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A method for the generation of quasi-isometric boundary-fitted curvilinear co-
ordinate systems for arbitrary domains is developed on the basis of the theory of
conformal, quasi-conformal, and quasi-isometric mappings and results from the non-
Euclidean geometry concerning surfaces of constant curvature. The method as it is
proposed has an advantage over similar methods developed earlier in that the number
of unknown parameters to be found is decreased, strict boundaries for parameters are
found, and a simple and efficient process of identification of an unknown parameter
is given. The reliability of the method is assured by an existence and uniqueness theo-
rem for quasi-isometric maps between physical regions and geodesic quadrangles on
surfaces of constant curvature which are used to constrict quasi-isometric grids in
physical domains. We formulate the Riemannian metric consistent with this theorem
which is available analytically. lllustrations of this technique are given for various
domains. (© 1998 Academic Press

1. INTRODUCTION

1.1. Quasi-Conformal Grids

The problem of generation of a structured grid in some physical doagan be
considered as a problem of construction of the mapping

X=XEm, Y=YEn (1.1)
between the points ( n) of the regular computational region
R={¢.mn:0=£§=<10=<n=1

and the pointsX, Y) of the given physical domaif» with interiors angle;, 0 < g <,
i=1,...,4.
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2 CHUMAKOV AND CHUMAKOV

Considerable progress has been made in the development of numerically generate
ordinate systems, and a variety of generating systems have been presented in the litel
[8, 12, 22, 24].

Among different approaches to the problem stated above we can emphasize the
most commonly known which use the elliptic generating systems. The first approach \
proposed in 1966 by Winslow [25] and the core of the method consisted of applicat
of the theory of two-dimensional harmonic mappings to the problem. As was shown
1978 by Mastin and Thompson [19], the mapping generated by the Winslow system h
non-vanishing Jacobian.

Another approach using conformal mappings of a rectangular region

Q={En:0<&<1/VM,0<n<vM)}

with ana priori given grid onto the physical region was proposed in 1967 by Godunov al
Prokopov [13]. HereM is the conformal modulus dP, which guarantees the existence
and the uniqueness of the conformal mapping sought. The development of this methc
precisely described in the book by Goduraial. [12] and the survey by Thompsan al.
[22]. The orthogonal mapping technique has been investigated in recent works [16]
[7, 20] from different points of view.

In 1975 Belinskyet al.[1] proposed to use a quasi-conformal mapping of the unit squa
onto the given physical region instead of a conformal one. The mapping was to be four
composition of two mappingR — P — D, namely, a Chebyshev mapping

x=xE&,n, y=YyE&n (1.2)

of the unit squaré& onto a plane curvilinear parallelograf which generates the Riem-
manian metric

ds? = g11d&2 + 212 dE dny + grp i, (1.3

wheregi1 = X§ + y§, O12 = Xe Xy + Ve Yy, Ooo = x,f + y,f, and a conformal mapping &
onto the physical regio®. The coordinate systems (1.1) were proposed to be sought
solutions of variational problems. On the other hand a superposition of these mappings
be considered as a solution of the Beltrami system

gXe = —012Ye + 911Y. gX,;, = —022Y: + 012Y, 92 = Q11022 — 9%2- (1.4)

The system (1.4) is a generalization of the Cauchy—Riemann equations and can be tre
[3, 17] as a condition for conformality of the mapping (1.1) with respect to the Riemmani
metric (1.3); that is, the mapping (1.1) that satisfies (1.4) maps every two curves in
(&, n)-plane which make the angleat the point of their intersectiameasured in the metric
(1.3) into curves in theX, Y) domain which make the same angleThis point of view is
interesting in the sense that by defining the typg;pexplicitly we can control the quality
of the grid by controlling the anglg:»(g11922) ~Y/? = cos# between the lines, and the ratio
of cell sides(g,,/g11)Y/? as well.

In such a way in the paper [11] it was proposed to use the certain class of fungjions
depending org, n and unknown vector of parametergor the process of construction of
structured multi-block quasi-conformal grids in complex domains.
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However, in the case of quasi-conformal mappings, each of which is a composition
conformal and some other mapping, for example, an algebraic transformation [21], we
not practically able to control the size of cells as the grid is refined. This fact is connet
with the behavior of the modulus of a conformal mapping'’s derivative on the boundarie
the domain. As a rule, in the corners of the mapped domain the modulus of the confo
mapping’s derivative approaches either zero of infinity [14, 18]. In other words, the Jacol
of the transformation has a singular value that approaches either zero or infinity as the
is refined.

In order to have better control of the grid cells quality, we have to restrict the cl:
of coefficientsg;; of the metric (1.3) in such a way that the solution of the correspondi
Beltrami system ig.-quasi-isometric. Under@a-quasi-isometric mapping (1.1) an infinites-
imal square will go over into a parallelogram with sides of the lemg& andA S,, which
are connected to the changegiandy in the following way,

1/2 1/2
AS = G1/1 Ag, AS, = Gz/z An,

whereGiy = X2 4+ Y2, G12 = X X, + Y:Y,. G2 = X2 + YZ; moreover the following
estimates hold:

A A
A8 _As <pae, BT 2 AS < uan.
W 0

In other words, singular values of the Jacobian pfquasi-isometric mapping are boundec
from above and below by and Y/ ., which gives us no singularities in corners of the physic:
domain as the grid is refined.

1.2. Quasi-Isometric Grids

The generation of 2-D quasi-isometric grids may be considered as the following boun
value problem (BVP): given a quasi-isometric mapping betw&Rrand oD to extend it
inside R as a quasi-isometric solution of the Beltrami system (1.4) with appropgiate
from a given class of coefficients. Boundary conditions in this BVP are either Dirich
conditions with fixed boundary points or “free” conditions under which grid points on t
boundary of the physical regidn are not fixed and can move aloA@.

In order to obtain a quasi-isometric solution of the grid generation problem, a spe
one-parametric family of metrics (1.3) was studied by one of the authors in [5, 6]. |
later paper by Godunaet al. [10] it was proposed to study a special five-parameter fami
of metrics. However, an identification process of the unknown parameters was extrel
difficult because the domain of the five parameters was defined implicitly.

The present paper is aimed to develop ideas introduced in [5, 6]. The main goals a
describe a one-parametric family of coefficiegiswith a parameter, for which the posed
BVP has the unique quasi-isometric solution; to determine precise botHdadr " for
r; and to develop a new technique for finding of the unknown parameter.

