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Microscopic features and their hysteretic behavior can be used to predict the macroscopic response
of materials in dynamic experiments. Preisach modeling of hysteresis provides a refined procedure
to obtain the stress—strain relation under arbitrary conditions, depending on the pressure history of
the material. For hysteretic materials, the modulus is discontinuous at each stress—strain reversal
which leads to difficulties in obtaining an analytic solution to the wave equation. Numerical
implementation of the integral Preisach formulation is complicated as well. Under certain conditions
an analytic expression of the modulus can be deduced from the Preisach model and an elementary
description of elastic wave propagation in the presence of hysteresis can be obtained. This approach
results in a second-order partial differential equation with discontinuous coefficients. Classical
nonlinear representations used in acoustics can be found as limiting cases. The differential equation
is solved in the frequency domain by application of Green’s function theory and perturbation
methods. Limitations of this quasi-analytic approach are discussed in detail. Model examples are
provided illustrating the influence of hysteresis on wave propagation and are compared to
simulations derived from classical nonlinear theory. Special attention is given to the role of
hysteresis in nonlinear attenuation. In addition guidance is provided for inverting a set of
experimental data that fall within the validity region of this theory. This work will lead to a new type

of NDT characterization of materials using their nonlinear response19@7 Acoustical Society of
America.[S0001-49667)01304-0

PACS numbers: 43.25.0MAB]

INTRODUCTION With the modulus depending on the excited strain levels, the

stress—strain relation becomes nonlinear, too. It is important

Nature agcommodates Some bizarre and unique elas% note that this model has worked very well for ordinary
systems. Static stress—strain tests on rocks, for instance, Raterials that exhibit small nonlinear respofét is not

lustrate their extremely nonlinear response, including botr(lJl ropriate for most rocks. however. In a number of papers
hysteresis and end point memdr. The principal theoreti- PP’ 0P : : pap

cal component in static and dynamic studies is the equa’tioRy ourgroup atLos Alamos, we generallzeq t.he stress—st.raln
of state(EOS), which relates stress to strain. In the case Ofrelatlon to include higher-order anharmonicity and applied

rocks (and some other materials, such as shape memorﬁtﬂe results to rock dynamics. Both wave propagation and

alloys? PZTs1 etc), the deformation is a complex multi fésonance experiments under different conditions have been

valued function of the external stre@systeresisand of the ~€valuated using the generalized expansion th&oty?°
history of its change$memory: in fact, rocks can be con- From the standpoint of an overview of numerous experi-
sidered as systems having an infinite number of state relgnents on rock over a broad frequency and strain intétval,
tions. It is the EOS that we must understand in order tove conclude that classical perturbation theory is incorrect or
describe the dynamic response of rock. at least incomplete. Coefficients of nonlinearity deduced
Initially, nonlinear elasticity models were based onfrom dynamic studies do not agree with static predictions,
theory derived from the domain of nonlinear fluid and display amplitude dependence in simulations of a set of
acoustics?*® A first-order perturbation expansion of the experimental wave propagation dafan resonance experi-
modulus or velocity in terms of the strain is incorporated intoments on rock, classical perturbation theory of a “Duffing-
the wave equation to describe nonlinear effects such as waygpe” resonating particle predicts an incorrect dependence of
distortion and the corresponding generation of harmonicsy,e frequency shift on the measured accelerdt@iThe rea-
son for these discrepancies is that the traditional theory
dAlso Post-Doctoral Research Fellow of the Belgian Foundation for Scienimakes no attempt to describe experiments that show hyster-

tific Research, Catholic University Leuven Campus Korttljiterdiscipli- esis. With rocks, a rather complex picture emerges. Experi-
nary Research CenferKortrijk, Belgium, and presently at Los Alamos . . .
National Laboratory on a NATO Advanced Fellowship. mental evidence suggests that hysteresis and end point
PAlso at UniversitePierre et Marie Curie, Laboratoire d’Acoustique Phy- memaory are omnipresent even at dynamic levels, calling for
,Sique, paris, France. _ N a discontinuous model of the equation of state as an alterna-
Also at Department of Physics and Astronomy, University of Massachu- . . . . .

setts, Amherst, MA. tive and more physically realistic approach. It is the micro-
9Also at Department of Physics, University of Nevada, Reno, NV. scopic structurgcracks, grain-to-grain boundaries, ¢tof
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the elastic features and their hysteretic behavior that deter- Because our laboratory bench top experiments involving
mines the macroscale nonlinear response. wave propagation are usually performed in small diameter
McCall and Guyer have introduced a new model of rockcylindrical bars by exciting the lowest-order Pochammer
elasticity and developed this model in a series ofmode(or Young's modg®® we can simplify the problem to a
papers. #2223 As McCall and Guyer noted, the basic idea one-dimensional description using a wave equation of the
behind the model is presented in earlier work of W4lstnd  following type:
Holcomb?! This approach takes the elastic properties of a 2, U
macroscopic sample of material to result from the workings 0 — =M, (1+ x(x,t)) =5 + S(x,t). (1)
of a large number of mesoscopic elastic elements the at X
order of 16 in a cubic centimet¢r These elastic elements HereS is the source functiory is the particle displacement
can individually have complex hysteretic behavior. The moskt |agrangian positiorx and timet, p, is the unstrained
important portion of the theory is the Preisach—Mayergoyzjensity of the mediumil, is the linear Young's modulug
(P—M) space, which provides an infinite number of state rexombination of second order elastic constants equahtd
lations by tracking the behavior of the individual elastic el-\herec, is the linear velocity, and«(x,t) is the ratio of the
ements depending on the excitation and the pressure historyonlinear to linear contributions to the modulus.
The theory reduces to the traditional theory in the limit of no  Traditional theoretical models simply make use of a se-
hysteresis and no discrete memory, and—as a consequenggs expansion expression a{x,t) in terms of the strain

of its greater generality—is more difficult to apply. We refer o= ju/4x, introducing nonlinear coefficients in the equation
the reader to Refs. 7 and 22 for a full description of the P—Mf state. In this case,

model for rocks.
In this paper we focus on @uasiyanalytic approach of
the P—M space in connection to the wave propagation equa-

tion. Our goal is to achieve dynamiccalculation for appli- where B=M4/M, and 5=M,/M,. Here, M and M, are,

cation to wave propagation in rocks using input data from arespectively, linear combinations of second- and third-order

P—M space density found empirically frostatic tension- elastic constants, and second-, third-, and fourth-order con-

compression measurements. The major difficulty in Obtam'stants, in the direction of propagation.

