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Microscopic features and their hysteretic behavior can be used to predict the macroscopic response
of materials in dynamic experiments. Preisach modeling of hysteresis provides a refined procedure
to obtain the stress–strain relation under arbitrary conditions, depending on the pressure history of
the material. For hysteretic materials, the modulus is discontinuous at each stress–strain reversal
which leads to difficulties in obtaining an analytic solution to the wave equation. Numerical
implementation of the integral Preisach formulation is complicated as well. Under certain conditions
an analytic expression of the modulus can be deduced from the Preisach model and an elementary
description of elastic wave propagation in the presence of hysteresis can be obtained. This approach
results in a second-order partial differential equation with discontinuous coefficients. Classical
nonlinear representations used in acoustics can be found as limiting cases. The differential equation
is solved in the frequency domain by application of Green’s function theory and perturbation
methods. Limitations of this quasi-analytic approach are discussed in detail. Model examples are
provided illustrating the influence of hysteresis on wave propagation and are compared to
simulations derived from classical nonlinear theory. Special attention is given to the role of
hysteresis in nonlinear attenuation. In addition guidance is provided for inverting a set of
experimental data that fall within the validity region of this theory. This work will lead to a new type
of NDT characterization of materials using their nonlinear response. ©1997 Acoustical Society of
America.@S0001-4966~97!01304-0#
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INTRODUCTION

Nature accommodates some bizarre and unique ela
systems. Static stress–strain tests on rocks, for instanc
lustrate their extremely nonlinear response, including b
hysteresis and end point memory.1–8 The principal theoreti-
cal component in static and dynamic studies is the equa
of state~EOS!, which relates stress to strain. In the case
rocks ~and some other materials, such as shape mem
alloys,9 PZTs,10,11 etc.!, the deformation is a complex mul
valued function of the external stress~hysteresis! and of the
history of its changes~memory!: in fact, rocks can be con
sidered as systems having an infinite number of state r
tions. It is the EOS that we must understand in order
describe the dynamic response of rock.

Initially, nonlinear elasticity models were based o
theory derived from the domain of nonlinear flu
acoustics.12,13 A first-order perturbation expansion of th
modulus or velocity in terms of the strain is incorporated in
the wave equation to describe nonlinear effects such as w
distortion and the corresponding generation of harmon
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With the modulus depending on the excited strain levels,
stress–strain relation becomes nonlinear, too. It is impor
to note that this model has worked very well for ordina
materials that exhibit small nonlinear response.14 It is not
appropriate for most rocks, however. In a number of pap
by our group at Los Alamos, we generalized the stress–st
relation to include higher-order anharmonicity and appl
the results to rock dynamics. Both wave propagation a
resonance experiments under different conditions have b
evaluated using the generalized expansion theory.8,15–20

From the standpoint of an overview of numerous expe
ments on rock over a broad frequency and strain interva21

we conclude that classical perturbation theory is incorrec
at least incomplete. Coefficients of nonlinearity deduc
from dynamic studies do not agree with static predictio
and display amplitude dependence in simulations of a se
experimental wave propagation data.18 In resonance experi
ments on rock, classical perturbation theory of a ‘‘Duffin
type’’ resonating particle predicts an incorrect dependenc
the frequency shift on the measured acceleration.8,20The rea-
son for these discrepancies is that the traditional the
makes no attempt to describe experiments that show hy
esis. With rocks, a rather complex picture emerges. Exp
mental evidence suggests that hysteresis and end p
memory are omnipresent even at dynamic levels, calling
a discontinuous model of the equation of state as an alte
tive and more physically realistic approach. It is the micr
scopic structure~cracks, grain-to-grain boundaries, etc.! of

-

-
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the elastic features and their hysteretic behavior that de
mines the macroscale nonlinear response.

McCall and Guyer have introduced a new model of ro
elasticity and developed this model in a series
papers.7,8,22,23 As McCall and Guyer noted, the basic ide
behind the model is presented in earlier work of Walsh24 and
Holcomb.1 This approach takes the elastic properties o
macroscopic sample of material to result from the workin
of a large number of mesoscopic elastic elements~on the
order of 1012 in a cubic centimeter!. These elastic element
can individually have complex hysteretic behavior. The m
important portion of the theory is the Preisach–Mayergo
~P–M! space, which provides an infinite number of state
lations by tracking the behavior of the individual elastic
ements depending on the excitation and the pressure his
The theory reduces to the traditional theory in the limit of
hysteresis and no discrete memory, and—as a consequ
of its greater generality—is more difficult to apply. We ref
the reader to Refs. 7 and 22 for a full description of the P–
model for rocks.

In this paper we focus on a~quasi-!analytic approach of
the P–M space in connection to the wave propagation eq
tion. Our goal is to achieve adynamiccalculation for appli-
cation to wave propagation in rocks using input data from
P–M space density found empirically fromstatic tension-
compression measurements. The major difficulty in obta
ing an analytic solution is in addressing discontinuities in
modulus–strain relation~see details later!. Simple approxi-
mations will be made concerning the P–M space in orde
treat the problem quasi-analytically. Doing so, the modifi
nonlinear wave equation, which includes hysteresis and
crete memory in the equation of state, translates into a
ferential equation with discontinuous coefficients. To a c
tain extent the solution can be obtained by avoiding
discontinuity and interpreting the problem in the Fourier d
main. This problem has been briefly illustrated by McC
and Guyer23 and will be elaborated on in this paper. E
amples will be provided showing the effects of hystere
and discrete memory on the dynamic wave propagation
havior in combination with traditional nonlinearity. We car
fully study the influence of hysteresis on the waveform a
its harmonic spectra, on attenuation properties, and on
functional distance, source amplitude, and frequency dep
dencies of harmonics. We conclude by discussing the lim
of the analytic treatment and address the complexity of
merical modeling involving the integral P–M space.

I. THEORY AND LIMITATIONS

In this section we start with the classical nonlinear wa
equation from acoustics. This is followed by incorporati
an analytic formulation of hysteresis resulting from P–
space considerations. We will show that, to first order, h
teresis introduces a discontinuous term in the wave equa
The solution for this equation can be obtained by applicat
of Green’s function and perturbation methods. We explic
derive the solution for a continuous source signal with
arbitrary ~discrete! frequency spectrum. Finally, we indica
the limitations of this quasi-analytic approach in connect
to the Fourier transformation of the discontinuous term.
1886 J. Acoust. Soc. Am., Vol. 101, No. 4, April 1997
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Because our laboratory bench top experiments involv
wave propagation are usually performed in small diame
cylindrical bars by exciting the lowest-order Pochamm
mode~or Young’s mode!,15 we can simplify the problem to a
one-dimensional description using a wave equation of
following type:

r0
]2u

]t2
5M2„11k~x,t !…

]2u

]x2
1S~x,t !. ~1!