We construct the mapping (1.1) as a composition of two quasi-isometric mappings [

The first transformation maps the computational reitamto some geodesic quadrangle
P with the anglesvs, ..., a4 On a surface of constant curvature. The geodesic quadran
P with anglesy; is to be chosen in such a way tlgtcoincide with corresponding angles
B; of the physical domai®, and conformal modules ¢? andD are the same. Under the
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condition

4
dBi-2r<2p, i=1...4 (1.5)
j=1

such a geodesic quadrangkexists uniquely in both cases of the negative [5, 10] an

positive [6] angle defect dp. After constructing the quadranglewe generate a geodesic

grid in P by means of geodesic bundles as suggested in [5]. In other words, the geod
grids in’P can be treated as a variant of the Winslow grids with an advantage that in «
case the grid i? can be defined explicitly and still will posses all the attractive feature
of the Winslow grids. In contrast to the work [10], which uses conformal and projecti
mappings, we use a conformal representation of spherical and hyperbolic geometrie
order to construct a geodesic grid B In this way we have direct information about
domain angles which becomes implicit if we use projective mappings; this allows us
reduce the number of parameters to be determined to one instead of five, as it was in |

By the second mapping is mapped conformally onto the physical domainsuch a
conformal mapping exists uniquely by virtue of the Riemann Mapping Theorem [15], a
if we assume that all sides @&f are smooth enough then the mappingfobntoD will be
quasi-isometric [14, 18] as well.

The composite mapping is to be found as follows: The first quasi-isometric mappi
generates the metric tenggy, and the elements of the metric tensor are used as coefficier
of the Beltrami system (1.4). By solving the system we obtain the quasi-isometric mapp
(1.1) sought. The problem of determining the metric tergprand functions (1.1) for
which (1.4) holds can be formulated as a variational problem of minimizing the functior
of Dirichlet type.

This method can be used for the generation of quasi-conformal grids in the physi
domainD with the angle$s, . . ., 84 which do not satisfy the inequality (1.5), for example,
when the boundaryD is a smooth closed curve. For this purpose it is sufficient to defir
anglesxy, ..., as of P which satisfy the condition (1.5). Angles define the internal grid
angle and might not coincide with the real angles of the domain.

Thus the new contribution of our work is the class of functi@ag goo, 912 of the
independent variables n, @ = («y, ..., as) and of unknown parameter(a monotonic
function of M which ranges fromn™" to r ™), for the generation of quasi-isometric grids
and the new technique for finding the unknown parametdrthe mapping sought.

The main advantage of the proposed method is that under certain conditiags on
the mentioned quasi-isometric mapping7fonto D is proved to exist uniquely and the
conformally equivalent metrics induced by the mapping (1.1) are available analytica
which reduces the tome of actual computing. Moreover, our method in the form as i
proposed in the present paper provides a certain flexibility in the sense that two ce
of the boundary points behavior are admitted: they might be chosen fixed or may m
along the boundary; the method allows more direct control of the grid cells size and qua
as the grids are refined, which is important for finite-difference numerical methods use
computational physics, e.g., multigrid [9].

2. GEOMETRY OF SURFACES OF CONSTANT CURVATURE

2.1. Geodesic Lines and Geodesic Bundles

In order to provide a conformal representation of spherical, Euclidean, and hyperb
geometries we will consider the surface of constant curvatuse4s as the planex, y)
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with the metric

dx? 4 dy?

d§=(1+8u2+y%ﬂ’

2.1)

wheres is a real number [4]. I8 is positive, the metric (2.1) is defined for evetyandy
including infinite, and we obtain the representation of spherical geome#rys liegative,
then in the circlex? + y? + § < 0 we obtain one of the possible Lobachevsky geomet
representations, or hyperbolic geometry. In the case), the metric (2.1) is ordinary
Euclidean metric on the plang,(y).

Geodesics in the metric (2.1) are curves defined by the equation

ax+by+c[l —8s(x?+y»)] =0. (2.2)

Whena? + b? + 4¢25 > 0, Eq. (2.2) defines a straight line or a circleaf+ b? + 4¢%5 < 0,
then the set of points satisfying (2.2) can be considered to be circle of imaginary non-
radius. In the cases = 0 we have straight lines on the plane y), and ifa=b = 0 and
¢ # 0 then the set defined by (2.2) is the line at infinity.

Letq=ax+ by+ c[1 — §(x? + y?)]. Consider the fundamental quadratic form of coef
ficientsa, b, ¢, ¢3,

a? + b? + 4c?s
) =R@.Q) = ————. (2.3)
and its polarization
1
R(1, 02) = Z[alaz + b1by +2¢1C2(81 + 82)]. (2.4)

Lets; ands, be two distinct geodesics defined by equatigns- 0 andg, =0, respec-
tively. The condition

R(1, a2)

_— <1 2.5
P () p () = (2:3)

R(Gu, @) =

is necessary and sufficient for existence of real points of intersection of ci#ctesls,
[2]. The angle betwees, ands; is a real numbes (s;, s;) determined by

arccosR(qr. ). if R(d1. @) < 1,

(S1, %) = {arccosz(fh, %),  if R ) > 1,

(2.6)

The formula (2.6) implies that for evebythe circles of the form (2.2) are orthogonal to the
circle 14 8(x? + y?) = 0, which is called the absolute.

The family F of geodesics orthogonal ® ands; is called a geodesic bundle. The
geodesic bundlg in which's; ands, can be embedded is called orthogonafto

Note that ifs £ 0 andﬁ(ql, 0z2) < 1, then geodesics froth do not have common points
andF is called a hyperbolic bundle of geodesics, an@(nﬁl, 02) > 1, then geodesics from
F have exactly two common points atfdis called elliptic.
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2.2. The Group of Motions

We consider three types of non-Euclidean spaces of a constant curvature indicated al
All of them admit the continuous group of isometric mappings, that is, the group of motior
If we consider the parametric plane as a complex plane, a motion can be represente
a linear-fractional transformation of a special form. If we denotg iy by z, then every
motion has the form

w(z) — eiwi’
146¢z

(2.7
wherew € R and the complex number must satisfy the following condition: I§ < 0
then|¢| < |8]~Y?, otherwiser can be any complex number. In other words, each linea
fractional mapping of the form (2.7) maps the absolute onto itself and does not change
differential increment of non-Euclidean arc length, i.e.,

|dw(2)| dZ]

1+ 8lw@)2  1+48|z*

2.3. Geodesic Quadrangles and Characteristic Invariants

LetP be a quadrangle, sides of which lie on geodesics (2.2), and let its va®izes 4
be enumerated counterclockwise. Let us denote sidBh9fA; = 7z, 1, and angles betw-
eenA_jandA bygj,i=1,...,4(zs = zzandAg = Ay).Letgi=o; — /2,1 =1,...,4.

It is possible by means of linear-fractional transformation of the form (2.7) to put
geodesic quadrangtfe into the “standard” position, i.e., to move one vertexofsay, z)
to the origin and rotat® so that the sidéy will be a segment of the positiveaxis. Denote
by r; the Euclidean length of the segmeit The invariance of the metric (2.1) under the
motions (2.7) implies that we can associate with eu&ryjts Euclidean lengthirwhich is
uniquely defined.

The question may arise about a characteristi®dhat is necessary and sufficient for
distinguishing two geodesic quadrangles with the same angles. In the capacity of su
characteristic we propose the invariant

rars

m(P) = (2.8)

From the results presented in [5, 6] it follows that the quamti¢y?) depends monotonically
on the conformal moduld(P). In other words, the following theorem holds:

THEOREM1. LetP and? be two geodesic quadrangles such at &;,1 =1, ..., 4.
Ifry =y thenP = P, ifry > F; then m(P) > m(P) and M(P) > M(P).