ing an analytic solution is in addressing discontinuities in the Classical nonlinear theory generally does a poor job in
mo?ulus—_s”trgm relgtlor(lsee de_ztallfhlatgr f/llmple appm)é" t(gredicting behavior in rock. As shown and discussed in one
{na ItotI:ls w b? made c_oncelrntl_ng” eD . spa(;ﬁ In ord_?_r d f our previous paper€ the application of the traditional
reat the problem quasi-analytically. boing so, the modiMet, 5 inear model including cubic anharmonicity to experi-

nonlinear wave equation, which includes hysteresis and dISﬁwental data results in nonlinearity parameters with magni-

crete memary In thg eql_Jatlon.of state, trapglates Into a d'ffudes that are difficult to justify when compared to static
ferential equation with discontinuous coefficients. To a cer

tai tent th luti be obtained b idi th’stress—strain test predictions. In particular, the cubic anhar-
ain extent the solution can be obtained by avoiding emonicity term, which arises from nonzero fourth-order elas-

dlsgonfllzylty anbdl mterr]pretll)ng thg prf(I)blﬁlm ![n tthfj 'Eou:\'/lergon'tic constants, is two to three orders of magnitude larger than
main. This problem has been brietly Tiustrated by Mcballys astimation based on static measurements. Also, we no-

and Guyef” and will be elaborated on in this paper. Ex- ticed a systematic amplitude dependence of the nonlinearity

amples will be provided showing the effects of hySter(':'Siscoefficients indicating that the assumptions of the model are

and. d|§crete memory on the d_ynam|c wave propagation bthorrect and that the theory is at the very least incomplete.
havior in combination with traditional nonlinearity. We care- inally, classical nonlinear models do not display the multi-
fully study the influence of hysteresis on the waveform anc{jalued state relations as predicted by comprehensive static

its harmonic spectra, on attenuation properties, and on th§‘tress—strain test, i.e., excursions up and down in pressure.

functional distance, source amplitude, and frequency depen- Convinced by the large number of experimental obser-

dencies of hgrmomcs. We conclude by discussing f[he IImIt?/ations illustrating the presence of hysteresis and discrete
of the analytlc_ tregtmen_t and a_ddress the complexity of nu'memory in rocks over a broad interval in frequency and
merical modeling involving the integral P—M space. strain}=® McCall and Guyer developed a new theoretical
paradigm for the description of the elastic behavior of
rocks!?>2 This alternative model is based on the Preisach
In this section we start with the classical nonlinear wavemodel for hysteresfs and uses Mayergoyz’ ide&so trans-
equation from acoustics. This is followed by incorporatinglate the properties of the microscopic structure, i.e., the na-
an analytic formulation of hysteresis resulting from P—M ture of the compliant portion of the materigrain to grain
space considerations. We will show that, to first order, hys€ontacts, cracks, contained fluids, gtmto the macroscopic
teresis introduces a discontinuous term in the wave equatiofehavior of the rock using effective medium theory. In the
The solution for this equation can be obtained by applicatiormodel, the fundamental building blocks are the individual
of Green'’s function and perturbation methods. We explicitlyhysteretic mesoscopic elastic unftdMEU, Fig. 1(a)] as-
derive the solution for a continuous source signal with arsembled into the Preisach—Mayergoyar P—M) space
arbitrary (discrete frequency spectrum. Finally, we indicate which represents the density of individual HMEUFig.
the limitations of this quasi-analytic approach in connectionl(b)]. The P—M space is a pressure—pressure sgacd().
to the Fourier transformation of the discontinuous term.  As illustrated in Fig. 1a), the closing pressur®, corre-

2

+oeee, (2)

Ju
KOGO=B —+8

I. THEORY AND LIMITATIONS

1886 J. Acoust. Soc. Am., Vol. 101, No. 4, April 1997 Van Den Abeele et al.: Hysteretic nonlinear response 1886



100 of the hysteretic elastic units off the diagon& & Py) is
a g0l considered constafitiniform backgroungnear the diagonal.
A le> > This yields the following approximate expression for the
, 00 P—M densityp(P.,P,) in the case of a dynamic wave ex-
B = 40 periment:
20 p(P¢,Po)=[ag+a;p+ap®+---]- 8(Po—Pc) +pg,
0 ()
Po P 0 20 40 60 80 100 wherepg is the constant P—M space density off the diagonal
Pressure Pe in the pressure region of interest, af@) is the delta distri-

bution function. The P—M space density given in EB). is
. . 72 ~ .
FIG. 1. (a) Representation of a hysteretic mesoscopic elastic(HMEU). e{gressed in units oP . Ther?fore:PB allsolhas units of
(b) Typical P—M space representing the density of HMEU's in a sample. P~ %, and because a delta function has units inversely propor-
tional to its argumenta, must be expressed in units Bf

sponds to the pressure at which a HMEU changes from stafdt " units .OfP " ar.‘daz In units of P~ ! .

A to state B while increasing the pressure. The opening pres-_.. Following equations 28-32 in McCall and Guyer's deri-
. vation of the modulus from the P—M space denéftyhe

sure P, then represents the pressure at which the same fe?ﬁverse elastic modulus then corresponds to

ture changes from state B back to its initial state A while

decreasing the pressure. A large number of the HMEU’s with 1 ) .

differing P, Po comprise a model of the compliant features ~ jj — éol@+aip+a;p™+---+pg(AP=p)], (4)

of a sample material. The P—M space is constructed by plot- ]

ting the characteristicR,,P,) pressures for the individual Where the plus sign corresponds to {ireversg modulus for

HMEU's and filing the lower triangular half-space Increasing pressure and _the minus sign for decreasing pres-

(P.=P,) as seen in Fig. (b). Nonhysteretic units(i.e., Sure. Here§0 is a dlmenglonless constant that can be found

P.=P,) are on the diagonal, and hysteretic units fall in theffom experiment. Assuming andAP are small, Eq(4) can

bottom triangle in P—M space. The more hysteretic gbe inverted to fl_nq the following first-order expression for the

HMEU is, the farther from the diagonal it resides. UsingModulus. Identifying the constant pressure independent con-

statistics, a density of compliant features can be associated fgbution with the “linear” dynamic modulusv, gives

each point of the P—M space, given_ chzPo)- It is.be- M=[M,+b,p+b,p2—pg(AP=p)+---] (5)

yond the scope of this paper to review this model in more

detail. We refer the reader to the extensive work of our(P1, b2, @ndpg can be calculated from the inversion using a

colleagues:?223 Taylor series expansionThe last step consists of the substi-

The P—M space representation with its associated de,{ution.of the relationship between pressure and strain to first
sity can be used to construct realistic stress—strain curvedder in Eq.(5) (Hooke's lawp=—M, e=—M, Ju/dx, and
that include hysteresis and discrete memory and that modéfP =Mz Ae=M>A du/dx with Ae or A Ju/ox being the
static observations very well. Static pressure excursion§aximum strain excursignwhich results in
sample different volumes of HMEU's for increasing or de- au 2 Ju  du
creasing pressure. This results in typical hysteresis loops M=M, 1+8 —+6| —| —pp|l A —i—)+---}

. . L . ; . X X X oX
showing discontinuities and discrete memory in the equation (6)
of state depending on the pressure path. Based on laboratory
observations it is reasonable to assume that dynamic excupith 8=—b; and §=b,M,. Here, B, 6, and pg are dimen-
sions also display hysteresis and discrete memory. In th@lonless parameters. The plus sign corresponds to the modu-
following we will describe howk(x,t), the ratio of nonlinear 1us for increasing strain and the minus sign for decreasing
to linear moduli in Eq.(1), can be obtained for dynamic strain. It must be noted that this substitution is only correct
experiments using very simple assumptions about the p—pnder the assumption that dissipation does not contribute to
space density in the region of interest. This will provide usthe forcgs to first order. We will return later to the subject of
the tools to correctly model dynamic observations. attenuation.