HereS is the source function,u is the particle displacemen
at Lagrangian positionx and time t, r0 is the unstrained
density of the medium,M2 is the linear Young’s modulus~a
combination of second order elastic constants equal tor0c0

2

wherec0 is the linear velocity!, andk(x,t) is the ratio of the
nonlinear to linear contributions to the modulus.

Traditional theoretical models simply make use of a
ries expansion expression ofk(x,t) in terms of the strain
«5]u/]x, introducing nonlinear coefficients in the equatio
of state. In this case,

k~x,t !5b
]u

]x
1dS ]u

]xD
2

1••• , ~2!

whereb5M3/M2 and d5M4/M2 . Here,M3 andM4 are,
respectively, linear combinations of second- and third-or
elastic constants, and second-, third-, and fourth-order c
stants, in the direction of propagation.

Classical nonlinear theory generally does a poor job
predicting behavior in rock. As shown and discussed in o
of our previous papers,18 the application of the traditiona
nonlinear model including cubic anharmonicity to expe
mental data results in nonlinearity parameters with mag
tudes that are difficult to justify when compared to sta
stress–strain test predictions. In particular, the cubic an
monicity term, which arises from nonzero fourth-order ela
tic constants, is two to three orders of magnitude larger t
its estimation based on static measurements. Also, we
ticed a systematic amplitude dependence of the nonlinea
coefficients indicating that the assumptions of the model
incorrect and that the theory is at the very least incomple
Finally, classical nonlinear models do not display the mu
valued state relations as predicted by comprehensive s
stress–strain test, i.e., excursions up and down in pressu

Convinced by the large number of experimental obs
vations illustrating the presence of hysteresis and disc
memory in rocks over a broad interval in frequency a
strain,1–6 McCall and Guyer developed a new theoretic
paradigm for the description of the elastic behavior
rocks.7,22,23This alternative model is based on the Preisa
model for hysteresis25 and uses Mayergoyz’ ideas26 to trans-
late the properties of the microscopic structure, i.e., the
ture of the compliant portion of the material~grain to grain
contacts, cracks, contained fluids, etc.!, into the macroscopic
behavior of the rock using effective medium theory. In t
model, the fundamental building blocks are the individu
hysteretic mesoscopic elastic units@HMEU, Fig. 1~a!# as-
sembled into the Preisach–Mayergoyz~or P–M! space
which represents the density of individual HMEU’s@Fig.
1~b!#. The P–M space is a pressure–pressure space (Pc ,P0).
As illustrated in Fig. 1~a!, the closing pressurePc corre-
1886Van Den Abeele et al.: Hysteretic nonlinear response
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sponds to the pressure at which a HMEU changes from s
A to state B while increasing the pressure. The opening p
sureP0 then represents the pressure at which the same
ture changes from state B back to its initial state A wh
decreasing the pressure. A large number of the HMEU’s w
differing Pc , P0 comprise a model of the compliant feature
of a sample material. The P–M space is constructed by p
ting the characteristic (Pc ,P0) pressures for the individua
HMEU’s and filling the lower triangular half-spac
(Pc>P0) as seen in Fig. 1~b!. Nonhysteretic units~i.e.,
Pc5P0! are on the diagonal, and hysteretic units fall in t
bottom triangle in P—M space. The more hysteretic
HMEU is, the farther from the diagonal it resides. Usin
statistics, a density of compliant features can be associate
each point of the P–M space, given byr(Pc ,P0). It is be-
yond the scope of this paper to review this model in mo
detail. We refer the reader to the extensive work of o
colleagues.7,22,23

The P–M space representation with its associated d
sity can be used to construct realistic stress–strain cu
that include hysteresis and discrete memory and that mo
static observations very well. Static pressure excursi
sample different volumes of HMEU’s for increasing or d
creasing pressure. This results in typical hysteresis lo
showing discontinuities and discrete memory in the equat
of state depending on the pressure path. Based on labora
observations it is reasonable to assume that dynamic ex
sions also display hysteresis and discrete memory. In
following we will describe howk(x,t), the ratio of nonlinear
to linear moduli in Eq.~1!, can be obtained for dynamic
experiments using very simple assumptions about the P
space density in the region of interest. This will provide
the tools to correctly model dynamic observations.

Suppose we simulate a wave propagation experimen
which the source is a sequence of sinusoidal oscillations
identically pressure excursions of amplitudeDP, centered at
average pressureP̄. BecauseDP in dynamic excursions is
very small, two assumptions can be made:~1! The P–M
density of the nonhysteretic elastic features on the diago
of Fig. 1~b! ~which corresponds to the major percentage
the P–M density! can be expanded in the pressure deviat
p aroundP̄, wherep5P2 P̄, and2DP<p<DP. ~The pre-
supposition of a series expansion will enable us to ea
obtain analytic solutions and to retrieve the classical non
ear theory formalism as a special case.! ~2! The P–M density

FIG. 1. ~a! Representation of a hysteretic mesoscopic elastic unit~HMEU!.
~b! Typical P–M space representing the density of HMEU’s in a sample
1887 J. Acoust. Soc. Am., Vol. 101, No. 4, April 1997
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of the hysteretic elastic units off the diagonal (Pc,P0) is
considered constant~uniform background! near the diagonal.
This yields the following approximate expression for t
P–M densityr(Pc ,P0) in the case of a dynamic wave ex
periment:

r~Pc ,P0!5@a01a1p1a2p
21•••#• d̂~P02Pc!1 r̂B ,

~3!

wherer̂B is the constant P–M space density off the diago
in the pressure region of interest, andd̂~•! is the delta distri-
bution function. The P–M space density given in Eq.~3! is
expressed in units ofP22. Therefore,r̂B also has units of
P22, and because a delta function has units inversely prop
tional to its argument,a0 must be expressed in units ofP

21,
a1 in units ofP22, anda2 in units ofP23.

Following equations 28–32 in McCall and Guyer’s de
vation of the modulus from the P–M space density,22 the
inverse elastic modulus then corresponds to

1

M
5j0@a01a1p1a2p

21•••1 r̂B~DP6p!#, ~4!

where the plus sign corresponds to the~inverse! modulus for
increasing pressure and the minus sign for decreasing p
sure. Herej0 is a dimensionless constant that can be fou
from experiment. Assumingp andDP are small, Eq.~4! can
be inverted to find the following first-order expression for t
modulus. Identifying the constant pressure independent c
tribution with the ‘‘linear’’ dynamic modulusM2 gives

M5@M21b1p1b2p
22rB~DP6p!1•••# ~5!