3. GEODESIC GRIDS IN CONVEX GEODESIC QUADRANGLES ON THE PLANE

In this section we shall develop the technique of embedding an arbitrary geodesic gt
rangle on the plane into one-parametric family of quadrangbgswhich have the same
angles, and construct a mapping which gives us geodesic grid in any quadrangle fror
family.
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3.1. Constriction of a Geodesic Quadrangle with Given Properties

Note that in this “flat” case the previously defined quanditis zero, and the angle
defect of P is also zero, which means + ¢, + ¢3 + ¢4 = 0. We can treat thex( y)-plane
as a surface with constant curvature zero and apply all results mentioned in the pre
section. Sincé = 0, a geodesic in the metric (2.1) is a straight line defined by the equat
ax+by+c=0.

Since ageodesic quadrangle is uniquely determined by a set of five parameters, in or
obtain a one-parametric family of quadrangles we have to fix four parameters, for exan
three angles and the area of quadrangle. We shall choose for the varying paramet:
Euclidean lengthr; of the sideA;. As we will show later, the parametey can vary
between the boundarie&™ andr "™, and M (P;,) — 0 asr; — r"", andM(P;,) — oo
asr; — r"

Let the left sideA, and the right sided, of P, lie on the lines

COS¢@1X +Singp1y =0 and COSpyX — Sin oy — 1 CoS¢@ = 0.
Let the lower sideA; and the upper sidés of 7, lie on the lines which have the equation:s
—y=0 and  Ssifg: + @4) X — COS@1 + @a)y +r2COS@4 = 0.

So far we have considereglas an independent parameter; later we will deffine r4(ry)
as a function of ;.

3.2. Geodesic Grids in Geodesic Quadrangles

Let us consider a pencil of line&;, depending on a parametere [0, 1], such thatA,
lies on the ling€ = 0 from F;, andA; lies on the ling = 1 from ¥;. Elements of the pencil
F: are described by the equation

[cOs @1 +§(COS @2 — COS@1)] X +[SiN @1 — &(SiN @2+ Sin ¢1)] y —&r1cosgz =0,
£ €[0,1]. (3.1)
Now consider a pencil of line£,, depending on a parametgre [0, 1], such thatA;

lies on the liney = 0 from F,,, and A3 lies on the linep = 1 from 7. So, all elements of
F, satisfy the equation

nsin(p1 + @a) X — [1 + n(coSp1 + p4) — D]y +nracoses =0, ne[0,1]. (3.2)

From Egs. (3.1)—(3.2) we can obtain the following mapping of the unit s(dase the
(¢, n)-plane onto the quadranglg,,

X = [£cy — nezsin g1 + En(biCe + bocy)]/C(E, 1), (3-3)
y = n[C2CoS @1 + &(a1C2 + @) /C(E, n), (3.4
where
a; = COSyp — COS ¢y, by = sin @1 + sin ¢y, C1 =1 COS @y,
a = Sin(1 + @a), by = cogp1 + ¢a) — 1, C2 =4 COS @4,

C(&,n) = CcOS¢py — £E(COS@p1 — COS@2) — n(COS¢@; — COS@y)

+ £n(COS¢p1 — COS@o + COS@3 — COS¢y).
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Note thatin (3.1) and (3.2) instead®%&ndn we can take two arbitrary monotone increasing
functionsé (¢1) andn (1) satisfying the conditions(0) = n(0) = 0 andé(1) = (1) =1.

In particular, we can chooge= £(&;) andn = n(n1) in such a way that under the mapping
(3.3)—(3.4) the uniform distribution of points on the lower and the left sides of the ur
square holds; i.e., the distribution of points on sidgesand A, of the quadrangl®, is also
uniform. In order to obtain such a mapping it is sufficient to chagge) andn(11) as

§1C0S @1 n(n1) 171 COS @1
3 1) = .
&1C0s@1 + (1 —&1) cosgp n1C0S¢p1 + (1 —n1) COS@4

£(81) = (3.5)

3.3. One-Parametric Family of Geodesic Quadrangles

No we are going to get rid of the dependent paranmate®o far we have fixed only four
parameters—angles of the geodesic quadrangi, . We choose the area #%, to be the
fifth parameter to fix. If we assume that the area of quadraRglés equal to 1/2, then
parameters; andr, satisfy an algebraic equation of the form

COS @3 = COS @ SIN(@1 + Pa)I 2 4 COS P4 SIN(@1 + Y2)I 2 + 2 COS@ COSPar1fa.  (3.6)
Note that Eq. (3.6) is given in implicit form, but regardingas the dependent variable, we

can obtain the explicit form of the function = r4(r;) with the domairr{nin <rp </
For this purpose we first rewrite (3.6) as

1 1
= — 2By~ +Co =0, (3.7)
r4 Ig
where
B _ COS @2 COS @4r'1 Co —COS @4 SiN(g1 + ¢2)
% Cosgs — COS @2 SIN(gy + ga)I 2 7 Cosgs — COS 2 SIN(gy + ga)r 2

Since we need to find the positive raqt= r4(r;) whenCy < 0, and the least positive
root whenCqy > 0, we have

1
ra(r) = ——F———. (3.8)
Bo + v/ Bg —Co
Moreover, we can calculate the derivative
dra(ry) _ r1Cosg;Sin(er + ¢4) +r4(r1) COS g2 COS @y (3.9)
dry I'1 COS @5 COS @4 + r4(r1) COS @4 SiN(@1 + @2) '

3.4. Strict Boundaries forr;, Plane Case

Let us denote by, the symmetric group of permutations of the gkt2, 3, 4 [23]. Let
¥4 be the cyclic subgroup &, generated by the element

5684, 02(1 23 4>.

2 3 41
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Leto € X4 be such that
Yo1) + ¥s2 = 0, $o(1) + @oa = 0.

Then from (3.6) we can derive the strict boundaries for the values of Euclidean length
sides ofP;, (provided the angles are fixed),

min __ max __
o =0 To@ =

min max H
Toiy < Tol) <Tgs i=1...,4
where
min _ o max __ COS @5 (3)
ey =0 To@) = . ,
COS @5 (2) Sln(%(l) + %(4))
(min _ sin(¢o 1) + @oa)) pmax _ COS @5 (4)
2) = ) 2) = - )
@ COS @5 (2) COS ¢ (3) @ COS ¢ (3) SiN(Yo 1) + ¢o(2)) (3.10)
pmin _ sin(¢e) + ¢o2)) pmax _ COS¢5(2)
3 = ) 3 = . )
°® COS ¢, (3) COS Yy (4 @ COS @5 (3) Sm(%(l} + %(4))
\/ COS¢s(3)

COS @ (4 SIN(@o (1) + o (2))

3.5. Riemannian Metric Induced by the Quasi-Isometric Parameterization

Now formulas (3.3)—(3.4) and (3.8) provide us with a quasi-isometric parameteriza
of a geodesic quadrangf@, for anyr; € [r"", r"®]. The parameterization (3.3)—(3.4)
induces a class of conformally equivalent Riemmanian metricg.pof the form

ds? = guu(&, 1, 11) d&% + 201, 1, r1) d& dny + Goo(&, 1, 1) di”. (3.11)

In this section we will find elements of the metric tenger = x§ + yé?, O12 = XeXp + Ve Vips
andgz, = xZ + yZ in the explicit form.
We can calculate all first derivatives of the mapping (3.3)—(3.4) explicitly,

Xe = (14 nhby) -A(n,zrl)/cz(s, m),

yé = 773-2 ‘ A(nv rl)/c (Ev n)s 3.12
X, = (b1& — sin 1) - B(,11)/C2(€, n), (3.12)
Y, = (COS@q + &an) - B(E, 11)/C2(&, ),

where

A(n, r1) =r1C0s@o[ncoses + (L — 1) cosei] + nra(ry) coses sin(er + ¢2),
B(&,r1) = ra(ry) cos g4l cosgy + (1 — &) cos¢1] + £r1 cos g Sin(gy + @4).

