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ABSTRACT

In this paper, we present the notion of cascading steer-
able filters to improve their angular resolution. Addi-
tionally, we illustrate that the results of such cascades
can be steered themselves. An advantage of this ap-
proach is that only a single, relatively small set of steer-
able filters can be employed to achieve various angular
resolutions. Improving angular resolution has previ-
ously required an entirely different, larger set of filters.

1. INTRODUCTION AND REVIEW

Oriented filters are useful in many image processing
and early vision tasks [1, 2]. Steerable filters are one
class of oriented filters that have received significant at-
tention in recent literature [3-7]. After the background
information in this section, the remainder of this pa-
per is organized as follows. In Section 2, we describe
and demonstrate with an example how cascading ap-
propriately steered filters can provide improved angular
resolution. We show that these cascades can be steered
themselves in Section 3. In Section 4, we apply steer-
able cascades to the orientation analysis problem and
we conclude in Section 5 with some closing comments.

We provide a concise review of steerability, modeled
closely on the excellent presentation of Simoncelli &
Farid in [6], but in the frequency domain. Perhaps
the simplest example of a steerable filter is the first
partial derivative of the Gaussian. In polar frequency
coordinates, the horizontal and vertical derivatives are
given by

G
(1)
0 (ξ, φ) = cos(φ)(−ξe−ξ2/2) (1a)

G
(1)
π/2(ξ, φ) = sin(φ)(−ξe−ξ2/2) (1b)
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where ξ and φ indicate the radial and angular coor-
dinates, respectively. In (1), the subscripts and su-
perscripts of G indicate the orientation and derivative
order, respectively. Using trigonometric identities, it
is easy to show that the first partial derivative at any
orientation, G(1)

θ , can be synthesized by

G
(1)
θ (ξ, φ) = cos(θ)G(1)

0 (ξ, φ) + sin(θ)G(1)
π/2(ξ, φ). (2)

Equation (2) embodies the principle of steerability: the
directional derivative G(1) can be generated at any ar-
bitrary orientation θ by a linear combination of the ba-
sis filters, G(1)

0 and G(1)
π/2. We refer to the coefficients of

this linear summation, cos(θ) and sin(θ), as the steering
functions. Since convolution is a linear operation, the
result of convolving with an arbitrarily oriented filter
can be computed from the results of convolving with
only the basis filters.

Steerability is not limited to derivative filters – see [2]
for a thorough exposition. We proceed considering only
polar separable filters, for which the general steerability
condition is given by

Bθ(ξ, φ) = H(ξ)B(φ− θ)

= H(ξ)
Q∑
k=1

gk(θ)B(φ− θk)

= H(ξ)
Q∑
k=1

gk(θ)Bk(φ)

(3)

where H(·) is the radial component, B(·) is the an-
gular component, gk(·) are the steering functions, and
θk are a fixed set of Q orientations, usually chosen so
that θk = (k − 1)/(Qπ) for robustness [2]. The Q fil-
ters represented by the H(ξ)Bk(φ) terms are the basis
filters.

We work with filters whose angular component can
be expressed as a (finite) Fourier series in polar angle:

B(φ) =
M∑

r=−M
w(r)ejrφ. (4)
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Figure 1: Ideal magnitude response of the two orienta-
tion band, steerable filter set from the steerable pyra-
mid. (Shaded regions indicate passbands.)

Additionally, the following two theorems will be impor-
tant.

Theorem 1. Let P be the number of nonzero coeffi-
cients, w(r), for a filter H(ξ, φ) whose angular com-
ponent is expandable in the form of (4). Then P is
the minimum number of basis functions necessary to
steer H(ξ, φ) by (3), i.e., Q in (3) must be such that
Q ≥ P [2].

Theorem 2. The steering condition (3) holds for
functions with angular components expandable in the
form of (4), where only P of the coefficients w(r) are
nonzero, if and only if the steering functions gk(θ) are
solutions of
ejr1θ1 ejr1θ2 · · · ejr1θP

ejr2θ1 ejr2θ2 · · · ejr2θP

...
. . .

...
ejrP θ1 ejrP θ2 · · · ejrP θP



g1(θ)
g2(θ)

...
gP (θ)

=


e−jr1θ

e−jr2θ

...
e−jrP θ

,
(5)

where {r1, . . . , rP }, ri ∈ [−M,M ], indicate the indices
of the nonzero w(r) coefficients.

