments needed to study core turbulence & increase parameters

+ \$90K for microwave scattering for fluctuation measurements and anomalous transport studies

+ \$100K for collaborations with PPPL/ORNL on RF heating

+ \$130K for an ECE imaging system and post-doc for timeresolved temperature and turbulence measurements

Compact Toroidal Hybrid (CTH) Experiment Auburn University

Performs 3-D equilibrium reconstruction; targets current-driven disruptions in low-A, current-carrying stellarators

- *R* = 0.75 m, *<a>* = 0.2 m, *B* = 0.5 T, *I*_{plasma} = 50 kA
- Under construction
- Completion expected in late 2003

CTH Goals

- Measurement of 3-D magnetic equilibrium of current-driven stellarator
 - 1st implementation of new 3-D reconstruction method developed collaboratively
 - Essential to understanding stability of finite-β,
 finite-current stellarator plasmas (NCSX & QPS)
- Passive disruption suppression by 3-D helical fields
 - Kink, vertical and tearing instability thresholds studied w/ knowledge of background equilibrium
 - Addresses physics underlying passive external stability control in finite-β stellarators
- Influence of magnetic islands on stability
 - External control of magnetic errors, measurement of islands in plasma

CTH Progress

- CTH construction proceeding w/ some delays but w/o significant problems
 - Vacuum vessel delivered, tested & accepted by 11/02
 - Poloidal field coils fabricated on-site; completed
 - MG power plant operating
 - Helical coil frames delayed 6 months (est.).
- CTH actively participating in V3FIT equilibrium reconstruction collaboration with Hirshman and Lazarus (ORNL), Lao (GA), and Hanson (Auburn)
 - Now designing and constructing magnetic diagnostics using prototype V3FIT code

CTH Plans

- FY 2004
 - Completion and initial operation in early FY 2004
 - Proceed with experimental 3-D reconstruction as most immediate scientific need of US compact stellarator program
- FY 2005
 - Internal measurement of magnetic field for accurate 3-D equilibrium reconstruction
 - MHD instability and disruption studies with Ohmic current
 - Magnetic island studies

CTH Out-year Budget Planning

 CTH will make essential contributions to development & understanding of NCSX & QPS equilibrium measurement & stability

Budget determines expected rate of achieving milestones

FY 2003 Budget base: \$515K

Scenario	Base	Decrement	Increment
FY 2004	\$509K	\$458K	\$559K (+10%)
FY 2005	\$515K	\$464K	\$580K (+15%)

FY 2004

Base:Proceed w/ equilibrium and stability studiesDecrement:Delay effort & diagnostics for stability studiesIncrement:Speed up implementation of RF heating & diagnostics for stability

FY 2005

Base:	Continue equilibrium and stability studies; hire post-doc
Decrement:	Delay implementing internal-B diagnostic, postpone mag. island studies
Increment:	Speed up implementation of internal-B diagnostic

Key issue: Under decrement budget, data acquisition & basic diagnostics are delayed, leading to delay in 3-D equilibrium reconstruction studies (6 months) This is an important issue for NCSX & QPS development

QPS Will Extend Physics Understanding to Very Low R/a and Quasi-Poloidal Symmetry

- Dependence of anomalous transport, internal transport barriers, and flow shear on configuration
- Reduction of neoclassical transport
- Impact of poloidal flows on enhanced confinement
- Flux surface robustness at *R*/*a* > 2.3 and β up to
 2-3% in presence of strong toroidal/helical coupling
- Ballooning β character and MHD stability limits
- Benchmarking and improvement of 3-D theory

QPS Configuration Has Improved Since Last BPM

- Neoclassical transport losses can be changed by factor ~20-80
- Varying coil currents allows changing the degree of quasi-poloidal symmetry and poloidal flow damping over a wide range
- Vacuum magnetic configuration closer to full-beta configuration
- Magnetic islands are not an issue in vacuum or at higher beta
- Second stability β for infinite-n ballooning reduced from 9% to 6%

QPS Conceptual Design Nearing Completion

- Reduced cost of modular coils: winding types from 4 to 3, winding forms from 16 to 10, winding packs from 32 to 20
- Increased plasma-coil and coil-coil spacings and plasma size
- Simple shell design, reduced current density, longer pulse length

QPS FY 2004 Budget and Milestones

- FY 2003 -- preparing for August CDR
 - Explore configuration flexibility; trim coils to create/eliminate islands
 - Complete engineering design study; update cost and schedule estimate
 - Complete design of R&D coil winding form for manufacturing study
- FY 2004 Plans
 - Assessments of configuration flexibility, equilibrium, stability, transport
 - Start conceptual design of TF/OH centerstack assembly

Milestones

- Complete design for an R&D modular coil winding form -- 1/04
- Award contract for a full-scale R&D modular-coil winding form -- 3/04
- Summarize status of QPS research preparation activities -- 9/04
- FY 2004 Presidential budget is \$646k at ORNL, \$300k at PPPL
 - \$209k reduction from FY 2003 and <u>\$2,494k</u> reduction from FY 2004 plan
- Incremental request for FY 2004: \$650k at ORNL + UTK, \$350k at PPPL
 - Regains 5 months in fabricating an R&D coil
 - Allows FY 2005 delivery of all type A production winding forms and first of type B

QPS FY 2005 Budget and Milestones

 FY 2005 -- \$2450k (MIE), \$400k (research prep) at ORNL + UTK \$2380k (MIE), \$320k (research prep) at PPPL

• Plans

- Award contracts for modular coil forms
- Complete preliminary design for all core components
- Begin final design of TF/OH centerstack and vacuum vessel

Milestones

- Delivery of an R&D modular coil winding form 1/05
- Fabricate R&D coil tooling 1/05
- Complete R&D modular coil conductor winding 4/05
- Award contract for production modular coil winding forms 5/05
- Complete R&D modular coil 8/05
- Delivery of first type A production winding form 8/05
- Update preparations for initial QPS operation 9/05
- 10% decrement
 - Delay completion of R&D modular coil and centerstack design
 - Delay delivery of first production winding form

Summary

- HSX, CTH, and QPS support and complement NCSX in the US (and world) stellarator program
 - Each has unique features and contributions to toroidal physics
 - * HSX pioneers quasi-helical symmetry
 - * CTH addresses disruption suppression
 - * QPS pioneers quasi-poloidal symmetry and very low aspect ratio
- Balanced program with a range of device scales, aspect ratios, features, and status from operating to conceptual design
 - HSX (R = 1.2 m, a = 15 cm, P = 0.2 => 0.55 MW, operating)
 - CTH (R = 0.75 m, a = 20 cm, Ohmic, late 2003)
 - QPS (R = 0.9–1 m, a = 30–40 cm, P = 2–4 MW, 2007/2008)
- Key tasks for FY 04-05
 - HSX: ambitious experimental program
 - CTH: complete construction and start operation
 - QPS: CDR and CD-1, complete design, R&D coil forms
- Incremental budget would allow taking better advantage of existing experiments and regain 5 months on QPS R&D schedule