Suppose we simulate a wave propagation experiment in  Equation (6) gives the formulation of the dynamic
which the source is a sequence of sinusoidal oscillations, dnodulus resulting from rudimentary P—M space consider-
identically pressure excursions of amplitui®, centered at ations. In view of Eq.(1), we can identify the ratio of the
average pressurB. BecauseAP in dynamic excursions is nonlinear to linear contributions to the modulugx,t), as
very small, two assumptions can be mad& The P-M au ou\ 2 U au
density of the nonhysteretic elastic features on the diagonal «(x,t)=p &+ o (é_x) —pB<A a_xia_x) +--. (7
of Fig. 1(b) (which corresponds to the major percentage of
the P—M_densitycan be expanded in the pressure deviation Itis clear that the elastic modulus is hysteretic pgr£0.

p aroundP, wherep=P—P, and—AP<p=<AP. (The pre- For pg=0, the modulus is a power series in the strain and

supposition of a series expansion will enable us to easilgloes not differ for increasing or decreasing strain. In this

obtain analytic solutions and to retrieve the classical nonlincase the model reverts to the traditional theory corresponding
ear theory formalism as a special cag@) The P-M density to Eq. (2).
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As a first approximation, the P—M paradigm for rocks x Iz R _
accounts for hysteresis and end point memory by introducing  TO(x,w)=27 — >, Un8(@—nwg)e'(@/coca«lx
a discontinuous term in the dynamic modulus. The elastic | n == (10)
modulus depends not only on the instantaneous value of the
strain but also on its amplitude and the reversal points at
each extremum. This complicates the manipulation of the g first-order perturbation contribution to the solution
wave equation significantly. The problem becomes a differgagisfies the following linear differential equation:
ential equation with discontinuous coefficients that are func-
tions of the dependent variable by its derivatives and their
amplitude. A quasi-analytic solution can be obtained using @& 52 2
Green'’s function formalism in combination with perturbationTﬁ—Xz + -
theory®1"- e illustrate this in the following. 0
We write the solution to the nonlinear wave equation as +o gy® 52u® ,
the sum of the =zeroth-order “linear” displacement = —Bf o XU (x,t)e'“t dt
[u©(x,t)] and a nonlinear contributionuf*)(x,t)], and we -

U V(x,w)

assume that every nonlinear termsfx,t) [Eq. (7)] contrib- +of gu(© 2 52y@ ot
utes as a first-order perturbation to the linear solution. In a - f_x o XD (X el dt
previous paper we proved that higher-order terms can be
accounted for by performing small iteration steps in distance, +o[  [ou®\  gu®
i.e., using a variant of the finite difference procedtfréls- +PBJ70C A( X )i IX (x.1)
ing Green’s function theory, the Fourier transformation of
the linear displacement component satisfies a?u(® ot
. W(x,t)e"" dt. (11

+ oo
~(0) _ (0) ot ) _ )
U (x, @) J,x dt u™(x,t)e As seen from this equation, the source &P (x,t) is com-

_ posed of three nonlinear contributions i”(x,t) and its
v glleleoeallb x| gy ) derivatives which identify the nonconstant distribution of
:Lx dx —2i(wlcg)cq(w) M, HMEU's on the diagonal in P—M space and the nonzero
background value off the diagonal. The third term on the
) right-hand side of Eq(11) contains the discontinuity intro-
duced by hysteresis considerations. The switching between

B . i . ~ ) plus and minus occurs at each strain reversal in time. Obtain-
wherec, = VM/pq is the linear velocity, an&(x,w) isthe g an analytic solution to Eq11) is problematic because of

Fourier transforma}tion of the source function. The fgctorthis discontinuity. One can sidestep this difficulty by ap-
cq(w) equals(1+isignw)/2Q), and is anad hocmanner in proximating the function &(au(©/ax)=au©/ax](x.t)
which we introduce intrinsic attenuation, linear with fre- [which we renameH(x,t) in the following] using its dis-

quency, for a given quality factdp. _ _ _ crete Fourier series expansion. Suppisg! are the com-
Our primary interest in this paper lays in the |nvest|ga—p|ex Fourier coefficients of this function. Then
tion of nonlinear distortion of propagating pulsed waves.

Therefore we can specif$(x,w) by its discrete Fourier

spectrum. Assuming a “breathing” mode source where the 0(0)| u®
source expands symmetrically about its vertical dxis., Ho(X,t)Z[A< )i (x.1)
oX X
u(=x,t)=—u(x,n],
+
= 2 hmeim(wo/Co)CQ(w)IXI—imwot (12)
—~ + oo ) e
S(X,w):f dt S(X,t)e""t
a[8(x)] +2 from which
X ~
:—2M2 .24 E Unﬁ(w_na)o)
ox nw
+ o
9 Aoxo)=2m S h e @0ca@M3 »—mae,). (13)
m=—o

in which o, is the fundamental source frequency, and

U,=[U_,]* is a complex number describing the amplitude Rearranging integrands in E¢{.1) by use of the convolution
A, and phasep, of the nth harmonic displacement compo- rule for Fourier transformations and subsequent application
nent atx=0, i.e.,U,, = —(i/2)A,e'%n, and againg() is the  of the Green’s function theory yields the following general
delta distribution function. In this cage(®(x,w) becomes  solution forti V(x,w):
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ei(w/co)cq(w)\x—x’l o &U(O) (92‘0‘(0)
(X", 0")- W(X',w—w') dw

!

