Japan's Nuclear Fuel Cycle in the 21st Century

Shigeo NOMURA (AEA)

1. Strategy of Spent Fuel Treatment

Choice of Spent Fuel Treatment

~ 1,000 tons of Spent Fuel / Year from LWR 55 units

- 1) Single Use of U-Pu by LWR system
- 2) Multiple Use of U-Pu-MA by FBR system

Japan's long-term Nuclear Energy Policy Capacity, Type of NPPs & SF

2. Complete the current LWR closed cycle including interim storage

Current Plan of Japan's LWR Spent Fuel Management

Japan's LWR Fuel Cycle

To close the cycle by early 2010s

Fuels

A Couple of **Interim Storage Facilities**

Mutsu city Recycle Fuel Storage Center: 5000 t

JNFL MOX: 130 tMOX

NPP 55 units LWR-MOX 16~18 units: Start around 2010

LWR-MOX

Issues to be solved for Japan's Current Fuel Cycle

Focus Plant Operations

- Safe, reliable & scheduled operation
- Construction of J-MOX plant
- Preparation of another interim storage facilities

Fissile Material Management

- Application for integral SG by IAEA
- Public acceptance for implementation of LWR- MOX use

Waste Treatment & Disposal

- Industrial approach for treatment and disposal of HLW & TRU wastes
- Site proposal and its public acceptance for geological permanent disposal

3. Prepare the Transition from current LWR cycle to Next FBR cycle

Japan's Transition Plan from LWR to FBR Cycle

Demo FBR

* Fast Reactor Cycle Technology Development Projects

FaCT focus the Selected Options

	Reactor	Reprocessing	Fuel Fabrication
Primary Concept	Sodium cooled (MOX fuel)	Advanced aqueous process	Simplified pelletizing process
Secondary Concept	Sodium cooled (Metal fuel)	Electro- metallurgical process	Injection casting

Examples of Processes Under R& D

	France		US		Japan
Process	COEX	GANEX	UREX+	Pyroprocess	FaCT Process
Type of SF	LWR	LWR FR	LWR ABR	ABR	FBR
Products	U, U/Pu, FP/MA	U, An, FP	U, Tc, Cs/Sr, TRU, FP	U, TRU, FP	U, U/Pu/Np Am/Cm, FP
Recycled Fuel	U/Pu-MOX	U/Pu/MA	U/TRU	U/TRU	U/Pu/MA

U, Pu, Np Co-Extraction Development

Process Equipments for Advanced Cycle R&D

Start in JAEA FBR Cycle Projects MONJU focus on System Function Test

2004/3 2007/5

Modification work 2007/8

Modified system function test

2008/8

2006/12

System Function Test

Pre-start-up confirmation

Criticality(~10/2008)

System start-up test

As of Aug. 31, 2007
This schedule will be changed according to the actual situations

FBR R & D Framework in Japan

Sustainable Development for Reprocessing Technology in Japan

LWR SF

(Matured 3rd Generation)

FBR SF

Labo.

GNEP?

Inspection & Repair Tool for Dissolver

Ti-5Ta Evaporator for Acid Recovery

Vitrification in TVF

Seismic Isolation System (Rubber Bearing & Lead Damper)

Micro-Wave
Co-Conversion System
(Pu-U Denitrated Cake)

Assay System for Low-Level Waste Drum

Sustainable Development for MOX Fuel Fabrication Technology in Japan

Fabrication Process Flow

Material Accounting and Safeguards

Advanced Accountancy System

SBAS (Super Glove Box Assay System)

Receipt

PCAS
(Plutonium Canister
Assay System)

Feed Storage

Process

Product Storage

Containment / Surveillance System
Non Destructive Assay System

MAGB

(Material Accountancy Glove Box Assay System)

Shipment

FAAS (Fuel Assembly Assay System)

Conclusions Global approach for sustainable future

1) Scenario study on global approach for spent fuel management under increasing NPP more than 1000 units

- 2) Develop & demonstration of innovative technologies under GNEP
- 3) Keep the supporting base technologies with transfer to the next generations