It is easily seen that for alk( n) in R the inequalitiesA(n,ry) >0, B(&,rp) >0, and
C(¢,n)>0hold forallr, € (r["‘“, ri"®). The Jacobian of the transformation (3.3)—(3.4) i

given by
VOG22 — 912 = A(n, r)B(E, 1) /C3(E, ).
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As a representative of the class of metrics (3.11) we can take the metric with the coe
cients

g€, n,11) = A%(n, r){1 + 2n(1 — n)[cos(pr + ¢a) — 1]},
O22(&, m,11) = B2(&, r){1+ 26 (1 — &)[cos(g1 + ¢2) — 1]}, (3.13)
012(€, 1, r1) = A(n, r)BE, r)SE, n),

where

S(&,n) = —sin @1 + £(sin @1 + SiN @2) + n(Sin @1 + SiN @4)
— &n(sin @1 + sin @2 + Sin @3 + Sin @a).

The discriminant of the metric form is

011(&, 1, 1) G22(&, 1, 11) — G,(&, n, 1) = A%(n, 1) B2(&, r1)C2(E, ).

4. GEODESIC GRIDS IN CONVEX GEODESIC QUADRANGLES ON A
SURFACE OF CONSTANT CURVATURE

Our main goal is to construct a famiR, of geodesic quadrangles on a surface of constar
curvature, each of which has same angles . ., a4, parameterized by, in such a way
that M (Pr,) — 0 asr; — rf“” and M(Py,) — oo asri — r". In general, we will repeat
our argument for the “flat” case with slight modifications. First we shall obtain equatio
of geodesics that sides of the quadrangle belong to, taking as given five independent de
a1, a2, a4, M1, andry,—and later we will express; as a function of 1, a1, ay, a3, ¢4 and
definer " andr "2,

Later in this section we will assume that the following conditions are satisfied:

min

max
r

T
<rp <r{, —— < <

d y<Zo4g i=1...4 (41)

2’ 2
4.1. Construction of Geodesic Quadrangles on Surfaces of Constant Curvature

Let us construct a geodesic quadrarBle: (z )i—;. .4 With given parameterg;, g2, ¢,
ri, andry. Assume thag; = (0, 0) and the sidéA; is a segment of the positiveaxis and
has Euclidean length. Then the sidé\4 on the parametric plane is represented by anothe
segment that belongs to a ray going out of the origin at the angle the positivex-axis,
and the verteg, of the geodesic quadrang®has coordinates, = (—r4Sin g1, r4COS@1).
Assume that the sidé&g belongs to the geodesic of the form (2.2) that passes through t
point z, and has tangent line aj that intersects thg-axis at the angles + ¢4. Then by
settingc = r4 cos¢; and having fixed we obtain the following equation of the geodesic:

[sin(g1 + @) — 812 sin(py — @a)| X — [ COS1 + @4) — 812 COSp1 — @a)] Y
+r4c08041 —8(x2+y?)] =0. (4.2)

Finally, assume that the sidh corresponds to an arc of the circle of the form (2.2) tha
passes through the point = (r1, 0). Let the tangent line to the geodesizatntersect the
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x-axis at the angler/2 — ¢,. By settingc = r; cos ¢, we obtain that the sidé, belongs
to the geodesic that satisfies the equation

cos@y(1—8r2)x — sin g2 (14 8rZ)y —rycosgy[l — §(x? +y?)] = 0.  (4.3)
The closed figure formed by geodesic segméts . ., A4 is called the geodesic quadran-

gle’P. We shall consider only a convex geodesic quadrangle: This means that with any
points it also contains the geodesic segment between them.

4.2. Quasi-Isometric Parameterization of a Geodesic Quadrangle

In this section we construct a geodesic grid far by an analytical quasi-isometric
transformation ofR ontoP.

Let the left and the right sides of a geodesic quadrafgléelong to the geodesics that
satisfy cosp;x + sin g1y = 0 and Eq. (4.3), respectively. Then we consider every vertic
grid line as an element of the geodesic bundle

(cosgy +&a))x + (singy — &bY)y — £ci[1 — 8(X* +y)] =0, £ €[0,1], (4.4)
with
aj = (L-8rZ)cosg, —cosgy, bl = (1+6rf)sing+sing;, ¢ =r1cose,.
Further let the lower and the upper sides of the quadrangle belong to geodesics that s

—y=0and Eq. (4.2), respectively. Then we consider every horizontal grid line as an eler
of the geodesic bundle

nagx — (L+nbl)y +nc[l —8(x*+y)] =0, nel0,1], (4.5)
with

a3 = sin(g1 + @a) — Sr2sin(pr — ¢a), b} = coSp1 + @4) — r2copr — @a) — 1,

Co =Tr4C0S @4
in whichrg = r4(rq) is to be inserted.

Multiplication of (4.4) bync, and subsequent addition g, times Eq. (4.5) yields the
equation of the line

nxBs(§.r1) = yQ(&, n,r1), (4.6)

which is a common chord of the two circles (4.4) and (4.5), when we set

Bs(§,11) = 14008 pa[§ (1 — 8rf) cosg, + (1 - §) cos ]
+£r1COS @2 [ SiN(p1 + @) — 815 siN(pr — ¢a)],
Q(&,1,11) = £c1 — nCpsin g1 + En(bjc, + bicy).
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Its point of intersection with the circle (4.5) is also the point of intersection of the two circle
Now we can eliminatex from (4.5), using Eq. (4.6). Consequently, we have a quadrat
equation iny,

232 ,
PBET a6, r)

By,
# S[QPE .ty + PBE )] = 0. (4.7)

with

2Cs(&,1,11) = oSy — &[COSgy — (1—8r%) cosg,| — n[cosgy — (1 — 8rf) cos ey
+é&n[cosgr— (1—8r?) cosgy + CoSp1+ ¢z + @) — (1—8rF) cos ¢4
— 8&n[rf cospr — 2+ ¢4) +1Z COS1 + 92 — ¢4)
— 8rirg cospr — 2 — ¢a)].

