Western-Hemisphere International Exchange Points

Optical Network Testbeds Workshop 3

September 7-8, 2006

Tokyo, Japan

Heidi Alvarez, Ph.D.

Director

Julio E. Ibarra, Executive Director

Center for Internet Augmented Research and Assessment

- The WHREN-LILA project and Distributed Exchange Points
 - AMPATH International Exchange Point
 - Sao Paulo Distributed Exchange Point
- The AtlanticWave Project
- Western Hemisphere International Exchange Points
- Next Steps

WHREN-LILA IRNC Award 0441095

- 5-year NSF Cooperative Agreement
 - **Florida International University (IRNC awardee)**
 - Corporation for Education Network Initiatives in California (CENIC)
 - Project support from the Academic Network of Sao Paulo (award #2003/13708-0)
 - **CLARA, Latin America**
 - **CUDI**, Mexico
 - **RNP**, Brazil
 - **REUNA, Chile**
- Links Interconnecting Latin America (LILA) aims to Improve connectivity in the Americas through the establishment of new inter-regional links
- Western-Hemisphere Research and Education Networks (WHREN) serves as a coordinating body whose aim is to leverage participants' network resources to foster collaborative research and advance education throughout the Western Hemisphere

Links Interconnecting Latin America

- Miami Sao Paulo link: STM-16 at 1.2Gbps. Increasing to 2.5Gbps in time for SC06
- LILA-East connects the State of Sao Paulo academic network (ANSP), Latin America's regional network (CLARA) and Brazil's NREN (RNP)
- LILA-West connects San Diego - Tijuana: operating at 2 x 1 Gbps, providing dedicated GigE links to CLARA and Mexico's NREN (CUDI)
- East and west coast connectivity to NLR, US FedNets, I2 Abilene and other US and global R&E networks are served by LILA

Current RedCLARA topology

Backbone ring: 155 Mbps (Sao Paulo, Buenos Aires, Santiago, Panama, Tijuana)

 Access links of 10 to 45 Mbps

 Connection to Europe (GÉANT) at 622 Mbps from Brazil

By Michael Stanton

AMPATH International Exchange Point

Sao Paulo Distributed Exchange Point

SPRACE

Sao Paulo has become a distributed exchange point, interconnecting ANSP, CLARA, RNP, supporting a distributed CMS Tier-2 facility, with inter-regional connections to U.S. R&E networks and E.U. GEANT

WHREN-LILA Distributed Exchange Point Characteristics

- Built using Cisco ONS 15454 SDH Chassis
 - STM circuit between Miami and Sao Paulo is configured currently as VC4-8c (~ 1.22 Gbps) linear circuit
 - Drawback: Static Provisioning, tear-down required if peers require additional bandwidth
 - VCAT and sw-LCAS can be used to accommodate network dynamics (SC '06)
 - STS-v (VCAT) circuits along with sw-LCAS allows network reconfiguration without service interruption and provides greater circuit granularity
- Ethernet L2 End-to-End Service currently provided using ML-1000-2 cards installed on ONS
 - **Currently 2 ML cards provide a total of 4 GigE ports**
 - GigE ports can be configured with various 802.1Q VLANs as well as transport user-defined VLANs using QinQ mapping
 - Bridge groups provide the necessary mappings via internal ONS cross-connect fabric to previously provisioned SDH circuits
 - CoS/QoS and other policing methods can be applied to ML ports to conform to requirements as well as QinQ VLAN mappings

- AtlanticWave is provisioning a 10GigE wave to support a distributed international exchange and peering fabric along the Atlantic coast of North and South America, following the GLIF GOLE model.
- AtlanticWave will connect the key exchange points on the U.S. East Coast:
 - International Exchange Points MANLAN in NYC and AMPATH
 in Miami
 - MAX gigapop and NGIX-East in Washington, DC
 - SoX gigapop in Atlanta
- A-Wave is an integral component of the NSF IRNC WHREN-LILA proposal to create an open distributed exchange and transport service along the Atlantic rim.
- A-Wave partners include SURA, FIU-AMPATH, IEEAF, FLR, MAX, SLR/SoX, Internet2/MANLAN, and the Academic Network of Sao Paulo (ANSP).

IP Peering/Exchange Services over A-Wave

- A-Wave will provide a Layer 3 exchange capability
 - Ethernet based
 - Best effort packet transit between peering networks
 - > 1 GE, 10GE LAN, 10GE WAN client access
 - Jumbo frame support
 - VLAN based
 - A single VLAN (broadcast domain) allows each attached network to establish their peerings directly with the other attached networks
 - * No requirement for a Layer 3 transit ASN
 - Requires fewer "man in the middle" cycles to establish VLANs for each peering pair
 - Multiple VLANs are provisioned in order to constrain broadcast traffic
 - Reduces the amount of extraneous traffic consuming interswitch capacity

"GLIF" Services across A-Wave

- Atlantic Wave is a key component of international R&E networking, providing transport between these U.S. exchange points
 - **Europe, US, and Canada meet in NYC and WDC**
 - **US and South America in MIA**
- A-Wave needs to be part of the service fabric that is being deployed globally, with intercontinental transport (including between U.S. and Canada) based upon Sonet/SDH
 - **Current or next gen Sonet/SDH**
 - Generic Framing Protocol (GFP)
 - Ethernet is becoming much more common for layer3 best-effort peering between routers and for end system interfaces into "GLIF" service environments
 - **G** Future architectures will be exploring other framing capabilities e.g. Infiniband
- A-Wave also needs to be part of U.S. distributed exchange fabric which
 is mostly Ethernet based
- A-Wave Deployment Evolution:
 - Stage 1: Static Layer-3 Peering Capabilities & [Static] Point to Point VLANS (Now) over Ethernet
 - **Stage 2: Layer 2 VLAN Circuit Switched Services (Spring '07)**
 - □ Stage 3: Dynamic TDM (Sonet/SDH Layer) (~Fall '07)

Thanks to Jerry Sobieski and Don Riley ONT3 Workshop 2006

By Jerry Sobieski

Western-Hemisphere International Exchange Points

- Collaboration with TransLight and CANARIE to extend connectivity to StarLight and PacificWave
- International Exchange Points at Sao Paulo, Miami, Washington DC, NYC, Chicago, Seattle, LA
- Exchange and Peering capabilities with national and international networks

Next Steps for WHREN-LILA and AtlanticWave

- Extending 1Gbps End-to-End pipes to support applications in Latin America; e.g., high-energy physics community preparing for LHC experiments
- Extending GigEs for CLARA and CUDI to PacificWave in Los Angeles
- Extending GLIF services across AtlanticWave
- Harmonizing AUPs of international exchange points to support interoperation of distributed exchange and peering services
- Working with dynamic bandwidth provisioning by power users and groups

Thank You!

- WHREN-LILA, AMPATH infrastructure, CHEPREO, CyberBridges, science application support, education, outreach and community building efforts are made possible by funding and support from:
 - National Science Foundation (NSF) awards MPS-0312038, CNS-0335287, OISE-0418366, OISE-0549456, OCI-0537464, SCI-0441095, OISE-0617469, IIS-0646144, OCI-0636031
 - □ Academic Network of Sao Paulo, award #2003/13708-0
 - □ Southeastern University Research Association (SURA)
 - □ Florida International University
 - □ Latin American Research and Education community
 - The many national and international collaborators who support our efforts