_ B jm
(1) - ' .
Urxe) =7 | X Siaiccq(e) ). X

L9 fmd/ei(‘”’c‘))cq(‘”“x’ f+°°f+wa'ﬁ<0> @me
2m? . ¥ Tai(aicgeq@) ). ). Tax Xhe) e (el
52u (@
: W(X’,w—w’—w”) do' de”
pe (e ekocuolox| . gme
" 27 ). Taifelegeat@) ) Mo G (emel do 14

Substituting the expression far®(x, ) [Eq. (10)] and the  with

Fourier transformation ofiy(x,t) [Eq. (13)] in Eq. (14) and

working through the immense job of analytically calculating _Niwg
the integrals we obtain a general expression describing the 1 ¢,
harmonic distortion of a pulsed signal propagated over a dis-
tancex in an elastically nonlinear and hysteretic medium.and
However, because this expression is obtained using pertur-
bation theory, it is restricted in its analytic form to small
distancesx from the source. For large distancesthe dis-
tortion must be calculated by a finite difference or iterative
proceduré’”?"2® Therefore we divide the total distante +
into N intervals, each of lengtiAx=L/N. The calculated

signal at the beginning of each interval is used as the source

for the computation of the waveform and spectrum propagat-

ing over the next intervel/N. As illustrated in our previous @
papers, frequency-dependent attenuation can be accounted g t
for at each step in the iteration. In terms of the strain com- 4 —
ponents a

cq(niwg)

Nywg

N3wq
Koga= cq(nywo) + o cq(nszwq)

n4(1)0

cq(ngwop). (17)

Max|

—_—
T

. Nwg
en(X)=1 — cq(Nwg)Uy(X)
Co

Forcing
[Arb. Units]
L o
T

£ /
Cr

> —z“
B
:

4

@Yo ; . . - 2
=n 5o CA(Nwo) Ag(x)exli dy(x)], (15 e T B Zx
’ A A B B
the perturbation solution aty+ Ax, based on the virtual 0 Eeo
“source” at xq, for each frequency component is given by 0 0.5 1 1.5 2

Time [Periods]

. Nwg
en(XgFAX)=g,(Xq)EX |C—cq(nw0)|Ax|
0

i AX (O] iy
+i MZ—CME (n—m)-cq((n—m)wop)

=—0o

Forcing
[Arb. Units]
Lo -
T T
(s
<\

“&n—m(Xg) - Int(n,m,n—m,0) - [ — Bem(Xo)

+o 12 %
AX Wo ~ . e - . _ >
+ pgh(Xo)] =16 et =— | S TS R B s <
PB m( 0)] |AX| 2C0 i : A ; R e 1 [ope
i P I R - N
fr i g &
'Cq(IwO)'Sn*m*|(XO)'Sm(XO)'Sl(XO) 0 0.5 1 1.5 2
-Int(n,n—m—1,m,1). (16) Time [Periods)
where
) ] FIG. 2. Examples of the functioH y(x,t) (the discontinuous portion of the
eikalAX| _ gikogdAx| nonlinear modulusfor a pure monofrequend) and a moderately distorted
Int(ny,n,,N3,n,) =2k, V) (b) sinusoidal “simplex” wave forcing function representative for an equa-
(kl_ k234) tion of state with one major stress—strain hysteresis I@ep inset
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The discontinuous functiorHy(x,t) and its Fourier fine as “simplex wave” henceforth, one can proceed with
transformationH (X, w) pose rather severe restraints as tothe following algebraic formulas:
the extent on which this problem can be solved analytically

(or better quasi-analytically In the case of a periodic au(o)( )_(‘?U(o) it 9°u® (x.1)=0
monofrequency sinusoidal time history for the strain, McCall X ' X dtax T
and Guyer? proved that only even Fourier coefficients in HoOx D=1 / 5 ) Ju® 2u0

Egs. (12) and (13) are nonzero, resulting eventually in the ( o ) — o (i = (X, 1) <0,
creation of odd harmonics in the distorted spectrum along the Max 18)

propagation path. However, the analytic representation of the

nonlinear part of the modulus given by McCall and Guyer isExamples of the discontinuous functity(x,t) for a pure
only valid for a pure single frequency sinusoidal forcing monofrequency and a moderately distorted sinusoidal “sim-
function. As the propagation path increases, the local straiplex” wave forcing function are illustrated in Fig. 2.

becomes progressively distorted, its maximum and minimum  Suppose the zeroth-order approximation of the local
change(not necessarily symmetricajlyand are shifted in  strain near,, i.e.,

time (not necessarily separated by half a periddultiple

maxima and minima may be observed during one period. In  gu‘®

these cases the analytic expressions for the Fourier coeffi- ~ ¢ (X0+X’t):n
cients ofHy(x,t) generally become far more elaborate. As

long as the strain has a periodic time history with only onehas a maximung, at ty. and a minimunmey;, atty,, for
maximum and one minimum per period, which we will de- x=Ax. Then

+ o0
2 Sn(xo)ein(wo/Co)cqm“’o)|x|*i”‘“ot,

— — 27 T
h,= 5n,0[8Min+ Emax] (tmin = tmax) — 5n,08Min (u__ 28n< Enmin — tmax— _)
0 wo

_ i einthMin _ einthMaX
+(1=6n0lemnt SMaX]e7In(wO/CO)Cq(nwO)lAXI :

inwo
+ o0 o ot ( ) ( Diax ei(nfm)wotMin_ei(nfm)wotMaX
_ _ —i(wg/cg)(n-cq(nwg) —m-cq(mMwg))|AX|
2m;_m (1= 8y m)eme n—mio (19)
|
with Ej:O if i#] and;i,fl ifi=j. analytically. Approximating a functioid(x,t) such as the

One easily recovers McCall and Guyer's expressionne illustrated in Fig. 3 requires the computation of a large
wheng,=0 for |[m|#1, eyax=—min » tmin—Imax=Two, @and  number of Fourier coefficients. Even if one is capable of
when no attenuation is taken into account. Equaiib®), doing so, it remains a question as to whether it would be a
however’ can be used in the iteration to calculate the distor\l\lOfthWh"e endeavor. Recall that we introduced the function
tion due to hysteresis at any distance as long as the wave
satisfies the criteria of a simplex wave at that distafiee,
being periodical with only one maximum and one minimum
in one period of the strajn

When more than one maximum and minimum occur -
during a period\we refer to this as a “complex” waye it 64
means that the stress—strain relation experiences internal t
hysteresis loops within a larger loop. Figure 3 shows an ex- t, tsl t NTRAIN

Ve NN
t,

ISTRESS
Ll

—_—
T

ample where two inner loops are formed on the descending
stress—strain branch corresponding to two additional maxima

Forcing
[Arb. Units]
<

v
—

and minima in the history of the forcing function. In order to . e - s 1P B
find the hysteretic term in the modulus, one must keep track [ N I O T S B B B ZQ
of all reversal pointgt,,} and of the end points of each inner G i o Bo
loop {t;,} as shown in Fig. 3. The discontinuous function 0 0.5 1 1.5 2
Ho(x,t), which now also takes into account the additional Time [Periods]

local maxima and minima, becomes quite complicated to de-
scribe analytically. Perhaps Fourier analysis could still workFIG. 3. Example of the functioiy(x,t) for a highly distorted sinusoidal