Theorem 1 gives the number of basis filters that are
required to provide steerability. Theorem 2, a more
general version of that in [2], gives the steering func-
tions, gk(θ). Although we have restricted ourselves to
polar separable filters for brevity, the theorems above
(and our results to follow, except as noted) hold in more
general cases [8].

As we are concerned with the angular components
of steerable filters, and to limit excessive notation, we
will refer to filters by only their angular components.
For example, we will refer to the basis filters men-
tioned above simply as Bk(φ), dropping the common
radial component H(ξ). Note that Bk(φ) = B(φ− θk)
from (3) can be written using (4) as

Bk(φ) = B(φ− θk) =
M∑

r=−M
[w(r)e−jrθk ]ejrφ

=
M∑

r=−M
wk(r)ejrφ.

(6)

Sπ/4

B1Sπ/4

Figure 2: Ideal magnitude responses of Sπ/4 and the
cascade B1Sπ/4.

2. CASCADES OF STEERED FILTERS

Previously, increasing the angular resolution of steer-
able filters has been accomplished by increasing the
number of basis filters. Here, however, we present a po-
tential alternative. Consider the ideal bandpass nature
of the two orientation band, steerable pyramid filters
presented in [5] and illustrated in Fig. 1. A filter at
any arbitrary rotation can by synthesized by

Sθ(φ) = cos(θ)B1(φ) + sin(θ)B2(φ). (7)

Now consider the result of cascading B1 with the fil-
ter Sπ/4 as computed by (7). The filter Sπ/4 and the
(ideal) resulting cascade B1Sπ/4, which is oriented at
π/8, are shown in Fig. 2. As evident in Fig. 2, the re-
sulting cascade B1Sπ/4 should provide improved angu-
lar resolution in the ideal case. The dashed lines in the
B1Sπ/4 portion of Fig. 2 indicate the four orientation
bands one might produce from the four combinations
of B1 and B2 cascaded with Sπ/4 and S−π/4. We could
also envision additional cascade stages to further im-
prove angular resolution. For example, applying S−π/8
to the B1Sπ/4 result of Fig. 2 would (ideally) produce a
filter oriented at π/16 with half the angular bandwidth
of B1Sπ/4. It should be evident that this cascading can
be applied to steerable sets with an arbitrary number
of basis filters, and extended to any number of stages.

We illustrate these ideas with a simple example. We
employ a two orientation band, steerable filter set con-
structed by sampling the first horizontal and vertical
derivatives of the Gaussian on a 9 × 9 lattice. The
normalized magnitude responses of B1, Sπ/4, and the
cascade B1Sπ/4 are shown in Fig. 3, where the straight
lines indicate the (expected) orientation. The increase
in angular resolution of the cascade should be evident
in Fig. 3. Note the out-of-band energy orthogonal to
the main lobes in B1Sπ/4. The peak side lobe magni-
tude is approximately 17% (i.e., -16 dB) of the peak
in the directional pass band. Further cascade stages
are illustrated in Fig. 4. As more levels are employed,
it is evident that the resulting orientation begins to
drift significantly from what is expected. The out-of-
band energy (about -16 dB) is also still present. In the
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Figure 3: Normalized magnitude responses for two
stage cascade. (Shown in inverse scale – i.e., black in-
dicates 1 and white indicates 0.)

next section, we show how the cascades can be steered,
preventing the orientation drift and, furthermore, elim-
inating the out-of-band energy.

3. STEERABILITY OF CASCADES

We mentioned in the previous section that the two ori-
entation bands of Fig. 1 could be split into four bands
using the four possible combinations of B1 or B2 cas-
caded with Sπ/4 or S−π/4. Recalling (7), however, Sθ
cascaded with B1 or B2 can be written as one of the
following:

B1Sθ = cos(θ)B1B1 + sin(θ)B1B2 (8a)
B2Sθ = cos(θ)B1B2 + sin(θ)B2B2. (8b)

Although we have suggested using the four filters given
by B1Sπ/4, B1S−π/4, B2Sπ/4, and B2S−π/4, (8) illus-
trates that these four are composed of linear combi-
nations of only three unique terms: B1B1, B1B2, and
B2B2. In this scenario, we would like to determine if
we can construct a three band, steerable basis set from
these three unique terms. We now address this problem
more generally.