Since we need to find the positive roptwhen § >0 and the least positive root when

3 < 0, we obtain from Egs. (4.7) and (4.6) the following mapping of the unit square on t
(¢, n)-plane onto the geodesic quadranfe,

_ Q(Ev n, rl)
X = ; (4.8)
Cﬁ(s’ n, rl) + \/C(SZ(Sﬂ n, rl) +34 [QZ(S’ n, rl) + 77265(%‘7 rl)]

n- Bé(gs rl)

Co €. m. 1)+ \/C2E. m.10) + 5[Q2(E. m. 1) + n2B2E. 1))

y (4.9)

The mapping (4.8)—(4.9) is quasi-isometric, and the inverse mapping is of the form

B COS¢1-X+Sing; -y _ y
Bx—bly—ci[l—80C+y2)] | alx — by + Gl — 802 + y2)]

(4.10)

s:

Note that in (4.4) and (4.5) in the capacityfofindn we can take two arbitrary mono-
tonically increasing quasi-isometric functioggt;) and n(n,) satisfying the conditions
£(0)=n(0) =0 and&(1) =n(1) =1. In particular, we can chooge= £(&1) andn = n(n1)
in such a way that under the mapping (4.8)—(4.9) the uniform distribution of points on t
lower and the left sides of the unit square holds; i.e., the distribution of points onAjdes
and A4 of the geodesic quadrangle is also uniform in a sense of the Euclidean distance
order to obtain such a mapping it is sufficient to chog&g) andn(n,) as

£1COS 1

£1€0S¢1 + (1 — &) cosgp (1 + 8&1r2)°
11COS @1

N1C0S@1 4 (1 — 1) COS@a(L+ mar2)’

EE) = (4.11)

n(m) = (4.12)

4.3. One-Parametric Family of Geodesic Quadrangles

We now proceed by formulating the fundamental relation between angles and sRies ¢
The anglex; = /2 + ¢3 at which two geodesics (4.2), (4.3) intersect is defined by (2.¢
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and cosxs is given by

(148r2) (1+06r]) cosm/2+ ¢3) = [sin(py + @a) — 812 Sin(pr — ¢4)] cOS 2 (1—5r?)
+ [ coSp1 + @a) — 81§ COSp1 — @a) ] SiN (14 6rF)
— 438r1r4 COS 2 COS @g4. (4.13)

We rewrite (4.13) in the form

Sin¢1+<ﬂ2+<ﬂ3+<ﬂ4 COS<P1+¢2—§03+§04

2 2
_ 8r12005§01—<ﬂ2+<ﬂ3+<.04 Sin¢1—¢2—<ﬂ3+<ﬂ4
2 2
+8r§ cos(pl—i_goz—;('o3 — 4 sin <p1+</92;§03 — ¢ + 28114 COS @ COS @4
—Szrfrfcos%_wz_ws_wsin(pl_(p2+(p3_¢4_ (4.14)

2 2

From (4.14) it follows that if we construct a convex quadranBldor given angles
aj,f1 € (r{"‘“, ri"®) ands = 0 then its area will be equal tg/2.

Equation (4.14) can be considered to be the fundamental relation between;sides
and anglesq, ..., as. For future reference, it is convenient to introduce the notation

+ @2+ @3+
=<P1 @2 T @3 <P4’ D = C0S ¢, COS s,

2
(4.15)
If we determine’ as follows,
8=sin(pl+¢2-’2_(p3+¢4, (4.16)
then we have from (4.14) a quadratic equatioryin
2 1 1 2
(Cg — r1C2$3) I’_2 — 2r1Dr— + r1C18248 —C4&S4=0. (417)
4 4
The solutiornry = r4(ry) for Eq. (4.17) for the casé > 0 is
ra(ry) 1 (4.18)
a\"1) = — /> .
Bs + v/ BSZ —Cs
where
raD r2C1S48 — C4Sa
Bg; == 72, CB = >
Cs—1iC2S3 C3—r1{Co2S3
provided that following conditions are satisfied:
min max T T ;
ri <rg<r;e _E<(pi<5’ y<E~|—qu i=1...,4 (4.19
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In the caseS <0 we have to take as, = r4(ry) the root of (4.17) that belongs to the
interval ¢ "™, r "), which we will determine in the next section.

Thus giverr; and four angleas, . . ., as we are able to determine the function= r4(r)
and its derivative with respect tg:

dra(ry) _ _11CoS3+r4(r)D — 8r1r2(r))CiSpa
dry 1D +r4(r1)CaSsa — 8réra(r))CiSa’

(4.20)

Inorder to use the functian = r4(r1) and (4.2)—(4.3) for a quasi-isometric parameterizatior
of elements of family geodesic quadranglas we have to find {"", r " andr ", r1x,
But first we shall state some auxiliary statements.

4.4. Strict Boundaries for Parametersr;
4.4.1. Geodesic Triangles

The fundamental relation between angles and sides (4.14) might be used for finc
Euclidean lengths for sides not only of geodesic quadrangles, but of geodesic triangle
well.

Let 7 be a geodesic triangle on surface of constant curvakute4s with angles
Bi =m/2 + ¢ between the sideB;_, and Bj, j =1, 2, 3(Bg= Bs) and let the vertex
of the angles; be the origin of the parametric plane. We can consifleas a topologi-
cal limit of a geodesic quadrangl, with anglesy; = 8j, j =1, 2, 3, aa = /2 and sides
A; = By, A, =By, A3 + Ay= Bs. Under these conditions we can apply (4.14) to find the
Euclidean lengths of segmeris and Bs. This argument makes it convenient to introduce
a function

siny cosyr — ¥r3)
scosy — Yp) Sin(y — Y2 — ¥3)’

B, Y2, Y3, 8) = \/ (4.21)

whereyr = (Y1 + Y2 + Y3+ 7/2)/2, ands is determined by (4.16). By settimg=0, we
obtain that the Euclidean length 84 is equal toB(y1, ¥, ¥3, 8). In a similar way, the
Euclidean length oBgz is B(v/1, ¥3, ¥, 8).

It can happen that one obtains an indeterminate expression of the form 0/0 in (4.21
8§ — 0 and siny — 0. To remove this obstacle it is sufficient to define

cosy — ¥r3)
cos Y — yrp) SIN(Y — Yo — Y3)

B(Y¥1, V2, ¥13, 0) = \/ (4.22)

4.4.2. Strict Boundaries for y, General Case

Consider one-parametric family of geodesic quadrang@leswith given angles on a
surface of constant curvatuke = 45. With the help of the function (4.21) we are able to
find strict boundaries for Euclidean lengthsi.e., the end points of the interval to which
rj belongs.