‘

in the most simple cases; however, once more and moréomplex wave forcmg‘ function rgpresentat.lve for an equation of state

f d th t of ti | int d with internal stress—strain hysteresis logpse inset Here,{t,,} and{t,}
eXtrema are _Orme € .S('—:* 0 . 'm(.a _reversa poINts anad r€se reversal and inner loop end points corresponding to discontinuities in the
spective maxima and minima is difficult to keep track of stress—strain relation.
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Hq(x,t) as an “analytic” approximation to the exact process — 1010

given by P—M space. For complicated forcing functionsthe | 2'8 10

latter approximation may very well introduce a far larger 8105 — 30 10-2 -
error than a Fourier analysis representation. In this case we N Jon T 4000 a

gain nothing by solving the problem in the Fourier domain 4105 \:
because the function we started from does not describe the o
physics well. One alternativi@nd frankly it seems to be the
only possibility is to leave the analytic treatment and switch
to a numerical approach that solves the differential equation
in the time domain while linking to a numericéhbulated
representation of the appropriate P—M space. This work is
currently in progress. -810°°

Strain
<D

-4 10°

II. EXAMPLES WITHIN THE LIMITATION OF SIMPLEX
WAVES

-6

In this section we illustrate some effects of hysteresis on 10 E g:g }8-6
the time waveform and frequency spectrum for conditions in | & 20100 | b
which the above analytic treatmefwithin its limitations of E . B 0107
simplex waves can be applied. We begin this section with ‘;c} 1
some examples of classical nonlinear theory using a Taylor <
series expansion of the stress—strain relation. Subsequently § 10°¢
we illustrate the effects of introducing hysteresis. For clarity g
we will refer henceforth to the first-orddone parameter 2 107 N
Taylor series expansion as tifemodel[i.e., § and pg are g \
both zero in Eqs(6) and(7)], and to the extended second- s \ !
order expansion as thé, & model(i.e., pg is zerg. When 0 20 40 60 80 100

hysteresis is taken into account in the model, we will use the Frequency - [kHz]

term B, pg model(Swill always be assumed zero in tite pg
model examples The nonlinearity parameters used in theFIG. 4. (3 Strain waveforms from a sinusoidal monofrequency 10-kHz
model simulations will be indicated by the triple8,8,pg]. In  source signal after propagatiori  m for different source displacement
all of the examples the source function is a monofrequenc;?(’;‘_a')'tul\jﬁzgo {0 4.0<10°® m, corresponding to strains of 240 ° to

. . . parameters:3,6,pg]=[—1000, 0, Q. (b) Amplitude spectra
continuous pressure wave of frequerfcyand displacement o the waveforms shown ite).
amplitudeA. The propagation distance iL m except where
noted otherwise. The linear sound velocity in the model is
fixed at 2500 m/s and the linear attenuation corresponds to @meter(3,8,05]=[0, =10 0]). In both cases, the distortion
quality factor Q) of 50 except where noted. The number of from a sinusoidal waveform is readily visible. The amplitude
distance iteration steps or finite difference back substitutionspectrum[Fig. 5b)] is composed of odd harmonics only.
was set to 100, resulting in an acceptable calculation stephis is the result of three-component mixing starting from a
size of 1 cm. single-frequency source spectrum. That is, three fundamental
frequencies can mix energy to form the third harmonic and
corrections to the fundamental component. The third har-

Figures 4—6 summarize results obtained from the classimonic mixes with two fundamental components to form the
cal nonlinear models. In Fig(d) time waveforms are shown fifth harmonic and so on. It is interesting that the frequency
using the 8 model ([ 8,8,p5]=[—1000, 0, Q) for a single- amplitude spectrum is identical for positive and negaifve
frequency 10-kHz sinusoidal source at progressively largevalues. The phase spectrum is different, however:(#me
amplitude levels. One observes an increased asymmetry with1)th spectral component for negative differs in phase
drive level and a correspondingly larger distribution of en-from the (2m+1)th spectral component for positiveby m
ergy into harmonics as illustrated in Figdl. The harmonic 7. This results in the mirror effect in the time history of the
energy in the spectral components tends to fall off rapidlysignal observed from Fig.(8). Figure 6 illustrates the result
(nearly exponentiallyas a function of frequency. The non- of combining the first and second nonlinearity parameter ef-
linear effect in this case is essentially frequency mixing befects by fixing 8 and progressively increasing The bold
tween two spectral components: the double-frequency coniine in Fig. 6a) shows the effect whed=0. As in Fig. 5a),
ponent is generated by a mixing of the fundamental withpositive & values force the peak in the strain history to shift
itself; the third harmonic arises by interaction of the secondo earlier times, whereas negative values contribute to a shift
harmonic and the fundamental, etc. Figure 5, on the otheto later times. Typically, absolute values féof one to two
hand, illustrates a threefold spectral component frequencgrders of magnitude larger thas® are required to notice
mixing, resulting from the classicd#l, 5§ model withB equal differences in the distorted wavefrom. Characteristic spectra
to zero. The top figure shows the waveform calculations forcorresponding to a combination of first and second nonlin-
a positive and negative value of the second nonlinearity paearity parameters are shown in Figbp Due to the simul-

A. Classical nonlinear theory results
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FIG. 5. (a) Strain waveforms from a sinusoidal monofrequency 10-kHz

source signal with source displacement amplitude 018 after propaga- FIG. 6. (a) Strain waveforms from a sinusoidal monofrequency 10-kHz

tion of 1 m. Model parameters: solid lingB,8,p5]=[—1000, —1C%, 0]; source signal with source displacement amplitude 618 after propaga-

dashed line]B,8,p5]=[—1000, +1C®, 0]. (b) Amplitude spectra for the tion of 1 m. Model parameters: bold ling8,8,05]=[—1000, 0, Q, others:

waveforms shown in(@). The amplitude spectra are not influenced by the [,8,05]=[—1000, —1C%, 0], [-1000, —5-107, 0][—1000, +5-10", 0],

sign of . [—1000, +1C%, 0]. (b) Amplitude spectra for the waveforms shown (&.
The amplitude spectra are not influenced by the sig#. of

taneous presence of two- and three-fold frequency interac-
tions, one observes a richer spectrum with both even and odti consists of only odd harmonidsig. 7(b)]. The transfor-
harmonics preserias opposed to the case whgs0). Com-  mation of a smooth wave into a sawtooth form in hysteretic
pared to the spectrum fa#=0 [bars in Fig. 6b)], we also  materials has also been noticed by Naz&romdependently
note that more energy is pumped into the higher harmonic®f our research. Mathematically one can explain this result as
increasing the higher frequency portion of the spectrunthe twofold mixing between the fundamental source ampli-
markedly. Because much energy can be transferred to odddde and a discontinuous function composed of only even
harmonics by threefold frequency mixingjcontributions, a harmonics which results from the analytic P—M space func-
subsequent twofold mixing between an odd harmonic andion Hy(x,t) described in the above theory sectipfihe dis-
the fundamental adds considerably to the energy content gontinuous function is composed of only even harmonics
its neighboring even components. In extreme cases this cdrecause it is periodic over half a source period as is illus-
lead to spectra which show a predilection for odd harmonicstrated in Fig. 2a).] Compared to the linearly attenuated sig-
We refer, for instance, to our previous papers for such obnal propagated over the same distance, one notes the strong
servations and an attempt to model them using the classicgeneration of harmonics and a supplemental loss of energy
nonlinearg, & approach>'8 due to hysteresis. We will return to the latter subject later.
Figure 8 illustrates the combination of the first-order classi-