Suppose we have a basis set ofm filters, each of which
can be written as in (6), where only m of the Fourier
series coefficients are nonzero. We denote the number
of unique filters that result from the n stage cascades
of these m filters as P (m,n). For our m = 2 example,
P (2, n) = n + 1 and the unique terms are given by
all possible (B1)l1(B2)l2 such that l1 + l2 = n with
l1, l2 ≥ 0. In the general case,

P (m,n) =
(
n+m−1
m−1

)
=

(n+m− 1)!
n! (m− 1)!

(9)

and the unique terms are given by all the possible

(B1)l1(B2)l2 · · · (Bm)lm (10)

such that
∑m
i=1 li = n, where li ≥ 0. With this nota-

tion, we make the following proposition.

C3=C2S-π/8 C4=C3S-3π/16 C5=C4S-7π/32

(line at π/16) (line at π/32) (line at π/64)

Figure 4: Normalized magnitude responses for further
cascades. (Coordinate scaling is the same as in Fig. 3
for consistency.)

Proposition 1. Any filter in the form of (10) has
at most P (m,n) nonzero coefficients in its (angular)
Four-ier series expansion.

This can be shown by using (6) to express each of
the Bi, for i = 1, . . . ,m, as

Bi(φ) =
m∑
p=1

wi(rp)ejrpφ (11)

where wi(r) = w(r)e−jθir and {r1, . . . , rm} indicate the
indices of the (possibly) nonzero coefficients. There-
fore, a filter in the form of (10) can be considered an
m term multinomial of degree n, where the m terms are
given by ejrpφ for p = 1, . . . ,m. The maximum number
of (monomial) terms in an m term multinomial of de-
gree n is the same as the number of m term monomials
of degree n, i.e., (10), and this number is P (m,n) as
given by (9), hence Proposition 1.

Recalling Theorem 1, Proposition 1 implies that ev-
ery filter in the form of (10), which results from the n
stage cascade of the m basis filters, is steerable with
at most P (m,n) basis filters. We would like to know,
however, if the P (m,n) different filters that result from
our cascades can be used as a basis set to steer them-
selves.

We begin with a basis set B1, . . . , Bm, where m is
minimal to satisfy the steering condition. With m and
n fixed, let P = P (m,n). We will let Ck(φ) denote the
kth unique term of the cascade for k = 1, . . . , P . Each
Ck will take the form of (10), where each of those Bk
can be written as in (6). The Fourier series expansion
of Ck(φ) can then be written as

Ck(φ) =
nM∑

r=−nM
ak(r)ejrφ, (12)

where ak(r) is nonzero for at most P of the 2nM + 1
indices by Proposition 1. Let the set of r where possibly
ak(r) 6= 0 be given by {r1, . . . , rP }. Note that this set
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Figure 5: Normalized magnitude response of the three
unique cascade terms for the two stage (n = 2) cascade
of two filter (m = 2) basis set. Notice that the cross
term B1B2 does not have a predominant orientation.

is the same for all k. Now let C1(φ) = [B1(φ)]n. As
noted in Section 1, B1 is traditionally oriented at zero
radians, like cos(φ) for example. With this condition,
it should be evident that C1 = (B1)n is oriented at zero
radians as well, but with a narrower bandwidth than
B1. We would like to use the set of Ck for k = 1, . . . , P
to steer C1(φ) to any arbitrary angle θ. In other words,
we would like to find, if possible, the set of steering
functions gk(θ) for k = 1, . . . , P to solve

C1(φ− θ) =
P∑
k=1

gk(θ)Ck(φ). (13)

If such gk(θ) can be found, then our cascades can indeed
be used to steer themselves. Employing (12), we can
show the following [8].

Proposition 2. The cascade steering condition given
by (13) holds for filters in the form of (12), where only
P of the coefficients ak(r) are nonzero, if and only if
the steering functions satisfy

a1(r1) a2(r1) · · · aP (r1)
a1(r2) a2(r2) · · · aP (r2)

...
. . .

...
a1(rP ) a2(rP ) · · · aP (rP )



g1(θ)
g2(θ)

...
gP (θ)



=


a1(r1)e−jr1θ

a1(r2)e−jr2θ
...

a1(rP )e−jrP θ

 , (14)

where {r1, . . . , rP } indicate the indices of the (possibly)
nonzero coefficients ak(r) for k = 1, . . . , P .

