AREVA's Activities Related to VHTR Thermal-Hydraulic Analysis Using RELAP5-3D

Robert P. Martin 2006 IRUG Meeting West Yellowstone, MT August 16-18, 2006

Introduction & Objectives

Tasks:

Evaluate RELAP5-3D for VHTR Analyses

Provide backup/validation tool for MANTA

Pursuing CSAU-like methodology approach

- Develop analysis-based PIRTs (Nov. 2004).
 - starting from Wilson, et. al., NED, 1992.
- Confirm adequate models and modelling necessary to capture dominant TH phenomena
- Identify models/methods necessary to complete VHTR analysis, Recent meeting July 2006

Design Description

Prismatic core

- Graphic moderator
- Stacked fuel/graphic compact (no metal)
- Low Power Density
- 1000 C outlet temperature (600 C core delta)
- Indirect cycle
 - Brayton cycle
 - Cogeneration for hydrogen production

Design Schematic - Pressure Vessels

Model Development Primary Circuit Only

Follow CSAU step 8

- Primary Circuit only for most studies
- Secondary and Tertiary loops late 2005
- Main objectives
 - Support NPP characteristics
 - Preserve dominant phenomena
 - Minimize code uncertainty

Basic Conceptual Model

Simple model: hot and cold volumes in series; hot and cold static volumes adjacent For VHTR Loss-of Load, hot static volume is not relevant; cold static volume (lower plenum) is relevant **Cold Static**

FRAMATOME ANP

Heat Transfer Modeling for Short-term transients

VHTR Vessel Hydraulic Nodalization Base Nodalization

FRAMATOME ANP

VHTR IHX Nodalization

Scoping Studies

Currently for model shakedown activities

- Steady-state
- Null Transient/Reactor Trip
- Loss of Load

Benchmark vs. MANTA

Steady-state

Parameter	Target	RELAP5
Power (MW)	600	600
Rx Outlet Temp (°C)	1000	1000
Rx Inlet Temp (°C)	490	489
Primary Flow Rate (kg/s)	226	226
Primary Pressure (MPa)	5	5.01
Max Fuel Temp. (°C)	1300	1080
IHX Sec. Inlet Temp (°C)	431	434
IHX Sec. Outlet Temp (°C)	950	950

Reactor Trip – Base Model

Core temperature during reactor trip from 100% load

Loss of Load – Base Model

FRAMATOME ANP

Results Assessment

Need to Explain Difference in System Pressure Response to Loss of Load

Loss of Load – Benchmark Model

FRAMATOME ANP

Comparison of Results

Approximately 0.70 MPa difference on peak pressure

Result Assessment

System Pressure is a dominant design parameter impacting large component forgings and material choices

- Mixing in the lower head/SCS region highly uncertain;
- Conservative to assume total mixing; however,
- given 0.7 MPa difference, need to examine with CFD to quantify margin

VHTR Integrated Model

Integrated model

- Complete Secondary (turbine, heat exchanger, compressor) with Tertiary steam generator BC
- Model corresponding to 490 °C core inlet temperature
- Model revision necessary for IHX from a BC to a dynamically functional component

VHTR Secondary Nodalization

FRAMATOME ANP

Integrated Model Steady-State Results

Table A.8.1-1 – Steady State Initialization to VHTR Secondary Initial Conditions corresponding to 490°C			
Description	Core Inlet Temperature Target RFLAP5-3D		
Description	(target values from Figure 2 of PVES DC 03 064; Reference 3)	KELM 5-5 D	
Core power, MW	600	600	
Blower input Power, MW	9.7	9.7	
Heat loss to RCCS, MW	2	2	
Net reactor power, MW	607.7	607.7	
IHX secondary mass flow rate,	597.0	597.65	
kg/sec			
IHX secondary inlet/outlet	431/950 (704/1223)	430.92/951.1 (703.92/1224.1)	
temperature, °C/°C (°K/°K)			
IHX secondary ?T, °C or °K	+519	+520.2	
Turbine mass flow rate, kg/sec	597.0	597.65	
Turbine inlet/outlet	950/571 (1223/844)	950.9/567.22(1223.9/840.22)	
temperatures, °C/°C (°K/°K)			
Turbine inlet/outlet pressures,	4.5/1.2	4.49/1.18	
MPa/MPa			
SGU gas side inlet/outlet	571/158 (844/431)	567.22/148.37(840.22/421.37)	
temperatures, °C/°C (°K/°K)			
Compressor inlet/outlet	158/431 (431/704)	147.3/430.82(420.3/703.82)	
temperature C/ºC (°K/ºK)			
Compressor inlet/outlet	1.2/4.5	1.18/4.58	
pressures, MPa/MPa			
Net gas turbomachine power,	126	120.8	
MW			

Simulation(s)

Reactor Trip

- Full power, circulator not tripped, turbomachinery not tripped
- Key results
 - Time scale of drop in electrical power similar
 - Lower Primary-to-Secondary HT in RELAP5
- Loss of Load
 - Code problems prevented completion
 - Maximum compressor speed validated (~4000 rpm)

Rx Trip - Electric/Neutron Power

Power during reactor trip from 100% load

RELAP5-3D

MANTA

Rx Trip - Core Temperature

RELAP5-3D

MANTA

Rx Trip - Turbine Temperatures

Rx Trip - Compressor Temperatures

Rx Trip - Turbine Pressures

RELAP5-3D

MANTA

Reactor Trip Summary

Generally good agreement

- RELAP5-3D predicted quicker decrease in electrical power (310 s vs. 360 s)
 - Indicative of lower HT from primary in R5 calc
 - Consistent with lower secondary pressures and higher primary temperatures
 - Possible the result of less dissipation of stored energy in graphic blocks

RELAP5-3D Code Challenges

Generally, code issues were minor and quickly resolved

- Nearly Implicit Advancement Scheme
- Mass Error with He property table (required modification to property table)
- Mixed Constituent Properties on the Secondary use with Condenser (feature added)
- Turbine modeling (conservation of energy questioned)

Summary/Status

2005 Goals:

Complete RELAP5-3D model (w/ secondary/tertiary loops)

Analyze a suite of short-term events

• Support MANTA development activities as needed

Identify Code/Model Deficiencies/Recommend Solutions

2006 Goals

Apply new version...

 Further studies pending review of documented preconceptual design

VHTR Loss of Load good candidate for challenging many RELAP5-3D features

End of Presentation

Establishment of Assessment Matrix

- Code assessment shows the capability and accuracy of the codes to predict the actual phenomena
- Integral Test Programs
 - EVO (Germany)
 - HTTR (Japan)
 - Fort Saint Vrain
 - PBMR Micromodel (South Africa)
 - Separate Effects
 - Internal component testing
 - Space/Fusion Rx R&D ????