~b1, b2, andrB can be calculated from the inversion using
Taylor series expansion!. The last step consists of the subs
tution of the relationship between pressure and strain to
order in Eq.~5! ~Hooke’s lawp52M2 «52M2 ]u/]x, and
DP5M2 D«5M2D ]u/]x with D« or D ]u/]x being the
maximum strain excursion!, which results in

M5M2F11b
]u

]x
1dS ]u

]xD
2

2rBS D
]u

]x
6

]u

]xD1••• G
~6!

with b52b1 and d5b2M2 . Here,b, d, andrB are dimen-
sionless parameters. The plus sign corresponds to the m
lus for increasing strain and the minus sign for decreas
strain. It must be noted that this substitution is only corr
under the assumption that dissipation does not contribut
the forces to first order. We will return later to the subject
attenuation.

Equation ~6! gives the formulation of the dynami
modulus resulting from rudimentary P–M space consid
ations. In view of Eq.~1!, we can identify the ratio of the
nonlinear to linear contributions to the modulus,k(x,t), as

k~x,t !5b
]u

]x
1d S ]u

]xD
2

2rBS D
]u

]x
6

]u

]xD1••• . ~7!

It is clear that the elastic modulus is hysteretic forrBÞ0.
For rB50, the modulus is a power series in the strain a
does not differ for increasing or decreasing strain. In t
case the model reverts to the traditional theory correspond
to Eq. ~2!.
1887Van Den Abeele et al.: Hysteretic nonlinear response
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As a first approximation, the P–M paradigm for roc
accounts for hysteresis and end point memory by introduc
a discontinuous term in the dynamic modulus. The ela
modulus depends not only on the instantaneous value o
strain but also on its amplitude and the reversal points
each extremum. This complicates the manipulation of
wave equation significantly. The problem becomes a diff
ential equation with discontinuous coefficients that are fu
tions of the dependent variable by its derivatives and th
amplitude. A quasi-analytic solution can be obtained usin
Green’s function formalism in combination with perturbatio
theory.16,17,23We illustrate this in the following.

We write the solution to the nonlinear wave equation
the sum of the zeroth-order ‘‘linear’’ displaceme
[u(0)(x,t)] and a nonlinear contribution [u(1)(x,t)], and we
assume that every nonlinear term ink(x,t) @Eq. ~7!# contrib-
utes as a first-order perturbation to the linear solution. I
previous paper we proved that higher-order terms can
accounted for by performing small iteration steps in distan
i.e., using a variant of the finite difference procedure.17 Us-
ing Green’s function theory, the Fourier transformation
the linear displacement component satisfies

ũ~0!~x,v!5E
2`

1`

dt u~0!~x,t !eivt

5E
2`

1`

dx8
ei ~v/c0!cq~v!ux2x8u

22i ~v/c0!cq~v!
•

S̃~x8,v!

M2
,

~8!

wherec0 5 AM2 /r0 is the linear velocity, andS̃(x,v) is the
Fourier transformation of the source function. The fac
cq~v! equals~11isign~v!/2Q!, and is anad hocmanner in
which we introduce intrinsic attenuation, linear with fr
quency, for a given quality factorQ.

Our primary interest in this paper lays in the investig
tion of nonlinear distortion of propagating pulsed wave
Therefore we can specifyS̃(x,v) by its discrete Fourier
spectrum. Assuming a ‘‘breathing’’ mode source where
source expands symmetrically about its vertical axis@i.e.,
u(2x,t)52u(x,t)#,

S̃~x,v!5E
2`

1`

dt S~x,t !eivt

522M2

]@d̂~x!#

]x
•2p (

n52`

1`

Und̂~v2nv0!

~9!

in which v0 is the fundamental source frequency, a
Un5[U2n] * is a complex number describing the amplitu
An and phasefn of the nth harmonic displacement compo
nent atx50, i.e.,Un 5 2( i /2)Ane

ifn, and again,d̂~•! is the
delta distribution function. In this caseũ (0)(x,v) becomes
1888 J. Acoust. Soc. Am., Vol. 101, No. 4, April 1997
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ũ~0!~x,v!52p
x

uxu (
n52`

1`

Und̂~v2nv0!e
i ~v/c0!cq~v!uxu.

~10!

The first-order perturbation contribution to the solutio
satisfies the following linear differential equation:

F ]2

]x2
1

v2

c0
2 G ũ ~1!~x,v!

52bE
2`

1` ]u~0!

]x
~x,t !•

]2u~0!

]x2
~x,t !eivt dt

2dE
2`

1`F]u~0!

]x
~x,t !G2• ]2u~0!

]x2
~x,t !eivt dt

1rBE
2`

1`FDS ]u~0!

]x D 6
]u~0!

]x
~x,t !G

•

]2u~0!

]x2
~x,t !eivt dt. ~11!

As seen from this equation, the source foru(1)(x,t) is com-
posed of three nonlinear contributions inu(0)(x,t) and its
derivatives which identify the nonconstant distribution
HMEU’s on the diagonal in P–M space and the nonze
background value off the diagonal. The third term on t
right-hand side of Eq.~11! contains the discontinuity intro
duced by hysteresis considerations. The switching betw
plus and minus occurs at each strain reversal in time. Obt
ing an analytic solution to Eq.~11! is problematic because o
this discontinuity. One can sidestep this difficulty by a
proximating the function [D(]u(0)/]x)6]u(0)/]x](x,t)
@which we renameH0(x,t) in the following# using its dis-
crete Fourier series expansion. Suppose$hm% are the com-
plex Fourier coefficients of this function. Then

H0~x,t !5FDS ]u~0!

]x D 6
]u~0!

]x G~x,t !
5 (

m52`

1`

hme
im~v0 /c0!cq~v!uxu2 imv0t ~12!

from which

H̃0~x,v!52p (
m52`

1`

hme
i ~v/c0!cq~v!uxud̂~v2mv0!. ~13!

Rearranging integrands in Eq.~11! by use of the convolution
rule for Fourier transformations and subsequent applica
of the Green’s function theory yields the following gener
solution for ũ (1)(x,v):
1888Van Den Abeele et al.: Hysteretic nonlinear response



ũ~1!~x,v!5
b

2p E
2`

1`

dx8
ei ~v/c0!cq~v!ux2x8u

22i ~v/c0!cq~v!
•E

2`

1` ]ũ ~0!

]x8
~x8,v8!•

]2ũ ~0!

]x82
~x8,v2v8! dv8

1
d

~2p!2
E

2`

1`

dx8
ei ~v/c0!cq~v!ux2x8u

22i ~v/c0!cq~v!
•E

2`

1`E
2`

1` ]ũ ~0!

]x8
~x8,v8!•

]ũ ~0!

]x8
~x8,v9!

•

]2ũ ~0!