Proposition 2 is just a corollary of Theorem 2. Ac-
cording to Proposition 1, the matrix on the left hand
side of (14) always has at least as many columns as
rows, lending hope that our cascades can indeed steer
themselves. In all the cases we have considered in our
research, (14) has been solvable.

n=3 n=5n=4
(line at π/16) (line at π/32) (line at π/64)

Figure 6: Normalized magnitude response for steered
cascade filters. Compare with Fig. 4.

Note that, unlike the original basis filters, where usu-
ally Bi(φ) = B1(φ−θi), the cascade filters do not neces-
sarily have a predominant orientation. In other words,
Ck(φ) 6= C1(φ− θk) in general. Consider, for example,
the two stage cascades of a two band basis set as shown
in Fig. 5. The squared terms obviously have a predom-
inant orientation, but notice that the cross term B1B2

does not.
Finally, we note that the Fourier series coefficients

of the cascade filters, ak(r) in (12), can be computed
easily by discrete convolution of the Fourier series co-
efficients of the original basis filters, wk(r) in (4). In
other words,

ak(r) = [w1(r)]∗l1 ∗ [w2(r)]∗l2 ∗ · · · ∗ [wm(r)]∗lm (15)

for k = 1, . . . , P (m,n), where the mapping between k
and the set of li is isomorphic, and where [wi(r)]∗li indi-
cates wi(r) convolved with itself li times. We note that
this approach works only for polar separable filters.

As an example, we steer cascades constructed using
the 9 × 9 first derivative of Gaussian filters used for
the examples of Section 2. The magnitude response of
the cascade stages for n = 3, 4, 5 are shown in Fig. 6.
They have been steered to the indicated angles for com-
parison with Fig. 4. Note that there is no out-of-band
energy or orientation drift in the steered cascade filters.

4. APPLICATIONS

We have applied steerable filter cascades to the orien-
tation analysis problem in a manner similar to [2]. As
both even and odd parity filters are used in [2], we
employ two successive cascade stages for orientation
analysis. We begin with two 5 × 5 filters computed
by sampling the first derivatives of the Gaussian. We
first use the responses from the two original filters and
their two stage cascades. We compute the predominant
orientation and oriented energy, as in [2], and refer to
them as {θ1, e1} and {θ2, e2} for the original filters and
two stage cascades, respectively. (The subscripts here
are used to indicate the number of stages.) The final
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Figure 7: Oriented energy for one pixel in a test image.

predominant orientation is taken to be either θ1 or θ2,
according to which of e1 or e2 is larger (after normaliza-
tion). For improved angular resolution, we also employ
two and three stage cascades in the same manner.

Our one-two and two-three stage analyses were per-
formed on a 170 × 170 synthetic test image and com-
pared with the method from [2]. The difference be-
tween the orientation from our methods and that from
[2] was computed at pixels where the oriented energy
exceeded 10% of its peak value and the mean abso-
lute difference was calculated. For the one-two stage
cascade, this difference was 1.9◦ and for the two-three
stage cascade the difference was 2.6◦. The oriented en-
ergy from all three methods is plotted against angle in
Fig. 7 for a pixel on a structure oriented at approxi-
mately 10◦. Note the improved angular resolution in
the two-three stage cascade indicated by the narrower
bandwidth. A similar experiment was performed using
the 512×512 well known “lena” image. In this case, the
mean absolute difference between our two-three stage
cascade analysis and the method of [2] was 4.4◦.

These results indicate that the orientations com-
puted by our method(s) are nearly identical to those
computed by the method from [2]. We, however, begin
with only two 5 × 5 filters, where [2] uses seven 9 × 9
filters. Practically, of course, the amount of computa-
tion is about the same considering the cascading, but
we feel that this at least demonstrates the potential of
such cascades.

Finally, we mention that cascades within the steer-
able pyramid [7] have also been investigated and found
to have some promise [8]. A brief discussion of this

topic should appear in a future endeavor.

5. CONCLUSIONS

In this paper, we introduced steerable filter cascades.
It was demonstrated that such cascades can provide
improved angular resolution and can be steered them-
selves. Cascades were applied to the orientation anal-
ysis problem and were shown to perform as well as
a common approach, but beginning with fewer filters.
Additionally it was mentioned , but not discussed, that
cascades can be used within the steerable pyramid.
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