Let us denote by(P) the number of sides ¢?, the sum of whose adjacent angles is not
less thent. The value of (P) can be 0, 1, 2, 3, or 4. Let us consider each case separate

Letl (P, ) = 0; then for allo € X4,

min max

) = B(@oys 0o2, —7/2,8),  1]8 = B¢y, 7/2, 9o ), 8),
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max

r(’,‘}% = B(¢o@: 9o@. —7/2.8), 115 = B(0s@. 7/2. 9o1). 5),

max

r::l(lg) = B(QDU(S), (po‘(4)7 _7-[/2, 8), l’g(3) = B((pO—(S), 7'[/2, (po-(Z)’ 8)’

max
r

riw = B(¢ow@), vy, —7/2,9), vy = B(¢o, 7/2, 953, 8)-

Letl (P, ,) =1, ando € X4 be suchthap, i) + ¢,2) > 0. Then the boundaries will be

iy =0, 1% = B(¢o, 7/2 ¢oa), 8),
r[?}‘é‘) = B(¢s3, Y2, —7/2.6), oG = B(¢om) + o) — /2,
Do 3 Poa): 8),
r0% = B(0o@: Yo, oty + o — 7/2,8), 0(3))( = B(¢o@, —7/2, ¢s2), 8),
ris = B¢y, Yo, —7/2,8),  rIG = B(¢o + $o2 — 7/2,

Vo (4), Po(3)s 5)-
Consider now the cad€P;, ) > 2. There always exist € X4 such that
Yo1) T Po2) = Yo3) T Po4); Y1) T Vo) = Po2) + Po(3)
holds. Then the boundaries figr will be

(r;n(T) =0, )8 =B(g +vsw —7/2,
Yo (2): Po(3):8),

rS}‘S) = B(¢s@: ¥o@): Vo) + Yoy —7/2.8), 13 = B(0ot) + o2 — /2,
Do 3 Po(), ),
s = B(@o@: Yoy o + 0o —7/2.8),  11& = B(go) + 0o — /2,

Vo (3)» %(2>,5),
i =0, 1% =B(eow + 902 — 7/2,
Vo (8), Po(3)s 5)-

4.5. Riemannian Metric Induced by the Quasi-Isometric Parameterization ofPy,

Since there exists the analytical representation (4.8)—(4.9) of the quasi-isometric may
of the unit squaré& onto the geodesic quadrangRe, , we can find the metric tensor ele-
mentsgik in the explicit form. We use abbreviatiotts= B;(£,r1), Q = Q(&,n,r1),C =
Cs(&, n,rp) and find from (4.8)—(4.9) by differentiation

(Q:C = QC)(C + Z) + 5n°B(Qe B — QBg)

XEZ

Z(C+2)?
Ve = (B:C—BC)(C+2Z)+6QB:Q — BQg)
d Z(C+ Z)2 (4.23)
« — (Q,C — QCH(C + Z) +nB*(nQ, — Q)
T Z(C+ Z)? ’
o, (C=nC)H(C+2)+8Q(Q —1nQy,)
yn =B )

Z(C+ 2)?



16 CHUMAKOV AND CHUMAKOV

whereZ = Z; (&, n,r1) andZ;s (&, n, r1) = +/C? + 8[Q? + n2B2]. Itis not difficult to verify
that

1 1
B:C — BC: = éagA, B;Q-BQ:= —cA  Qi€—-QC=3 (1+nbd) A,
(4.24)
1 _ 1
Q€ —QC=35(big —sing)B,  C—nC,=3(cosp+éar),  Q-nQ,=éa

with A = As(n, r1) and

As(n,11) = r1c08¢[n(1—8rF) coses + (1 — 1) cosgi]
+ 14 COS @4 SiN(p1 + ¢2) — 812 sin(py — @2)],

and we therefore have
1
Xe = A{é (1+nBd)(C+2)+ anCZB} 27N C+ 272

Ve =1" A{;ag(c +2)— 5c2Q} 27N C+ 27
1 (4.25)
X, = B{Z(big —sing,)(C+ Z) — agnclzs} 27N e+ 2)72,

Yy = B{%(coswl +£al)(C+2) + 5$le} .27 e+ 22

We first must characterize functiogg (n, r1), Bs (&, r1), C+ Z, andZ. Itis an important
fact that these functions do not vanistiinFor exampleBs (&o, r1) > 0andC + Z > 0. This
follows from the fact thay > O forn > 0in (4.9). Indeed, i35 (£o, r1) =0, & # 0, we would
have from (4.9) tha®Q(&o, n) = 0for alln, while actually the functiol®(&p, ) has the value
c1&0# 0 for n =0. The inequalityBs (o, r1) > 0 obviously implies that + Z > 0 in the
domainRR. Denoting byB(&, r1, r4, @1, ¢2, @4, 8) the function3 with domain of definition
(4.1), the functiond is As(n, r1) =B(n, 4, 1, 1, @a, @2, 8) and thereforeds(n, r1) > 0in
R. Finally, if Zs(&o, no, r1) =0, we would have that tangents to geodesics (4.4) and (4.
at (o, no) are the same, and hence the geodesic (4.4) goes thrésigh)(and the four
different points on the boundary &%,. Thus our statement is proved.

Consequently in the capacity of a representative of the class of conformally equival
Riemannian metrics generated by the mapping (4.8)—(4.9) we can take the metric with
coefficients

Q& n,r1) = A2{[(1+nb3) (C + Z) + 26n°c,B]*[85(C + Z) — 256,Q) ),
B, 0, 11) = B[ (b& — sin 1) (C + Z) — 26Enc,B] [ ( cos gy + £aS)
x (C+2)+25¢¢1Q]°},
055(&, 1, 11) = AB[(1+nb) (C + Z) + 28n°cB] [ (b} — sin ¢1)(C + Z) — 256 nc1B]

+ AB[a3(C + Z) — 25¢,Q]| [( cosps + £a)) (C + Z) + 256¢1 Q).
(4.26)

Becaused;(n, 1) — A, r1), Bs(§,r1) — B, r1),and Z5(§, n,r1) — C(§, n) ass — O,
it follows thatg, (€, n,r1) — Gik(€, 0, r1) defined by (4.26).
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4.6. Geodesic Boundary-Fitted Grids
Consider a geodesic quadran@teand its parametric representatisn= X(&, ),y =
y(&,n). Let
(de Yd) = (X(sd9 O)s y(éda 0))7 (XU’ yu) = (X($U7 1)7 y($U7 1))’ (427)
X, W) = X0, m), y@,m)), K, Yr) = X0, nr), YA, 7r)), (4.28)

be boundary points dP andxy # 0 andy; # 0. Now we can find the point of intersection
of two geodesic segments that pass through points (4.28) and (4.27), whose equation

a,X+by—[1—8x%+Yy)] =0, (4.29)
anX +bhy +[1—8(x2+y?)] =0, (4.30)

respectively, with

2, = {Ya— Yu—8[ya (x¢ + ¥&) — Yu(x§ + ¥&)] }/ uYa — Xayu),
by = {Xu — X4 + 8 [xa (x{ + ¥§) — Xu(xd + Y] }/ u¥s — XaYu).
an = {Y =¥ + 8y O+ Y7) =N ¢+ Y]}/ Y =%y,
bh = {X —x — 8% (X" + ¥) = x (x*+ Y]}/ ¥% — X Y.

One finds that the point = X, Y = Y, Of intersection of (4.29) and (4.30) is

. —(bn +by) Vot = ah +a, (4.31)
N A Va2t N afJaZ+b '
where
b, — a,b
a=¥, b= (an + a,)? + (by + b,)2.