]x82
~x8,v2v82v9! dv8 dv9

2
rB
2p E

2`

1`

dx8
ei ~v/c0!cq~v!ux2x8u

22i ~v/c0!cq~v!
•E

2`

1`

H̃0~x8,v8!•
]2ũ ~0!

]x82
~x8,v2v8! dv8. ~14!
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Substituting the expression forũ (0)(x,v) @Eq. ~10!# and the
Fourier transformation ofH0(x,t) @Eq. ~13!# in Eq. ~14! and
working through the immense job of analytically calculati
the integrals we obtain a general expression describing
harmonic distortion of a pulsed signal propagated over a
tancex in an elastically nonlinear and hysteretic mediu
However, because this expression is obtained using pe
bation theory, it is restricted in its analytic form to sma
distancesx from the source. For large distancesL, the dis-
tortion must be calculated by a finite difference or iterat
procedure.17,27,28 Therefore we divide the total distanceL
into N intervals, each of lengthDx5L/N. The calculated
signal at the beginning of each interval is used as the so
for the computation of the waveform and spectrum propag
ing over the next intervalL/N. As illustrated in our previous
papers, frequency-dependent attenuation can be accou
for at each step in the iteration. In terms of the strain co
ponents

«n~x!5 i
nv0

c0
cq~nv0!Un~x!

5n
v0

2c0
cq~nv0!An~x!exp@ ifn~x!#, ~15!

the perturbation solution atx01Dx, based on the virtua
‘‘source’’ at x0, for each frequency component is given b

«n~x01Dx!5«n~x0!expF i nv0

c0
cq~nv0!uDxuG

1 i
Dx

uDxu
v0

2c0
(

m52`

1`

~n2m!•cq„~n2m!v0…

•«n2m~x0!•Int~n,m,n2m,0!•@2b«m~x0!

1rBhm~x0!#2 id
Dx

uDxu
v0

2c0
(

m,l52`

1`

l

•cq~ lv0!•«n2m2 l~x0!•«m~x0!•« l~x0!

•Int~n,n2m2 l ,m,l !. ~16!

where

Int~n1 ,n2 ,n3 ,n4!52k1
eik1uDxu2eik234uDxu

i ~k1
22k234

2 !
1889 J. Acoust. Soc. Am., Vol. 101, No. 4, April 1997
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k15
n1v0

c0
cq~n1v0!

and

k2345
n2v0

c0
cq~n2v0!1

n3v0

c0
cq~n3v0!

1
n4v0

c0
cq~n4v0!. ~17!

FIG. 2. Examples of the functionH0(x,t) ~the discontinuous portion of the
nonlinear modulus! for a pure monofrequency~a! and a moderately distorted
~b! sinusoidal ‘‘simplex’’ wave forcing function representative for an equ
tion of state with one major stress–strain hysteresis loop~see inset!.
1889Van Den Abeele et al.: Hysteretic nonlinear response
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The discontinuous functionH0(x,t) and its Fourier
transformationH̃0(x,v) pose rather severe restraints as
the extent on which this problem can be solved analytica
~or better quasi-analytically!. In the case of a periodic
monofrequency sinusoidal time history for the strain, McC
and Guyer,23 proved that only even Fourier coefficients
Eqs. ~12! and ~13! are nonzero, resulting eventually in th
creation of odd harmonics in the distorted spectrum along
propagation path. However, the analytic representation of
nonlinear part of the modulus given by McCall and Guyer
only valid for a pure single frequency sinusoidal forcin
function. As the propagation path increases, the local st
becomes progressively distorted, its maximum and minim
change~not necessarily symmetrically! and are shifted in
time ~not necessarily separated by half a period!. Multiple
maxima and minima may be observed during one period
these cases the analytic expressions for the Fourier co
cients ofH0(x,t) generally become far more elaborate. A
long as the strain has a periodic time history with only o
maximum and one minimum per period, which we will d
n
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fine as ‘‘simplex wave’’ henceforth, one can proceed w
the following algebraic formulas:

H0~x,t !55
]u~0!

]x
~x,t !2S ]u~0!

]x D
Min

if
]2u~0!

]t]x
~x,t !>0,

S ]u~0!

]x D
Max

2
]u~0!

]x
~x,t ! if

]2u~0!

]t]x
~x,t !,0.

~18!

Examples of the discontinuous functionH0(x,t) for a pure
monofrequency and a moderately distorted sinusoidal ‘‘s
plex’’ wave forcing function are illustrated in Fig. 2.

Suppose the zeroth-order approximation of the lo
strain nearx0, i.e.,

]u~0!

]x
~x01x,t !5 (

n52`

1`

«n~x0!e
in~v0 /c0!cq~nv0!uxu2 inv0t,

has a maximum«Max at tMax and a minimum«Min at tMin for
x5Dx. Then
hn5 d̄n,0@«Min1«Max#~ tMin2tMax!2 d̄n,0«Min
2p

v0
22«nS tMin2tMax2

p

v0
D

1~12 d̄n,0!@«Min1«Max#e
2 in~v0 /c0!cq~nv0!uDxu

•

einv0tMin2einv0tMax

inv0

22 (
m52`

1`

~12 d̄n,m!«me
2 i ~v0 /c0!~n•cq~nv0!2m•cq~mv0!…uDxu

•

ei ~n2m!v0tMin2ei ~n2m!v0tMax

i ~n2m!v0
~19!
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with d̄ i j50 if iÞ j and d̄ i , j51 if i5 j .
One easily recovers McCall and Guyer’s expressio

when«m50 for umuÞ1, «Max52«Min , tMin2tMax5p/v0, and
when no attenuation is taken into account. Equation~19!,
however, can be used in the iteration to calculate the dis
tion due to hysteresis at any distance as long as the w
satisfies the criteria of a simplex wave at that distance~i.e.,
being periodical with only one maximum and one minimu
in one period of the strain!.

When more than one maximum and minimum occ
during a period~we refer to this as a ‘‘complex’’ wave!, it
means that the stress–strain relation experiences inte
hysteresis loops within a larger loop. Figure 3 shows an
ample where two inner loops are formed on the descend
stress–strain branch corresponding to two additional max
and minima in the history of the forcing function. In order
find the hysteretic term in the modulus, one must keep tr
of all reversal points$tm% and of the end points of each inne
loop $tm8 % as shown in Fig. 3. The discontinuous functio
H0(x,t), which now also takes into account the addition
local maxima and minima, becomes quite complicated to
scribe analytically. Perhaps Fourier analysis could still wo
in the most simple cases; however, once more and m
extrema are formed the set of time reversal points and
spective maxima and minima is difficult to keep track
s

r-
ve

r

al
x-
g
a

k

l
e-
k
re
e-

analytically. Approximating a functionH0(x,t) such as the
one illustrated in Fig. 3 requires the computation of a lar
number of Fourier coefficients. Even if one is capable
doing so, it remains a question as to whether it would b
worthwhile endeavor. Recall that we introduced the funct

FIG. 3. Example of the functionH0(x,t) for a highly distorted sinusoidal
‘‘complex’’ wave forcing function representative for an equation of sta
with internal stress–strain hysteresis loops~see inset!. Here,$tm% and $tm8 %
are reversal and inner loop end points corresponding to discontinuities in
stress–strain relation.
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H0(x,t) as an ‘‘analytic’’ approximation to the exact proce
given by P–M space. For complicated forcing functions
latter approximation may very well introduce a far larg
error than a Fourier analysis representation. In this case
gain nothing by solving the problem in the Fourier doma
because the function we started from does not describe
physics well. One alternative~and frankly it seems to be th
only possibility! is to leave the analytic treatment and swit
to a numerical approach that solves the differential equa
in the time domain while linking to a numerical~tabulated!
representation of the appropriate P–M space. This wor
currently in progress.

