

SUPERNOVA 1987A: ejecta mass and explosion energy

Victor Utrobin ITEP, Moscow

SUPERNOVA 1987A: 20 YEARS AFTER Supernovae and Gamma-Ray Bursters

> Aspen, Colorado February 19–23, 2007

OUTLINE

- Motivation
- Presupernova models
- Effects of time-dependent ionization
- Ejecta mass and explosion energy
- Discussion
- Summary

Bolometric light curve of SN 1987A

The total ⁵⁶Ni mass measured from the radioactive tail at D = 50 kpc is $\approx 0.072 M_{\odot}$.

Observational evidence for H and ⁵⁶Ni mixing

A deep H mixing down to ~ 500 km s $^{-1}$:

The fact that the H α profile observed on day 498 (Phillips et al. 1990) is not flat-topped implies that there is no large cavity free of hydrogen at the center of the envelope.

Hydrodynamic models based on photometric observations

Model	R_0	M_{env}	E	$M_{ m Ni}$	$v_{ m Ni}^{max}$
	(R_{\odot})	(M_{\odot})	$(10^{51} ext{ erg})$	(M_{\odot})	$({\rm km}{\rm s}^{-1})$
Woosley (1988)	43.1±14.4	9.4–14.4	0.8–1.5	0.07	
Shigeyama & Nomoto (1990)	35.9–50.3	11.4–14.6	1.0±0.4	0.075	4000
Utrobin (1993)	47	15–19	1.25–1.65	0.075	2500
Blinnikov et al. (2000)	48.5	14.67	1.1±0.3	0.078	4200
	<mark>28.7–57.5</mark>	<mark>9.4–19</mark>	<mark>0.6–1.65</mark>		

Utrobin & Chugai (2002) demonstrated that the time-dependent ionization played a crucial role in reproducing hydrogen lines of type IIP SNe.

Evolutionary presupernova

Bolometric light curve of evolutionary model

Evolutionary and nonevolutionary presupernovae

Bolometric light curve of nonevolutionary model

Ionization freeze-out effect at photospheric phase

${ m H}lpha$ on day 4.64 and hydrodynamic model

Utrobin & Chugai (2005):

a stronger H α absorption at high radial velocities $\downarrow \downarrow$ a higher density in outer layers of the envelope $\downarrow \downarrow$ a higher explosion energy

${ m H}lpha$ on day 4.64 and hydrodynamic model

Optimal hydrodynamic model

Hydrodynamic models of SN 1987A

Model	PSN	$egin{array}{c} R_0 \ (R_\odot) \end{array}$	$M_{env} \ (M_{\odot})$	$E \ (10^{51} ext{ erg})$	$M_{ m Ni} \ (M_{\odot})$	$v_{ m Ni}^{max}$ (km s $^{-1}$)	$E/M_{env} \ (10^{50}{ m erg}M_{\odot}^{-1})$
Woosley (1988) Shigeyama & Nomoto (1990) Blinnikov	evol. evol. evol.	43.1±14.4 35.9–50.3 48.5	9.4–14.4 11.4–14.6 14.67	0.8–1.5 1.0±0.4 1.1±0.3	0.07 0.075 0.078	 4000 4200	~ 0.73 ~ 0.76 ~ 0.75
et al. (2000) Utrobin (1993)	nonev.	47	15–19	1.25–1.65	0.075	2500	~ 0.85
Utrobin (2005)	nonev.	35±5	18.0±1.5	1.50±0.12	0.0765	3000	<mark>≈ 0.83</mark>

The last hydrodynamic model is based on both the photometric and spectroscopic observations.

Bolometric and γ -ray luminosities

The total ⁵⁶Ni mass is $0.0765 M_{\odot}$.