B. Quasi-analytic hysteretic approach cal nonlinear theor_y with the hysteretic model for three dif-

: ferentpg values at fixegB ([ 8,6,p5]=[—1000, 0, Q, [—1000,

Figures 7 and 8 depict results from the quasi-analytidd, 2000, [—1000, 0, 400)). The waveforms become more

approach of thes, pg model. We first illustrate the nonlinear and more symmetri@riangulay aspg increases, diminishing
effects introduced by the hysteretic coefficient without takingthe shock wave tendency effect imposed by the first nonlin-
into account the nonlinearity parametgr The waveform earity parameteg. In addition, the strain amplitude becomes
represented by the dashed line in Figp)ds a typical result progressively reduced when compared to the classical result
of a purely hysteretic model. Because it is nearly triangularpver the same propagation distance. Again, the combination
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— Linear model + attenuation _ [B,S,pB] = [-1000,0,0] -+ p_=4000
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FIG. 7. (@) Strain waveform from a sinusoidal monofrequency 10-kHz
source signal with source displacement amplitude of®1@ after propaga-
tion of 1 m(dashed lingand comparison with a purely linear signal with
ad hoc attenuation. Model parameters for dashed waveform:
[B,6,05]=[0,0,400Q. (b) Amplitude spectra for the linear and nonlinear
waveforms shown irfa).

FIG. 8. (a) Strain waveforms from a sinusoidal monofrequency 10-kHz
source signal with source displacement amplitude of°18 after propaga-
tion of 1 m. Model parameters: bold ling8,8,05]=[—1000, 0, Q, others:
[B,6,p5]=[—1000, 0, 2000 [—1000, 0, 400Q (b) Amplitude spectra for the
waveform shown in(a).

of twofold odd harmonic generation due to hysteresis and th@'0dulus—strain relation, but even in this case the modulus is
classical twofold frequency mixing leads to rich spectra withcontinuous and single valued at every strain level. As ex-

a predilection for odd harmonics as illustrated in Fig)8 plained in the theory section, hysteresis introduces a discon-
tinuous term in the modulus which shows up in both its time

and strain dependence. As a function of strain, fhepg
model results in a multivalued modulus—strain relationship
Using Eq.(6) one can calculate the local dynamic modu- with a typical bow tie behavior. The modulus becomes dis-
lus at any distance from the source as a function of time ocontinuous at peaks in the strain history, and differs for in-
strain. Figure 9 shows the normalized local modulus after @reasing or decreasing strain values. This type of discontinu-
propagation distancefd m as afunction of time[Fig. ¥a)]  ous relationship is also a common observation in static
and strain history at that same positifffig. 9b)] for ex-  experiments on rocks®2223
amples of the three models considered. The normalization is
performed with respect to the linear modulus, i.e., with re—D H is induced i .
spect to the modulus in the absence of any form of nonlin-—" ysteresis induced nonlinear attenuation
earity. Because the terd{du/9x)? is either positive or nega- In Figs. 7 and 8 we noted that hysteresis contributes
tive depending on the sign of, its contribution causes an substantially to the nonlinear attenuation of a propagating
offset in the modulus—time and modulus—strain relation. Thavave. Given the same propagation distance, source fre-
same is true for the hysteretic contribution which is alwaysquency, and source amplitude, we plotted the maximum
definite negative. Both classical moddl8 and B, § ap-  strain excursioripeak to peakas a function of the hysteresis
proach display a continuous variation of the modulus with strength given by the parametgs in Fig. 10. The classical
time. The extended classical model shows more variatiomonlinearity parameter8 and é are set equal to zero in order
which is related to the richer frequency content at that disto emphasize on the contribution due to hysteresis only. The
tance. As a function of strain, the simg#emodel delineates value atpg=0 corresponds to the linearly attenuated signal
a linear dependence with no discontinuities. The secondamplitude(i.e., Q=50 and[3,4,05]=[0,0,0)), which is about
order B, 6§ model accounts for some curvature in the 78% of the source amplitude measured peak to peak at 1 m

C. Local dynamic modulus
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FIG. 11. Percentage of the relative kinetic energy bald&ee(20)] at 1-m
1.1 propagation distance in the absence of attenudfipsinfinity) as a func-
’ tion of number of iteration(finite difference stepsfor the three models.
_ Note that the relative kinetic energy balance is expressed in percentage.
E 1.05
TQ - . . .
E 1 discussion of the classical nonlinear thednwe proved that
% 0.95 the finite difference procedure provides a means of account-
£ : . : ing for energy conservation in the absence of attenuation. To
§ 0.9 oo o ; show this, we plotted the relative kinetic energy balance at
o distancel,
085 s SiE VAL P27 Va(0)]?
216°  -110° 0 110° 210 EL—Eo ~‘ ne ol V(D)2 27 L[ Va(0) %)
Strain =

Eo | Sz L|Va(0)|2

FIG. 9. Typical local dynamic(normalized modulus-time (8 and  as a function of the number of steps taken during the calcu-

feapect 1o he Inear modut(se. wih respect o the modulus i the ab. o HEre.Eo andB, are the kinetic energy at the source

sence of any form of nonlinearity and at distancé, and_Vn= —mwOU_n are th_e spectral com-
ponents of the velocity. The relative kinetic energy balance

distance. For nonzero values of hysteretic strength, the an: & measure for energy loss integrated over the c_omplete
; . S : . amplitude spectrum. Its valugero or nonzerpdetermines
plitude monotonically decreases with increasing hysteresis,

For instance, there is an additional 30% attenuation due twhether energy is conserved or not. This should not be con-

hysteresis for the model parametggss,pg]=[0,0,5000), in- Rised V\_nth the apparent losses in the fundamental due to
. . 6652 harmonic generation. For the classical modelkerepg=0)

creasing the total attenuation to about 48% of the source . . : .

signal and in the absence of linear attenuation, the theoretical value

Figure 11 illustrates the hysteretic damping characterispf the relative kinetic energy balance always corresponds to

tic in a somewhat different way. In a previous paper on the . <" 9Y excessE( > Eo), meaning that more energy is
Y P pap ebeing transferred to harmonics than is being corrected for in

the fundamental frequency. The relative error, however, de-
creases monotonically to acceptable values as the number of