II. EXAMPLES WITHIN THE LIMITATION OF SIMPLEX
WAVES

In this section we illustrate some effects of hysteresis
the time waveform and frequency spectrum for conditions
which the above analytic treatment~within its limitations of
simplex waves! can be applied. We begin this section wi
some examples of classical nonlinear theory using a Ta
series expansion of the stress–strain relation. Subsequ
we illustrate the effects of introducing hysteresis. For clar
we will refer henceforth to the first-order~one parameter!
Taylor series expansion as theb model @i.e., d and rB are
both zero in Eqs.~6! and ~7!#, and to the extended secon
order expansion as theb, d model ~i.e., rB is zero!. When
hysteresis is taken into account in the model, we will use
termb, rB model~d will always be assumed zero in theb, rB
model examples!. The nonlinearity parameters used in t
model simulations will be indicated by the triplet@b,d,rB#. In
all of the examples the source function is a monofreque
continuous pressure wave of frequencyf and displacemen
amplitudeA. The propagation distance is 1 m except where
noted otherwise. The linear sound velocity in the mode
fixed at 2500 m/s and the linear attenuation corresponds
quality factor (Q) of 50 except where noted. The number
distance iteration steps or finite difference back substituti
was set to 100, resulting in an acceptable calculation s
size of 1 cm.

A. Classical nonlinear theory results

Figures 4–6 summarize results obtained from the cla
cal nonlinear models. In Fig. 4~a! time waveforms are shown
using theb model ~@b,d,rB#5@21000, 0, 0#! for a single-
frequency 10-kHz sinusoidal source at progressively lar
amplitude levels. One observes an increased asymmetry
drive level and a correspondingly larger distribution of e
ergy into harmonics as illustrated in Fig. 4~b!. The harmonic
energy in the spectral components tends to fall off rapi
~nearly exponentially! as a function of frequency. The non
linear effect in this case is essentially frequency mixing
tween two spectral components: the double-frequency c
ponent is generated by a mixing of the fundamental w
itself; the third harmonic arises by interaction of the seco
harmonic and the fundamental, etc. Figure 5, on the o
hand, illustrates a threefold spectral component freque
mixing, resulting from the classicalb, d model withb equal
to zero. The top figure shows the waveform calculations
a positive and negative value of the second nonlinearity
1891 J. Acoust. Soc. Am., Vol. 101, No. 4, April 1997
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rameter~@b,d,rB#5@0,6108, 0#!. In both cases, the distortion
from a sinusoidal waveform is readily visible. The amplitud
spectrum@Fig. 5~b!# is composed of odd harmonics only
This is the result of three-component mixing starting from
single-frequency source spectrum. That is, three fundame
frequencies can mix energy to form the third harmonic a
corrections to the fundamental component. The third h
monic mixes with two fundamental components to form th
fifth harmonic and so on. It is interesting that the frequen
amplitude spectrum is identical for positive and negatived
values. The phase spectrum is different, however: the~2m
11!th spectral component for negatived differs in phase
from the ~2m11!th spectral component for positived by m
p. This results in the mirror effect in the time history of th
signal observed from Fig. 5~a!. Figure 6 illustrates the result
of combining the first and second nonlinearity parameter
fects by fixingb and progressively increasingd. The bold
line in Fig. 6~a! shows the effect whend50. As in Fig. 5~a!,
positived values force the peak in the strain history to shi
to earlier times, whereas negative values contribute to a s
to later times. Typically, absolute values ford of one to two
orders of magnitude larger thanb2 are required to notice
differences in the distorted wavefrom. Characteristic spec
corresponding to a combination of first and second nonl
earity parameters are shown in Fig. 6~b!. Due to the simul-

FIG. 4. ~a! Strain waveforms from a sinusoidal monofrequency 10-kH
source signal after propagation of 1 m for different source displacement
amplitudes~1026 to 4.031026 m, corresponding to strains of 2.531025 to
1024!. Model parameters:@b,d,rB#5@21000, 0, 0#. ~b! Amplitude spectra
for the waveforms shown in~a!.
1891Van Den Abeele et al.: Hysteretic nonlinear response
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taneous presence of two- and three-fold frequency inte
tions, one observes a richer spectrum with both even and
harmonics present~as opposed to the case whenb50!. Com-
pared to the spectrum ford50 @bars in Fig. 6~b!#, we also
note that more energy is pumped into the higher harmon
increasing the higher frequency portion of the spectr
markedly. Because much energy can be transferred to
harmonics by threefold frequency mixingd contributions, a
subsequent twofold mixing between an odd harmonic
the fundamental adds considerably to the energy conten
its neighboring even components. In extreme cases this
lead to spectra which show a predilection for odd harmon
We refer, for instance, to our previous papers for such
servations and an attempt to model them using the clas
nonlinearb, d approach.15,18

B. Quasi-analytic hysteretic approach

Figures 7 and 8 depict results from the quasi-analy
approach of theb, rB model. We first illustrate the nonlinea
effects introduced by the hysteretic coefficient without tak
into account the nonlinearity parameterb. The waveform
represented by the dashed line in Fig. 7~a! is a typical result
of a purely hysteretic model. Because it is nearly triangu