Indirect evidence for the moderate ⁵⁶Ni mixing

- Li, McCray, & Sunyaev (1993) developed a model that fitted the infrared Fe, Co, and Ni emission lines assuming that the newly formed ⁵⁶Ni was distributed in ~ 100 clumps throughout the volume within a velocity of 2500 km s⁻¹.
- Chugai (1991) interpreted the Bochum event as a result of the nonmonotonic, spherically symmetric distribution of H excitation and a local enhancement of H excitation from an asymmetric ⁵⁶Ni ejection in the far hemisphere. It implies that ⁵⁶Ni is distributed within $v_{ph} \sim 3000$ km s⁻¹ on day 30. An absolute velocity of the fast clump is ~ 4700 km s⁻¹ (Utrobin, Chugai, & Andronova 1995).
- The Monte Carlo calculations of X-ray emission required the ⁵⁶Co mixing up to a velocity of 3000 km s⁻¹ (Pinto & Woosley 1988).
- The Monte Carlo simulations of γ -ray transport of the 847 and 1238 keV lines of ⁵⁶Co in the envelope showed that up to 50% of the total ⁵⁶Ni mass should remain below 1000 km s⁻¹ (A. Burrows & Van Riper 1995) and the total ⁵⁶Ni mass within a velocity of 3000 km s⁻¹ (Pinto & Woosley 1988).
- Kifonidis, Plewa, Scheck, Janka, & Müller (2006) have carried out 2-D simulations of strongly anisotropic supernova explosions in a self-consistent approach and obtained both final Fe-group velocities of 3300 km s⁻¹ and H mixing downward to 500 km s⁻¹.

Triple ring nebula of SN 1987A

ESO NTT — Wampler et al. (1990); NASA HST — Jakobsen et al. (1991), C. Burrows et al. (1995).

- A single rotating star: Hydrodynamic formation of the rings due to the ionization and heating of the cool red giant wind (Meyer 1997, 1999).
- Binary system: An impulsive mass loss from the primary star, the formation of a thin, dense shell, and the subsequent expansion of two jets (Soker 2002).
- Binary mergers: The mass loss at mid-latitudes from a rotationally distorted envelope following the early, rapid in-spiral of a companion star inside a common envelope (Podsiadlowski 1992; Morris & Podsiadlowski 2006).

Hydrodynamic model for the normal type IIP SN 1999em

 $R_0 = 500 R_{\odot}, M_{env} = 19 M_{\odot}, E = 1.3 imes 10^{51}$ erg, and $M_{Ni} = 0.036 M_{\odot}.$

Comparison to the normal type IIP SN 1999em

SN	R_0	M_{env}	$oldsymbol{E}$	$M_{ m Ni}$	Z	$v_{ m Ni}^{max}$	$v_{ m H}^{min}$
	(R_{\odot})	(M_{\odot})	(10^{51} erg)	$(10^{-2}M_{\odot})$		$(\mathrm{km}\mathrm{s}^{-1})$	$({\rm km}{\rm s}^{-1})$
87A	35	18	1.5	7.65	0.006	3000	600
99em	500	19	1.3	3.60	0.017	660	700

- In the case of SN 1987A, a relative compactness of the pre-SN is a major factor in understanding the peculiar properties of this phenomenon. A difference between the explosions of the red and blue supergiants is radical, especially in the light curves.
- The optimal model for SN 1987A is characterized by a moderate ⁵⁶Ni mixing up to $\sim 3000 \text{ km s}^{-1}$ compared to a weaker ⁵⁶Ni mixing up to $\approx 660 \text{ km s}^{-1}$ in SN 1999em, hydrogen being mixed deeply downward to $\sim 650 \text{ km s}^{-1}$.
- The masses of He cores in the pre-SNe of SN 1987A and SN 1999em are close enough to suppose that nearly the same iron cores form within the pre-SNe. This fact and roughly the same explosion energies of SN 1987A and SN 1999em together imply a <u>unique</u> explosion mechanism for these core collapse SNe.

Conclusions

- The moderate mixing of ⁵⁶Ni at velocities ≤ 3000 km s⁻¹ results in a more dense outer layers of the presupernova than in the evolutionary model of a single nonrotating star.
- The time-dependent ionization provides a sufficient population of excited hydrogen levels to account for the observed H α line without invoking the external ⁵⁶Ni.
- The hydrodynamic and atmosphere modelling of the H α profile on day 4.64 indicates $E/M_{env} \approx 0.83 \times 10^{50} \text{ erg } M_{\odot}^{-1}$.
- The basic parameters of SN 1987A are $R_0=35.0\pm5R_\odot,\,M_{env}=18.0\pm1.5M_\odot$, and $E=(1.50\pm0.12) imes10^{51}$ erg.
- A neutron star of ≈ 1.6M_☉ + M_{env} = 18.0 ± 1.5M_☉ ⇒ the rotating presupernova mass of 19.6 ± 1.5M_☉. The complex structure around SN 1987A consists of gas and dust of ~ 1.7M_☉ (Sugerman et al. 2005). Given this observed structure, a main-sequence star of at least 21.3 ± 1.5M_☉ corresponds to the SN 1987A phenomenon.
- Roughly the same explosion energies and masses of He cores of SN 1987A and SN 1999em together imply a unique explosion mechanism for these core collapse SNe.

THANK YOU.