5
% 4107 iterations is increase(olid circles and open squares in Fig.
< . 11). The smaller the finite difference step, the more accu-
w3510 rately energy conservation is satisfied in the model calcula-
& \ tions. The results for the extendglé model decrease less
é’ 310° rapidly than the simpleB-approach due to the more pro-
= nounced higher harmonic generation. Classical nonlinear
5 2.5'10° theory, in the absence of attenuation, thus preserves the total
£ energy in the amplitude spectrum as a whole, even though
a , 10° losses can be noted in the amplitude of the fundamental due
0 1000 2000 3000 4000 5000 to nonlinear frequency mixing. Introducing hysteresis in the
Hysteresis Parameter p, model reduces the kinetic energy at distahcsignificantly,

resulting in an energy deficiend¥e, <E,). In this case, the
_ , absolute value of the kinetic energy balariopen circley
FIG. 10. Depen_denc_e of the peak-to-peak strain amplltudg on the‘ hysteresgsymptotica”y approaches a fixed nonzero value as the step-
strength for a sinusoidal monofrequency 10-kHz source signal with source o . .
displacement amplitude of I&m after 1-m propagation distan¢geak-to- ~ SIZ€ decreased 3% for the model parameters chosen in this

peak strain at source5x10°%). example. This is a clear indication that there is no energy
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parameters. The associated irreversible energy loss is

Linear model + attenuation
. ,8,p,) = [~1000,0,0] IE~geAP. (22)
g 80 | [B.3.p,]=[-1000,10%0]
8 mo [B,S,p§]=[—1000,0,3000] _1 Since the energy “stored” in a pressure cyck,, is of
Eot —— .- orderAsAP, we have
) I
B 60| ] 1 JE s
5 1 o ——~_—~-—=~2pglAe. 23
E 50 '._,."" QHyst EO Ae peae ( )
f’é Eo e HereQ;ylst denotes the attenuation due to hysteresis effects.
%40 rm = & In arriving at the right-hand side we have ugddé,ps=pg
2 : andAP~M,Ae.
= 300 N In Eq. (23) we see that the nonlinear attenuation is pro-
a - ;- - )~ . . . 71
Displacement Amplitude at the source [m] portional topg and toAe. The proportionality OQHFt to pg

is demonstrated in Fig. 10; the proportionality@f;s; to Ae

FIG. 12. Relative kineti balang tageat 1 i is demonstrated in Fig. 12.

. 12. Relative kinetic energy balan@e percentageat 1-m propagation . . . .
distance as a function of source displacement amplitude at 10 kHz for the Let us compare calculated Stra_m levels in F_|g' 10 with
linear and the three nonlinear modé@=50). the levels deduced from the analysis of the amplitude reduc-

tion using Eq.(23). We focus onpg=5000. The calculated

conservation when hysteresis is present. Because classicif@in amplitudeone-half peak-tq—SpeaIat this value of hys-
nonlinearity does not cause energy reduction, we can stafg"€lc StrengtiAegeg is 1.2<10°°. Also in Fig. 10 we see
that hysteresis is responsible for all the “nonlinear energ)}hat the ar_nphtude decreasemmpared to the linear attenu-
loss” in a wave propagation experiment. Again, we emphat€d strain levelAeg) by an amount of order one,

size that this loss should not be confused with the apparer%‘?o_A85000)/A80%O'A," in tra;]/ellng 1.0mor4 wr?velenlgths.
nonlinear loss in the fundamental due to harmonic genera2Sing EQ.(23) we estimate the contribution to the nonlinear
tion. attenuation over that distance

Analyzing the kinetic energy loss may thus be a simple 1 e Aeg—Aesogo
manner by which to verify whether or not hysteresis is Q—=E~T“4'(2PBA8estim)”0-4,
present in a material. We can illustrate this with one more Hyst 0 0
figure. Given a quality facto® =50, Fig. 12 shows the rela- Or Aeegr~1.0x107>, a strain in good agreement with the
tive kinetic energy baland&g. (20)] for the classical models calculated value of 1:2107°. Thus we find that Eq(23) is
and the quasi-analytic hysteretic approach as a function gjualitatively and quantitativelyorder of magnitudecorrect.
the displacement amplitude at the source. Both classical The results confirmed in this discussion suggest that the
models do not significantly alter the kinetic energy balancenonlinear attenuation can be regarded as a direct propg.of
as a function of amplitude. The only loss of energy in these ~ An important implication of energy loss due to hyster-
cases is due to the linear attenuatiéfhe linear model and esis is that materials exhibiting hysteretic behavior such as
both classical models predict the same energy )dssthe  certain rock and shape memory alloys could be used in
hysteresis model simulation, however, a clear linear deperbuilding construction as supplementary damping layers for
dence of kinetic energy loss with amplitude can be notedseismic activity’>>! In the same context, it is also widely
The numerical calculations presented here are consisteknown that soils counteract soft surface layer resonance due
with the analytic calculations by McCall and Guy&iThus,  to hysteresis induced energy los$éshis becomes more
experimental verification of this observation somehow charand more important in site response studies for weak and
acterizes the role of hysteresis in the dynamic behavior of thétrong motion in regions with conceivable damaging earth-
sample. It simply requires the integration of the power specguake activity.
trum of the velocity for different initial amplitudes at the
source and at some propagation distahc®ne can do this
without any knowledgg of the Ilnear attenuation. i E. Dependence relations as guidance for inversion

The order of magnitude of nonlinear attenuation and thgyathods
manner in which it scales withg and strain amplitude can . . ]
be understood from the following argument. A pressure  Models can be very informative when used in a forward
cycle of amplitudeA P carries a point in the material through diréction. However, a more interesting goal is to achieve a
a strain cycle of amplitudée. From the expression of the Means of inverting the outcome of an experimentset of
inverse modulugEq. (4)], the associated strain hysteresis experiments and to quantify the nonlinearity for character-

(e.g., measured at the midpoint of the pressure gysle ization of the material. In the following we indicate some
criteria that may help in the inversion process within the

Je ~ 1 _ 1 AP validity of simplex waves.
Mp:—ap—ar) Mpap—-ap Assume three “virtual” materials, each of which satis-

_ - fies the simulation by one of the three models considered in
=2(£0psAP)AP. @D this paper: the simplg model, the extended classical 6
Note that there is no influence of the classical nonlinearityapproach, and the new,pg model. For simplicity we sup-
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pose tha_t the_linear sound speed, linear attenuation, and the ~ [B.5.p] = [£1000,0,0]
first nonlinearity parameter are the same for all three mate- ®
rials: c,=2500 m/s,Q=50, andB=—1000. 10°5

First of all, we have shown in the above discussion of
Figs. 10 and 12 that analyzing the kinetic energy loss may be
a simple manner by which to verify whether or not hysteresis
is present in a material.