FIG. 5. ~a! Strain waveforms from a sinusoidal monofrequency 10-k
source signal with source displacement amplitude of 1026 m after propaga-
tion of 1 m. Model parameters: solid line:@b,d,rB#5@21000, 2108, 0#;
dashed line:@b,d,rB#5@21000, 1108, 0#. ~b! Amplitude spectra for the
waveforms shown in~a!. The amplitude spectra are not influenced by t
sign of d.
1892 J. Acoust. Soc. Am., Vol. 101, No. 4, April 1997
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it consists of only odd harmonics@Fig. 7~b!#. The transfor-
mation of a smooth wave into a sawtooth form in hystereti
materials has also been noticed by Nazarov,29 independently
of our research. Mathematically one can explain this result
the twofold mixing between the fundamental source ampl
tude and a discontinuous function composed of only eve
harmonics which results from the analytic P–M space func
tion H0(x,t) described in the above theory section.@The dis-
continuous function is composed of only even harmonic
because it is periodic over half a source period as is illus
trated in Fig. 2~a!.# Compared to the linearly attenuated sig-
nal propagated over the same distance, one notes the str
generation of harmonics and a supplemental loss of ener
due to hysteresis. We will return to the latter subject late
Figure 8 illustrates the combination of the first-order class
cal nonlinear theory with the hysteretic model for three dif
ferentrB values at fixedb ~@b,d,rB#5@21000, 0, 0#, @21000,
0, 2000#, @21000, 0, 4000#!. The waveforms become more
and more symmetric~triangular! asrB increases, diminishing
the shock wave tendency effect imposed by the first nonlin
earity parameterb. In addition, the strain amplitude becomes
progressively reduced when compared to the classical res
over the same propagation distance. Again, the combinati

FIG. 6. ~a! Strain waveforms from a sinusoidal monofrequency 10-kHz
source signal with source displacement amplitude of 1026 m after propaga-
tion of 1 m. Model parameters: bold line:@b,d,rB#5@21000, 0, 0#, others:
@b,d,rB#5@21000, 2108, 0#, @21000, 25•107, 0#,@21000, 15•107, 0#,
@21000,1108, 0#. ~b! Amplitude spectra for the waveforms shown in~a!.
The amplitude spectra are not influenced by the sign ofd.
1892Van Den Abeele et al.: Hysteretic nonlinear response
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of twofold odd harmonic generation due to hysteresis and
classical twofold frequency mixing leads to rich spectra w
a predilection for odd harmonics as illustrated in Fig. 8~b!.

C. Local dynamic modulus

Using Eq.~6! one can calculate the local dynamic mod
lus at any distance from the source as a function of time
strain. Figure 9 shows the normalized local modulus afte
propagation distance of 1 m as afunction of time@Fig. 9~a!#
and strain history at that same position@Fig. 9~b!# for ex-
amples of the three models considered. The normalizatio
performed with respect to the linear modulus, i.e., with
spect to the modulus in the absence of any form of non
earity. Because the termd(]u/]x)2 is either positive or nega
tive depending on the sign ofd, its contribution causes a
offset in the modulus–time and modulus–strain relation. T
same is true for the hysteretic contribution which is alwa
definite negative. Both classical models~b and b, d ap-
proach! display a continuous variation of the modulus wi
time. The extended classical model shows more varia
which is related to the richer frequency content at that d
tance. As a function of strain, the simpleb model delineates
a linear dependence with no discontinuities. The seco
order b, d model accounts for some curvature in t

FIG. 7. ~a! Strain waveform from a sinusoidal monofrequency 10-k
source signal with source displacement amplitude of 1026 m after propaga-
tion of 1 m ~dashed line! and comparison with a purely linear signal wit
ad hoc attenuation. Model parameters for dashed wavefo
@b,d,rB#5@0,0,4000#. ~b! Amplitude spectra for the linear and nonline
waveforms shown in~a!.
1893 J. Acoust. Soc. Am., Vol. 101, No. 4, April 1997
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modulus–strain relation, but even in this case the modulu
continuous and single valued at every strain level. As
plained in the theory section, hysteresis introduces a disc
tinuous term in the modulus which shows up in both its tim
and strain dependence. As a function of strain, theb, rB
model results in a multivalued modulus–strain relations
with a typical bow tie behavior. The modulus becomes d
continuous at peaks in the strain history, and differs for
creasing or decreasing strain values. This type of discont
ous relationship is also a common observation in sta
experiments on rocks.4–6,22,23

D. Hysteresis induced nonlinear attenuation

In Figs. 7 and 8 we noted that hysteresis contribu
substantially to the nonlinear attenuation of a propagat
wave. Given the same propagation distance, source
quency, and source amplitude, we plotted the maxim
strain excursion~peak to peak! as a function of the hysteresi
strength given by the parameterrB in Fig. 10. The classica
nonlinearity parametersb andd are set equal to zero in orde
to emphasize on the contribution due to hysteresis only.
value atrB50 corresponds to the linearly attenuated sig
amplitude~i.e.,Q550 and@b,d,rB#5@0,0,0#!, which is about
78% of the source amplitude measured peak to peak at

:

FIG. 8. ~a! Strain waveforms from a sinusoidal monofrequency 10-k
source signal with source displacement amplitude of 1026 m after propaga-
tion of 1 m. Model parameters: bold line:@b,d,rB#5@21000, 0, 0#, others:
@b,d,rB#5@21000, 0, 2000#, @21000, 0, 4000#. ~b! Amplitude spectra for the
waveform shown in~a!.
1893Van Den Abeele et al.: Hysteretic nonlinear response
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distance. For nonzero values of hysteretic strength, the
plitude monotonically decreases with increasing hystere
For instance, there is an additional 30% attenuation du
hysteresis for the model parameters@b,d,rB#5@0,0,5000#, in-
creasing the total attenuation to about 48% of the sou
signal.

Figure 11 illustrates the hysteretic damping characte
tic in a somewhat different way. In a previous paper on

FIG. 9. Typical local dynamic~normalized! modulus–time ~a! and
modulus–strain~b! behavior for the three models. Normalization is wi
respect to the linear modulus~i.e., with respect to the modulus in the ab
sence of any form of nonlinearity!.

FIG. 10. Dependence of the peak-to-peak strain amplitude on the hyste
strength for a sinusoidal monofrequency 10-kHz source signal with so
displacement amplitude of 1026 m after 1-m propagation distance~peak-to-
peak strain at source'531025!.
1894 J. Acoust. Soc. Am., Vol. 101, No. 4, April 1997
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discussion of the classical nonlinear theory17 we proved that
the finite difference procedure provides a means of acco
ing for energy conservation in the absence of attenuation
show this, we plotted the relative kinetic energy balance
distanceL,

UEL2E0

E0
U>U(n52`

1` uVn~L !u22(n52`
1` uVn~0!u2

(n52`
1` uVn~0!u2 U, ~20!

