Idaho National Engineering and Environmental Laboratory

Systems Analysis

Finis Southworth, PhD Department Manager Systems & Decision Science

DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C.

Charter

Systems & Decision Science <u>Mission</u>: Develop and apply science-based systems, systems engineering, and decision science capabilities that result in <u>successful projects</u> and <u>effective</u>, <u>defensible decisions</u>

Systems & Decision Science Funding:

History

The S&DS group has been performing detailed systems analysis since 1993

Examples Include:

- New Production Reactor (1989-1993)
- Air Support Operations Center (1995)
- Long-term Stewardship Science and Technology Roadmap (2002) Remote Standoff Explosive Detection System (2003)
- Nuclear Hydrogen Initiative R&D Plan (2003)
- Advanced Fuel Cycle Repository Futures Analysis (2004)
- Future Combat System of Systems Integration (2004)
- NGNP Independent Technology Review (2004)
- Pine Bluff Mobile Munitions Assessment System (2004)
- Yucca Mountain Requirements Management (2004)
- Yucca Mountain System Design Description (2004)

Idaho National Engineering and Environmental Laboratory

Skill Set – People

Systems & Decision Science Department

Finis Southworth, Manager Cheryl Noble, Department Support

Decision Support

Bob Caliva, Group Lead

Lori Braase Jennifer Cameron Alison Conner Brent Dixon Clint Graden Doug Hamelin Darcie Martinson James Murphy Kyle Oswald Bryan Parker Marty Plum Karen Scott Linda Seward Bob Turk Buck West

Project Support

Bob Korenke Sam Alessi John Cox Ed Gorski Dennis Harrell George Hayner Burton Koske (DC) Dana Meyer Cathy Plowman **Systems Support**

Ron Klingler, Group Lead

Ron Barden **Brion Bennett James Case** Norm Cole Ramona Dunihoo Brad Gardner Donna Guillen Harold Heydt Mindy Kirkpatrick Ed Lee Patricia McGrath **Ray McKenzie** Bruce Nielson **Charles Park** Tracy Ricks **Rafael Soto** Mike Walrath Scott Wold **Rob Zamecnik** Larry Zirker

Total Personnel As Of 06/28/04 - 48

Skill Set – Models

Hydrogen Related Models

• High Temperature Electrolysis Hydrogen Production Parameters

 Excel spreadsheet to develop a self-consistent set of plant parameters for a High Temperature Electrolysis plant powered by a high temperature gas reactor. Model still under development, internal review completed.

Models Adaptable to Hydrogen

- APSEN Aspen Engineering Suite (AES
 - Chemical engineering mass balance program to determine overall plant parameters which includes equilibrium for all unit operations. Commercial software from Aspentech. No limitations.

• SAPHIRE (Systems Analysis Programs for Hands-on Integrated Reliability Evaluations)

Probabilistic Risk Assessment to determine safety risk, reliability, life-cycle cost/risk.
Limited by resources to identify lowest level of cause and effect and disk space on large analyses.

• RELAP5-3D

 General-purpose system analysis code for thermal hydraulic analyses. Originally developed for light water reactors analyses, but can analyze a variety of complex systems with different fluids and materials. Does not include chemical reactions and currently limited by those fluid properties in code, but other fluids can be added.

Skill Set – Capabilities Summary

TYPE OF ANALYSIS	RESIDENT CAPABILITY?	STUDIES SPECIFIC TO H ₂ ?	MODELS SPECIFIC TO H₂?
Resource Analysis	Yes		
Technoeconomic Analysis	Yes	Yes NHI R&D Plan, GIF VHTR R&R Plan	
Environmental Analysis	Yes		
Delivery Analysis	Yes	Yes Phoenix, AZ Hydrogen Fueling Station Parameters	
Infrastructure Development Analysis	Yes	Yes Navy Diesel H2 Reformer Optimization, NGNP H2 Pilot Plant Requirements	Yes HTE Process Parameters,
Energy Market Analysis	Yes	Yes Propane and Natural Gas Transportation	

Studies

Past H2 Studies

- NHI R&D Plan
- NGNP Pilot Plant Infrastructure Needs
- GenIV International Forum Very High Temperature Reactor R&D Plan (including H2)

Planned H2 Studies

- Identify key technical Issues for reactor heat transfer loop (2004)
- Assess reactor interface requirements (2004)
- Assess code and standard impacts on co-siteing hydrogen production and nuclear reactor (2005)
- Analysis of material compatibility for high-temperature heat exchangers (2005)

Future

The INEEL has the primary role of integrating advanced hydrogen production capability with a hightemperature gas-cooled reactor. This demonstration is essential to increase U.S. energy independence, enhance environmental quality, and provide affordable energy.

S&DS will continue to play a central role in nuclear/ hydrogen systems integration. Contributions include: decision analysis, systems engineering, systems analysis, systems integration, and systems science products and expertise resulting in project success.