5. VARIATIONAL METHOD FOR THE GENERATION
OF QUASI-ISOMETRIC GRIDS

The method by which we solve the BVP for the given Beltrami system is based upc
number of properties of conformal mappings and Theorem 1. The main properties we
are the Riemann theorem, which guarantees the existence and uniqueness of the ma
boundary properties of conformal mappings; and the Montel variational principle.

5.1. A Special Class of Riemannian Manifolds

Consider ageodesic quadranflavith given angles; = ¢ — /2 and sides of Euclidean
lengthsri,i =1,...,4 on the surface of constant curvatufe=4s, § = sin[(¢1 + @2 +
@3 + 94)/2]. Let us embed in a set of geodesic quadrangiBswith anglesasy, . .., a4
depending on a parametee=rq, r € (r{“i”, r"®) such that

M(P;) = Oasr — "™ and  M(P;) - ocoasr — ri" (5.1)
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We assume that

Xx=x¢&,nr), y=yE.nr), (5.2)

is a parametric representati@h and the metric

ds? = gu(€, 0, 1) d&2 + 2G12(£, 0, 1) d& dn + Goa(£, 7, 1) dip? (5.3)

is a representative of the class of conformally equivalent metrics generated by the map
(5.2).

Now we can define the Riemannian manifdld(gi; (¢, n.r), R) with the coordinate
domainR, the metric tensog;;, and the parametet

Then Theorem 1, (5.1), and the Riemann mapping theorem imply the unique existenc
the parameter* e (r{"", r @) and the functions<*(&, n), Y*(£, ) such that the Rieman-
nian manifold\V (gi; (£, n,r*), R) is mapped conformally with respect to the metric (5.3)
onto given curvilinear quadrangi®. The mappingX = X*(&, 1), Y =Y*(&, n) is quasi-
isometric if all sides o> are smooth enough (belong@3) and in additior,. andD have
the same angles [14, 18].

Thus the main problem consists in finding the parameteand a mapping<* (&, n),
Y*(&, n) such that this mapping is conformal with respect to the metric (5.3) with metr
tensorg;j (§, n,r*).

5.2. Functional ®

Let N (gij (€, n,1), R) be the Riemannian manifold defined above. A class of function

U228, 7,1) 012(€,1,1) 011§, 1n,1)
AE,nr) = —"——, B¢, n,r)=—">—- C¢&nr)=—"——-,
©10="56 .0 G 0="56 .0 En0="5e 0
(5.4)

9%(&,n,1) = 011, 1, 1) Goa(€, 1, 1) — G2(&, 1, 7).

will be called a class of “admitted” functions. We further introduce the class of admitte
mappingsX = X (&, n), Y = Y (&, n) of the computational regioR ontoD which has the
following properties:

1. X(&, n), Y(&, n) define a quasi-isometric correspondence betvwigemandaD;
2. X(&,1), Y(&,n) can be continued insidg in such a way that the functional

1 1
cI)(X,Y,r):/O /0 AE, 0, 1) (XZ+Y72) — 2BE, 1. 1) (X Xy + YY)
+C(&,n.1) (X2 +Y?) dg dn (5.5)

is bounded.

The minimum value of the functional is equal to the aSpaof the domairD [10]. The
functions X* (&, n), Y*(&, n) from the described class and the numbethat provide the
minimum of the functionakb give us the desired mapping of the Riemannian manifol
N(gij (&, n,1), R) ontoD.
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5.3. Variational Principle
In order to find X*(&, n), Y*(&, ), andr* we will construct a minimizing sequence
{X",Y" r"} that has the properties
(XM YT < (XN YN, lim &(X" Y1) = &(XT YY) = Sp.
— 00

At the beginning of the minimization process we assume that the funck®iis, n),
Y"(&, n), andr" are known to us. The first step requires us to obt&irt such that

(X", YN r™hy < o (X", Y, M.

The construction of the sequené} is based on the fact that the parametric representati
Pr, that is, the mapping (5.2), is defined on some neighborhood of tffe astwell. This
allows us to embed the mapping (5.2), haviriked, into the family of mappings depending
on a parameter in the following way,
X&) = xX((1+ewé, (1—ev)n,r), (5.6)
yg(é’ T},r) = y((1+‘9/’l’)§7(1_8‘})nvr)7 (57)

wheres and constantg, v satisfy the following inequalitiegzv > 0,

rin < x(L+ew,0,r) <@ M o\ /x20,1—¢ev,1) 4+ y2(0, 1 — v, 1) < "™

Every mapping (5.6)—(5.7) is quasi-isometric, and the bound&ygoes over into a
geodesic quadranglg’. From the Mantel variational principle [17], in a manner simila
to that given in [6] we obtain that the conformal modulus of the geodesic quadr&figle
satisfies the inequalitp(P?) > M(P?) for everye > &. Consequently for every fixed
there exists a unique such thatM(P?) = M(D). Moreover, the family of mappings
(5.6)—(5.7) generates the family of metrics with the metric tensor elements

9i1(€ 1. 1) = guE, 0, 1L+ ep)?,
o€, 1,1) = Goa(§, 0, 1) (L — ev)?, (5.8)
9125, . 1) = 9128, 0, (L + ep) (1 — ev).
Using (5.8) and (5.4) we can find\(&, n,r), Bé(&, n,r), Cé(&, n,r), such that
ACE n,r)=AE, n, 1), BYE, n,r)=B(&, n,1r),COE, n,r)=C(&, n, 1), and substituting

these into (5.5), we will obtain the function@¥ (X, Y, r). It is easy to verify that having
X, Y, andr fixed at the stationary point of the functioraf (X, Y, r) the equality

A—-V
= 5.9
¢ vA + uV (5.9)

must hold, where
1 r1 1 r1

2= [ [ acan (¢ dsdn. Vo= [ [ cenn (a2 dean
0 Jo 0 Jo

andinthe capacity of constantsy we canus@ =1/,/011(1, 0, r) andv = — d/dry)ra(r1)/
/9220, 1, 1). Denoting bys = ¢(X, Y, r) the function (5.9) and taking= ¢(X", Y", r™),
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we can projecidé (&, n, r"), B®(&, n,r™), C4(&, n, r") onto the class of admitted functions
A, B, C. Inorder to do this it is sufficient to sett! =r" 4+ ¢ and obtainA = A(&, , r"1),
B = B(&, n,r"t1), andC = C(&, n, r"1) using the formulas (5.4).

On the second step for computation of new approximaXdht, Y"1 such that

CD(XHH', Yn+1’ rn+1) < (D(Xn’ Yn’ rn+1)’

we use received, B, C as coefficients of the elliptic equations that represent the variation
Euler—Lagrange equations for the functional (5.5) being minimizeX amdY':

aX 9 _ax X 8 _aX
LD A 00X (O g0 D gIXY g (5.10)
& 0d& dn on ¢ 0dn  on 0&
9 aY 8 _aY 9 _aY 9 _aY
——A——-—C—+(—B—+-—B—] =0 (5.11)
9E 0&  oan an | \9& an | on 9

The solutionX, Y of the system (5.10)—(5.11) with appropriate boundary conditions cz
be used as a new approximatigfit?, Y"1,

Steps 1 and 2 are to be repeated till the desired accuracy of determining the solutio
the variational problem is achieved.