as a function of the number of steps taken during the ca
lation. Here,E0 andEL are the kinetic energy at the sourc
and at distanceL, andVn52 inv0Un are the spectral com
ponents of the velocity. The relative kinetic energy balan
is a measure for energy loss integrated over the comp
amplitude spectrum. Its value~zero or nonzero! determines
whether energy is conserved or not. This should not be c
fused with the apparent losses in the fundamental due
harmonic generation. For the classical models~whererB[0!
and in the absence of linear attenuation, the theoretical v
of the relative kinetic energy balance always correspond
an energy excess (EL.E0), meaning that more energy i
being transferred to harmonics than is being corrected fo
the fundamental frequency. The relative error, however,
creases monotonically to acceptable values as the numb
iterations is increased~solid circles and open squares in Fi
11!. The smaller the finite difference step, the more ac
rately energy conservation is satisfied in the model calcu
tions. The results for the extendedb,d model decrease les
rapidly than the simpleb-approach due to the more pro
nounced higher harmonic generation. Classical nonlin
theory, in the absence of attenuation, thus preserves the
energy in the amplitude spectrum as a whole, even tho
losses can be noted in the amplitude of the fundamental
to nonlinear frequency mixing. Introducing hysteresis in t
model reduces the kinetic energy at distanceL significantly,
resulting in an energy deficiency~EL,E0!. In this case, the
absolute value of the kinetic energy balance~open circles!
asymptotically approaches a fixed nonzero value as the s
size decreases~13% for the model parameters chosen in th
example!. This is a clear indication that there is no ener

sis
ce

FIG. 11. Percentage of the relative kinetic energy balance@Eq. ~20!# at 1-m
propagation distance in the absence of attenuation~Q5infinity! as a func-
tion of number of iteration~finite difference steps! for the three models.
Note that the relative kinetic energy balance is expressed in percentag
1894Van Den Abeele et al.: Hysteretic nonlinear response
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conservation when hysteresis is present. Because clas
nonlinearity does not cause energy reduction, we can s
that hysteresis is responsible for all the ‘‘nonlinear ene
loss’’ in a wave propagation experiment. Again, we emp
size that this loss should not be confused with the appa
nonlinear loss in the fundamental due to harmonic gen
tion.

Analyzing the kinetic energy loss may thus be a sim
manner by which to verify whether or not hysteresis
present in a material. We can illustrate this with one m
figure. Given a quality factorQ550, Fig. 12 shows the rela
tive kinetic energy balance@Eq. ~20!# for the classical models
and the quasi-analytic hysteretic approach as a function
the displacement amplitude at the source. Both class
models do not significantly alter the kinetic energy balan
as a function of amplitude. The only loss of energy in the
cases is due to the linear attenuation.~The linear model and
both classical models predict the same energy loss.! In the
hysteresis model simulation, however, a clear linear dep
dence of kinetic energy loss with amplitude can be not
The numerical calculations presented here are consis
with the analytic calculations by McCall and Guyer.23 Thus,
experimental verification of this observation somehow ch
acterizes the role of hysteresis in the dynamic behavior of
sample. It simply requires the integration of the power sp
trum of the velocity for different initial amplitudes at th
source and at some propagation distanceL. One can do this
without any knowledge of the linear attenuation.

The order of magnitude of nonlinear attenuation and
manner in which it scales withrB and strain amplitude can
be understood from the following argument. A pressu
cycle of amplitudeDP carries a point in the material throug
a strain cycle of amplitudeD«. From the expression of th
inverse modulus@Eq. ~4!#, the associated strain hysteres
~e.g., measured at the midpoint of the pressure cycle! is

]«'S 1

M ~p:2DP→DP!
2

1

M ~p:DP→2DP!
DDP

52~j0r̂BDP!DP. ~21!

Note that there is no influence of the classical nonlinea

FIG. 12. Relative kinetic energy balance~in percentage! at 1-m propagation
distance as a function of source displacement amplitude at 10 kHz fo
linear and the three nonlinear models~Q550!.
1895 J. Acoust. Soc. Am., Vol. 101, No. 4, April 1997
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parameters. The associated irreversible energy loss is

]E']«DP. ~22!

Since the energy ‘‘stored’’ in a pressure cycle,E0, is of
orderD«DP, we have

1

QHyst
'

]E

E0
'

]«

D«
'2rBD«. ~23!

HereQHyst
21 denotes the attenuation due to hysteresis effe

In arriving at the right-hand side we have usedM2
2j0r̂B5rB

andDP'M2D«.
In Eq. ~23! we see that the nonlinear attenuation is p

portional torB and toD«. The proportionality ofQHyst
21 to rB

is demonstrated in Fig. 10; the proportionality ofQHyst
21 to D«

is demonstrated in Fig. 12.
Let us compare calculated strain levels in Fig. 10 w

the levels deduced from the analysis of the amplitude red
tion using Eq.~23!. We focus onrB55000. The calculated
strain amplitude~one-half peak-to-peak! at this value of hys-
teretic strength~D«5000! is 1.231025. Also in Fig. 10 we see
that the amplitude decreases~compared to the linear attenu
ated strain levelD«0! by an amount of order one
~D«02D«5000!/D«0'0.4, in traveling 1.0 m or 4 wavelengths
Using Eq.~23! we estimate the contribution to the nonline
attenuation over that distance

1

QHyst
5

]«

D«0
'

D«02D«5000
D«0

'4•~2rBD«estim!'0.4,

or D«estim'1.031025, a strain in good agreement with th
calculated value of 1.231025. Thus we find that Eq.~23! is
qualitatively and quantitatively~order of magnitude! correct.

The results confirmed in this discussion suggest that
nonlinear attenuation can be regarded as a direct probe orB .

An important implication of energy loss due to hyste
esis is that materials exhibiting hysteretic behavior such
certain rock and shape memory alloys could be used
building construction as supplementary damping layers
seismic activity.30,31 In the same context, it is also widel
known that soils counteract soft surface layer resonance
to hysteresis induced energy losses.32 This becomes more
and more important in site response studies for weak
strong motion in regions with conceivable damaging ear
quake activity.

E. Dependence relations as guidance for inversion
methods

Models can be very informative when used in a forwa
direction. However, a more interesting goal is to achiev
means of inverting the outcome of an experiment~or set of
experiments! and to quantify the nonlinearity for characte
ization of the material. In the following we indicate som
criteria that may help in the inversion process within t
validity of simplex waves.

Assume three ‘‘virtual’’ materials, each of which sati
fies the simulation by one of the three models considere
this paper: the simpleb model, the extended classicalb, d
approach, and the newb,rB model. For simplicity we sup-

he
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pose that the linear sound speed, linear attenuation, and
first nonlinearity parameter are the same for all three m
rials: c052500 m/s,Q550, andb521000.

First of all, we have shown in the above discussion
Figs. 10 and 12 that analyzing the kinetic energy loss may
a simple manner by which to verify whether or not hystere
is present in a material.