Analysis Issues

- Tendency to assume that a detailed analyses of parts of the system is sufficient. Systems Integration is needed to understand, make decisions about, and optimize the overall system of systems
- Lack of access to and the validation of information from a multitude of organizations (national laboratories, industry, government, academia, and international participants)

Backup Slides

Backup Slides

Nuclear Hydrogen R&D Plan

June 13, 2003

John Kotek -- ANL Charles Park -- INEEL David Henderson -- DOE-NE Paul Pickard -- SNL

Idaho National Engineering and Environmental Laboratory Nuclear Hydrogen Production R&D Plan - Participants

Muclear Hydrogen R&D Plan

R&D Plan Outline

- 1. Goals and Objectives
 - Nuclear hydrogen role, potential benefits
 - Cost effective (< conventional electrolysis), GHG free H2

2. R&D Plan Approach

- Scope, schedule, economic context / metrics
- Gen IV heat source, not fossil based
- 3. Description of Candidate Hydrogen Production Cycles
 - Process, Status, Issues, benefits, R&D needed, priority
 - Thermochemical, electrolysis, alternative, barrier
 - IHX, balance of plant R&D needs

4. Nuclear Hydrogen R&D Plan

- Baseline (TC, HTE) development plan, priorities, decision points
- Advanced/Alternative options, R&D to support go or no-go decision
- IHX design, materials needs to support process development

5. Demonstration approach

- Scaling issues, criteria / goals, decision points

Idaho National Engineering and Environmental Laboratory

R&D Plan Development Stages

Options – Technical Leads

- Consider sufficient range of options to assure promising approaches have been considered.
- Define advantages, issues, status, and R&D needed
- Include thermochemical, electrolysis, barrier, alternative processes, balance of plant issues

Prioritization – Tech Leads & Integration Team

Criteria include:

- Advantages (efficiency, simplicity, costs, projected economics, ..)
- Technical difficulty (temp, materials, rx's, probability of success...)
- Technical maturity, related R&D, ready by 2015, ..)

Develop R&D plans for evaluated set of production options (TC,HTE, alternatives, associated BOP) Promising longer term options would be identified -- but not as current R&D priorities

R&D Plan – Integration team (Tech Leads, DOE)

- Establish critical decisions and down select process/milestones
- Define R&D sequence for highest priority technologies
- Develop integrated budget, schedules,

Generation IV Hydrogen R&D Plan - Major Milestones

Area		H2 7	Fechr	nology	H2 System Scale-up									Demo		
Gen	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	
IV _{vhtr}		;		Concep	tual Desig	ı		Fina	Design							
	Core	<mark>design, f</mark>	<mark>uels, ma</mark>	terials		Compon	<mark>ent testi</mark>	ng		VHTI	<mark>R Constr</mark>	uction	/	VHTR	Operational	
Hydrogen		R&D P	lan		Pilot Pl Decisio	nt n				2 Demo ecision			Commerc	al Scale De	mo	
Systems Systems, BOP	IHX, des	<mark>sign, ma</mark>	t IHX	dev for	PP		ilot Plant	(s)								
Pilot Plant(s)	C	onceptu	al D	esign	Constru	ct / Initi	al Exps	Mods	Process	Imp/Sca	ile	I	12 Demo	Commercia	l Scale	
H2 Demo Plant								<mark>Prelim d</mark>	esign Fir	nal desig	n	Constru	ct /		Operational	
Production Technologies	R&D F	lan	ilot Plant Method D	& Prod ecision						Demo De Decision	sign	Ĩ				
Baseline H2 Production	Baseline S	Comp te	ests Sys	st Integ/		Baseline	e Proces	s Impro	vements		Ba To	iseline (chnolo	Prod gies			
recumologies	Higl	h Temp E	lectroly	sis												
		Adv Tecl	h - meml	pranes	Adv tech fo baseline cy	r cles										
Alternative,	Altern	ative, Ba	ckup Cy	cle R&D		ļ	Advance	d Cycle	R&D and	Scaleup	Program	n				
Advanced Cycles		Other Alterna	TC Cycle ative Tec	e		F	&D to de eneration	evelop mo plants	st promisii	next		Longer Techno	term logies			

Draft

Schedule

Nuclear Hydrogen R&D Plan Thermochemical Cycle R&D Plan Process

Nuclear Hydrogen R&D Plan High Temperature Electrolysis R&D Plan

Major HTE R&D Plan Elements

- 1. Conceptual designs for HTEx system, performance potential
- 2. Identify cell options, materials, technology status, current R&D
- 3. Develop R&D plan, cell development, scaling demonstration

Nuclear Hydrogen R&D Plan High Temperature IHX, BOP R&D Issues

Major IHX R&D Plan Elements

- 1. Define interface requirements from TC, HTE, Alternative cycles
- 2. Identify IHX design and materials options
- 3. Develop R&D plan for IHX materials, designs, testing

IHX/BOP R&D based on H2 process requirements, focus, integrate UNLV effort