5.4. A Finite-Difference Approximation of the Functional ®

Let us assume that;j = X(@i/1,j/J),Y; =Yi/l,j/d),i=0,...,1,j=0,...,J.
We callimage of the rectangle with verticggl, j/J), ((—1)/1,j/J), ((=D)/1, (j—1)/
J), (i/1,(j —1)/J) under the mapping (1.1) “a cell with numbe@r j),"1 <i < 1,1 <
j < J.In every cell we assume functioms B, C andE = (X;)? + (Y:)%, F = X X, +
Y:Y,, G = (X;)? + (Y,)? to be constant and defined as a set

{Aj, Bij,Cij, Ej, Fj,Gji=1...,1, j=1..., 3}

Thus, the finite-difference approximation of a functiodahas the form

J
= ZZ[A” Eij — 2Bjj Fij + Ci; Gjj].

|
i=1 j=1

We will calculate derivativeX;, X,, Y, Y, in every cell with the help of equations
{Xelij =
{Xplij =

in which A§ = A = 1, sinced does not depend ané andAn, and{Ys}i;, {Y,}i; can be
obtained simply by the substitution ¥finstead ofX.

5.5. The Algorithm

Below we give a simple explicit algorithm for the generation of the quasi-isometric
quasi-conformal grids inside a regi@hif the boundary points are fixed. We do not focus
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on numerical methods for elliptic equations. Many of them can be found in several bo
for example [9].

1. Define the distribution of boundary points®f

{(X|07 Ylo)’ (XIJ7 YIJ)7 I = 07 st Ia (Xoja Yoj)a (X“ ’ Y|])7 J = O’ crt J}'
2. Define initial interior grid points oD: {(X3%, Yo%), i=1,...,1 -1, j=1,...,
J—1}.
3. Define angleg, . . ., a4 satisfying the condition (1.5) and calculafg", r " for
k = 1,...,4—boundaries of Euclidean lengths of sides of quadrangles from the o

parameter family?;,.
4. Define the first approximation fog = r2' from the intervakr ™", r @),
5. Define the initial distribution of boundary points B{pa:

{(" ¥io™), O3 ¥ 1 =0, L O o), (% v, 1 =0, 3

6. Construct a geodesic grigxij, ¥ij),i =0,...,1,j=0,...,J}in Prgm using the
formula (4.31).

7. Moving each vertex of the cell(j) of the geodesic quadrangRe.u to the origin by
motions (2.7) to calculate parametefs rLj , <pi1j , goizj , <pl1j of a geodesic cell and calculate
coefficientsAjj, Bjj, andC;; of the functional using the formula (4.25).

8. UsingAjj, Bjj, andC;; find new coordinates of interior grid pointX(®", Y;j*") in
the physical domai® by means of applying the iterative method

ZanEWZZIJ +dlj—’ i:].,...,l_l,j:].,...,J_l,

wherez®"is eitherX{* or Y{*" and

T 2(A 4+ Cij) 1B
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FIG. 1. Quasi-conformal grid inside a circle with fixed boundary points and no adaptation.
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FIG. 2. Quasi-conformal grid inside a circle with fixed boundary points and adaptation.

N
D
RN
Rt
ORI

3
Letese!

:‘::‘:"
Jettiets

S
%
S
ree et

o
s

S
3
Statel
R
R
e Y
R
R
I

R
RS
>,
=
IR
SR

xS
ST

SO,
o
S
SRR

S

oS
S
SOX

SIS

o

=
-

-
=
<S>
=
oy
St

<S>
T
SOX

Sy
e

xS

S

NS
—

S

s
EEISSSS
e Y WA

A

2 -1 [ 8 1 2 3

-2

FIG.3. Ageodesic quadrangle on a surface of constant positive curvature. All vertices are placed at the ol

inturns.



2-D QUASI-ISOMETRIC GRIDS 23

0.8]
o6l

0.7]
05

os}
04
asf
03
04l

\{\\ 02 a
TN \
0 NN
AN

T R
01 \\\

y “““““‘\\\\\\\. ) = A

o 0.1

-0.3 =02 =01 o 01 02 03 0.4 05 0.6 07 o 01 02 03 04 05 06 07 08 09

° 05

06

0.5

0.4

03

02

AV A S S B SR e —— 02k L
o o1 02 03 o4 05 08 07 o8 o 0.1 02 03 04 o5 06 07 o8 09

0

FIG.4. Ageodesic quadrangle on a surface of constant negative curvature. All vertices are placed at the «
in turns.

FIG.5. Quasi-isometric grid in a test domain with negative angle defect.
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FIG. 9. Another part of the grid from Fig. 7, showing parallelograms in corners of the domain.

Here6 is a damper, 6< 6 < 2. The derivative®®/3z; can be obtained from formulas

T SN .
97 _ Z[Uk(" Dzij — Vi, DI,

0zj A
where
Ui@, j) = Aj — Bij +Cjj,
Ua(i, ) = Aigrj + By j +Cigaj,
Us(i, ) = Aiyrj+1 — Bisyj+1+ Cigajst,
Ua(i, J) = A j+1+ Bi j+1+ Cijia,
Vi, ) = Ajzi-1j — Bijzi_1j-1+ Cijz, -1,
Vo(i, ) = AsajZisej + Bivajzicnj-1+ Civajz j-1,
Va(i, J) = Aitrj+1Zivnj — BivajZivnj+1 + Civn 412 j 41,

Vu(i, j) = Aij41Zi—1j + Bij+1Z-1,j+1 + Ci j+12Zj+1.
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FIG. 10. A quasi-conformal grid around an airplane nose. Points on the airplane surface are fixed, and pc

in the opposite boundary are forced to keep “same as opposite” distribution.

9. Obtain coordinates of perturbed boundary points

+Sj 0,

v

Xij + Sij Pij»

Xy =

where (@, gij) is a unit tangent vector at the boundary poiX;( Yij),

dij >0,

+ AYijqij) djj,

(A Xij pij

Sij

and in the followingz is eitherX or Y:

BRI
332
N
TR33
ZIZ 4
IR R )
55 53
I I
NE =
N
<43
SN EREIS)
SIS |2
[l
o 2|
it o+ +
== 8|6
S|S <<
SRS
I I
— o
N [N
J <

. Yije", calculateE;;, Gj; and obtain

new

10. HavingX?

1]
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FIG. 11. Part of the grid from the Fig. 10, with a singularity on one side.

where

and
d
n=1/v/gu1(1,0,rod),  v= — gy A / v/ G2(0, 1, roid),
1

11. Find a new parametef®¥ = r'9 + ¢ and verify that "" < rJew < rmax
12. Using the correspondence betw@é}@d and D obtain prototypes of perturbed
boundary pointsXij, Yij) on P pew,

{5 ™), 45" yis™). i =0, 1 (o™ o), (xiEY vie™), i =0,..., 3}

13. Steps6-—11aretoberepeated until the desired accuracy of solution of the variat
problem is achieved.

5.6. Examples

In Figs. 1-11 we provide some examples of the work of the algorithm.
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