In addition, an analysis of the time waveform and
frequency spectrum at a fixed propagation distance can
vide a qualitative measure of the importance of the sec
nonlinearity parameter and of the hysteresis strength. Fig
4, 6, and 8 illustrate this for@b,d,rB#5@21000, 0, 0#,
@21000, 108, 0#, and @21000, 0, 4000#, respectively. The
presence of higher harmonics is an indication that some f
of additional higher nonlinearity is necessary to describe
material’s dynamic behavior. Furthermore, if the strain h
tory takes on a typical triangular wave shape there is str
evidence that hysteresis is present.

Another way of obtaining information about the dom
nant nonlinear process~classical or hysteretic! is by looking
at the individual spectral components and their depende
on distance, source frequency, and source amplitude. Re
ing theoretical calculations by McCall,16 Van Den Abeele,17

and McCall and Guyer23 for the propagation of a continuou
monofrequency source signal in a nonlinear medium, we
summarize these elementary relationships for the second
third harmonic as follows:

~i! simple classicalb models;

U2}bx f2U2, U3}b2x2f 4U3,

~ii ! extended classicalb, d model:

U2}bx f2U2,

U3}b2x2f 4U3 if
b2x f

c0
...udu or

U3}dx f3U3 if
b2x f

c0
,,,udu;

~iii ! hysteresisb, rB model:

U2}bx f2U2,

U3}b2x2f 4U3 if
b2x f2U

c0
2 ...rB or

U3}rBx f
2U2 if

b2x f2U

c0
2 ,,,rB

~x is the distance to the source,f is the source frequency,U
is the source displacement amplitude, andU2 ,U3 are the
displacement amplitudes for the second and third harmo
at distancex!.

These relationships are deduced in the absence o
tenuation and apply for small propagation distances o
They also appear as the asymptotic behavior of our num
cal calculation scheme using Eq.~16!. In Figs. 13–15 we
visualize these dependence relations for the second and
harmonic using the numerical simulations of the three mo
materials ~under the conditions b2x f,,,c0udu and
b2x f2U,,,c0

2rB!. ~Note, however, that we plotted stra
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amplitudes instead of displacement, which means that
power law dependence for frequency increases by 1 bec
«n}n fUn .! The behavior of the second harmonic as a fun
tion of distance, frequency, and amplitude does not prov
comprehensible differentiation in the form of higher nonli
earity. Even in the presence of higher-order nonlinearity
hysteresis the classical dependence relations remain v
the second harmonic is linearly dependent on the propa
tion distance, quadratic in source amplitude and source
quency, and the proportionality coefficient is a measure
the first nonlinearity parameterb. There is only a small dif-
ference when hysteresis is involved due to nonlinear atte
ation. Study of the third harmonic, however, indicates s
nificantly different behavior in the three model materials.
square law dependence for the distance~Fig. 13! of the third
harmonic indicates that first-order nonlinearity dominates
dynamic behavior at this source frequency and amplitu
The observation of a linear dependence on distance indic
that either higher-order nonlinearity or hysteresis must
taken into account. Figure 14 tells us that the frequency
pendence relation for the strain amplitude of third harmo
differs in all three models. Note, however, that this is on
the case if the source displacement is kept constant a
frequencies. When strain amplitude is kept constant at
source,«3 is square law dependent on frequency in theb
model and linearly proportional to frequency in the extend
classical and hysteretic model. Figure 15 illustrates

FIG. 13. Distance dependence of the second and third harmonic strain
plitudes for a sinusoidal monofrequency 10-kHz source signal with fix
source displacement amplitude of 1026 m. Theoretical results for the thre
model materials.
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source amplitude dependence~in displacement! for fixed fre-
quency and propagation distance. The third harmonic st
amplitude satisfies a dependence on the source amplitud
the third power except when hysteresis is dominant in wh
case a square law relation applies.

In summary we can state that an analysis of the sec
harmonic is always restricted to information about the fir
order nonlinear coefficient only. An evaluation of the thi
harmonic provides more insight into the dominant nonlin
characteristics. Given its dependence relations, third
monic measurements can provide the clue as to whethe
simple classical theory is sufficient, or if higher nonline
constants or hysteresis must be considered.

We have only supplied some extreme characterist
Real materials will usually have a nonlinear behavior t
fall in between the theoretical bounds illustrated in this p
per. Most certainly noninteger power law dependencies
be observed for real data, indicating that a combination
higher-order nonlinearity and hysteresis is present in the
terial. This is unquestionably the case for most rock for
stance. That is why a large number of ‘‘basic’’ experimen
data in the three-dimensional space of distance, freque
and amplitude is necessary to perform a unique invers
within the limitations of this theory. In this context we als
want to point out some experimental difficulties that are
volved in obtaining such an extensive data set. Site respo
generally complicates corrections on distance measurem

FIG. 14. Source frequency dependence of the second and third harm
strain amplitudes for a sinusoidal monofrequency source signal with fi
source displacement amplitude of 1026 m at 1-m propagation distance. The
oretical results for the three model materials.
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the transfer function of the source transducer and recei
requires comprehensive deconvolution while stepping in
quency; and the generation of harmonics at the source
increasing drive level is a critical problem for the sour
amplitude dependence measurements.

Another important remark is that the theoretical mod
presented here is only a first-order approximation of
complex modeling that is involved based on the integ
P–M space. The inversion for the tripletb, d, andrB only
makes sense in the framework of this quasi-analytic tre
ment. These parameters are local and may depend stro
on the average pressure condition under which the exp
ment has been performed. Ultimately, we would like to
rive at a general description of the forward and backw
models in terms of the global P–M space densityr(Pc ,P0).
The local parametersb, d, and rB can then be readily ob
tained from this global density distribution.

III. CONCLUSION

A first-order approximation of the complex manifest
tion of hysteresis has been presented for the descriptio
dynamic wave propagation in hysteretic materials by us
an analytic expression for the modulus derived from P–
space modeling. The model is limited in validity to simple
waves, i.e., periodic waves with only one maximum and o
minimum in one period of the strain. Within this limitation
the model illustrates that hysteretic effects can be identi

nic
d
FIG. 15. Source amplitude dependence of the second and third harm
strain amplitude for a sinusoidal monofrequency 10-kHz source signal a
1-m propagation distance. Theoretical results for the three model mate
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through a variety of experimental observations: triangu
shaped waveform, predilection for odd harmonics, kine
energy loss as a result of nonlinear attenuation, and par
lar source frequency and amplitude dependence relation
the third harmonic. Because hysteresis adds considerab
the attenuation of propagating waves, hysteretic mater
can be used in basement constructions for large structure
additional effective damping layers counteracting seism
waves of large amplitude.

Even though this analytic description may only be
crude approximation of the complexity contained in the P–
space model of hysteresis, its simple implementation can
helpful in evaluating the applicability of classical nonline
theory and in determining the strength of hysteresis in
material. The model will eventually be applied for inversio
of experimental data sets to qualify and quantify the non
earity of the material in view of a new NDT characterizati
method.
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