In addition, an analysis of the time waveform and its
frequency spectrum at a fixed propagation distance can pro-
vide a qualitative measure of the importance of the second
nonlinearity parameter and of the hysteresis strength. Figures
4, 6, and 8 illustrate this fofB,d,05]=[—1000, 0, Q, 10°
[—1000, 16, 0], and[—1000, 0, 400Q) respectively. The 0.01 0.1 1

=0 [B,3,p,] = [-1000,10%,0]
—o [B,8,pg] = [-1000,0,3000] -
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presence of higher harmonics is an indication that some form Distance  [m]
of additional higher nonlinearity is necessary to describe the 5
material’'s dynamic behavior. Furthermore, if the strain his- ) 10 T
tory takes on a typical triangular wave shape there is strong % 106 B _:0_%..0.& ey
evidence that hysteresis is present. E Slope =1l 7 O:f:
Another way of obtaining information about the domi- s 107 /// — .
nant nonlinear procegslassical or hysteretjds by looking § ’/ Slope =2 /7"
at the individual spectral components and their dependence S 10°® > /,/
on distance, source frequency, and source amplitude. Recall- é 0 //j/
ing theoretical calculations by McCafi,Van Den Abeelé’ s 10 o
and McCall and Guyé? for the propagation of a continuous FAp '
monofrequency source signal in a nonlinear medium, we can 0.01 0.1 1
summarize these elementary relationships for the second and Distance [m]
third harmonic as follows:
(i) simple classicaB models; FIG. 13. Distance dependence of the second and third harmonic strain am-
plitudes for a sinusoidal monofrequency 10-kHz source signal with fixed
U, Bxf2U?, U3“32X2f4U31 source displacement amplitude of Pom. Theoretical results for the three

(i) extended classica®, 6 model: model materials.

U,x Bxf2U2,

amplitudes instead of displacement, which means that the
power law dependence for frequency increases by 1 because
e,xnfU,.) The behavior of the second harmonic as a func-

2
Ugx B2x2f4U3 if

xf
>>>|4| or
0

g2xf tion of distance, frequency, and amplitude does not provide
Ugxoxf3Uu® if <<<|4|; comprehensible differentiation in the form of higher nonlin-
Co earity. Even in the presence of higher-order nonlinearity or
(iii) hysteresis, pg model: hysteresis the classical dependence relations remain valid:
- the second harmonic is linearly dependent on the propaga-
U BXT2U7, tion distance, quadratic in source amplitude and source fre-
B2 f2U guency, and the proportionality coefficient is a measure of
Ugx B2x%f4U°3  if ——5—>>>pg or the first nonlinearity parametgg. There is only a small dif-
Co ference when hysteresis is involved due to nonlinear attenu-
2y 21 ation. Study of the third harmonic, however, indicates sig-
Usxpgxf2U? if 2 <<<pg nificantly different behavior in the three model materials. A
0 square law dependence for the distafieig. 13 of the third

(x is the distance to the sourckjs the source frequency harmonic indicates that first-order nonlinearity dominates the
is the source displacement amplitude, dog,U; are the dynamic behavior at this source frequency and amplitude.
displacement amplitudes for the second and third harmonic§he observation of a linear dependence on distance indicates
at distancex). that either higher-order nonlinearity or hysteresis must be
These relationships are deduced in the absence of ataken into account. Figure 14 tells us that the frequency de-
tenuation and apply for small propagation distances onlypendence relation for the strain amplitude of third harmonic
They also appear as the asymptotic behavior of our numerdiffers in all three models. Note, however, that this is only
cal calculation scheme using E(L6). In Figs. 13—15 we the case if the source displacement is kept constant at all
visualize these dependence relations for the second and thifcequencies. When strain amplitude is kept constant at the
harmonic using the numerical simulations of the three modesource,e;5 is square law dependent on frequency in fhe
materials (under the conditions 82xf<<<cy|8| and model and linearly proportional to frequency in the extended
B2xf2U<<<c3pg). (Note, however, that we plotted strain classical and hysteretic model. Figure 15 illustrates the
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FIG. 14. Source frequency dependence of the second and third harmonigg_ 15. Source amplitude dependence of the second and third harmonic
strain amplitudes for a sinusoidal monofrequency source signal with fixedsrain amplitude for a sinusoidal monofrequency 10-kHz source signal after
source displacement amplitude of fm at 1-m propagation distance. The- 1.m propagation distance. Theoretical results for the three model materials.
oretical results for the three model materials.

the transfer function of the source transducer and receivers

source amplitude dependen@e displacementfor fixed fre- ~ requires comprehensive deconvolution while stepping in fre-
quency and propagation distance. The third harmonic straifluency; and the generation of harmonics at the source with
amplitude satisfies a dependence on the source amplitude Hiecreasing drive level is a critical problem for the source
the third power except when hysteresis is dominant in whicimplitude dependence measurements.
case a square law relation applies. Another important remark is that the theoretical model
In summary we can state that an analysis of the secongresented here is only a first-order approximation of the
harmonic is always restricted to information about the first-complex modeling that is involved based on the integral
order nonlinear coefficient only. An evaluation of the third P—M space. The inversion for the triplgt 6, and pg only
harmonic provides more insight into the dominant nonlineaimakes sense in the framework of this quasi-analytic treat-
characteristics. Given its dependence relations, third hament. These parameters are local and may depend strongly
monic measurements can provide the clue as to whether t# the average pressure condition under which the experi-
simple classical theory is sufficient, or if higher nonlinearment has been performed. Ultimately, we would like to ar-
constants or hysteresis must be considered. rive at a general description of the forward and backward
We have only supplied some extreme characteristicsnodels in terms of the global P—M space deng{t®., Po).
Real materials will usually have a nonlinear behavior thatThe local parameterg, o, and pg can then be readily ob-
fall in between the theoretical bounds illustrated in this pa-tained from this global density distribution.
per. Most certainly noninteger power law dependencies will
b_e observed for _real qlata, indicating _th_at a combl_natlon o]‘”_ CONCLUSION
higher-order nonlinearity and hysteresis is present in the ma-
terial. This is unquestionably the case for most rock for in- A first-order approximation of the complex manifesta-
stance. That is why a large number of “basic” experimentaltion of hysteresis has been presented for the description of
data in the three-dimensional space of distance, frequencgynamic wave propagation in hysteretic materials by using
and amplitude is necessary to perform a unique inversioman analytic expression for the modulus derived from P—M
within the limitations of this theory. In this context we also space modeling. The model is limited in validity to simplex
want to point out some experimental difficulties that are in-waves, i.e., periodic waves with only one maximum and one
volved in obtaining such an extensive data set. Site responsgeinimum in one period of the strain. Within this limitation,
generally complicates corrections on distance measurementsie model illustrates that hysteretic effects can be identified
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