COLLABORATORS

Photoemission

S.-K Mo J.D. Denlinger S. Suga and A. Sekiyama H.-D Kim, J.-H. Park University of Michigan Advanced Light Source, LBNL Osaka University Pohang University, Pohang Synchrotrc

<u>Samples and bulk properties</u> M. B. Maple P. Metcalf

University of California, San Diego Purdue University

<u>Theory</u> D. Vollhardt, G. Keller, V. Eyert K. Held V. I Anisimov

University of Augsburg Max-Planck Institute, Stuttgart Institute of Metal Physics, Ekaterinbu

Supported at U-M by U.S. N

electron removal (and addition) to study single-particle behavior of many-body system

Spectroscopy of energy and momentum dependence of spectral weight $\rho(k,\omega) = (1/\pi) \ln [1/(\omega - \varepsilon_k - \Sigma(k,\omega))]$ of single particle Green's function

Both processes together give unbound hole/electron pair

Photoemission spectroscopy to measure ρ (k,ω) or k-summed ρ (ω)

SPring-8

SPring-8 and APS similar

	Spring-8	APS
Operated by	JASRI	ANL
Supported by	JAERI & RINKEN	US DoE
Location	Harima Science Garden City	Argonne
Ring energy	8 GeV	7 GeV
Number of beamlines	62	68
Ring circumference	1436 m	1104 m

SPring-8 beamline BL25SU

Twin helical undualtor beamline

- undulator period : 120mm
- number of periods : 12 x 2
- tunable energy range : 300eV ~ 3keV
- brilliance : 1.89 ~ 7.85 x 10¹⁷ ph/s/mrad²/mm²/0.1% b.w.
- total power : < 1.67kW
- power density : < 3.0kW/mrad²

Resolving power $E/\Delta E > 10000$ Photon flux $> 10^{11}$ ph/s/0.2% b.w. Beamsize ~ 0.1 mm x 0.1mm

Schematic View of Beamline

SPring-8 beamline BL25SU layout

Schematic View of Beamline

To get the resolution and small spot ---- this is a large beamline.

Photos: BL25SU beamline and endstation

Looking down the beamline from the endstation Looking at the ARPES endstation.

Beamline enters from left.

BL25SU - endstations

SES-200 electron analyzer

MCD

- XAS with total electron yield mode
- Either helicity of light or direction of magnetic field can be changed for each point in energy scan
- Magnetic Field ~ 1.4T
- Sample temperature : 45K ~ 300K

"2D PES"

- Display-type custom built analyz
 - Energy resolution ~ 250meV
 - Acceptance angle : ±60°
 - Angular resolution : 0.6°

Excitation energy : 300 ~ 1500eV Total energy resolution : 100meV at 1keV Angular resolution : ~0.2° Spot size : 0.1 x 0.1mm Sample temperature : 20K ~ 300K

High hv photoemission cross-sections small

Cross-sections very small, especially for sp electrons challenging to get good S/N ratio in data

RESPES contrast very large because off-resonance signal so small

Anderson impurity model and emergent Kondo behavior

N_f fold degenerate local orbital hybridized to conduction band

- Binding energy
- Hybridization $\Delta(\varepsilon) = \pi D(\varepsilon)$

ε_f

Δ

- Local Coulomb Interaction
- Spin orbit splitting

<u>Low Energy Scale $T_{\underline{K}}$:</u> $(U_{ff} \rightarrow \infty, f^{0} \leftrightarrow f^{1}, \Delta_{LS} = 0,)$

 $k_B T_K = E_F \exp(-1/J)$

 $\mathbf{J} = \mathbf{N}_{\mathbf{f}} \, \Delta / \pi \varepsilon_{\mathbf{f}}$

- Ground State Singlet
- Spin entropy quenched for T<<T_{Kondo}

Quasi-particle of Anderson impurity model

Fermi level peak in angle integrated Ce 4f spectra: early experiment and theory

Use of impurity model for concentrated cerium materials?

The modern view:

Impurity spectral function an ansatz for local (k-summed) spectral function

I.e.
$$\rho_{LOC}(\omega) \equiv \Sigma_{k} \rho(k, \omega) \approx \rho_{IMP}(\varepsilon)$$

<u>Impurity model</u> ⇔ <u>local properties</u>

Angle resolved studies of ρ(k,ω) in progress but very difficult ---- subject of another talk (e.g. Denlinger et al, JESRP 117, 8 (2001))

RESPES of La_{1-x}Ce_xAl₂ at Ce 3d edge: dilution study test dense impurity ansatz for ρ_{LOC}(ω)

- Cubic Laves structure--four Ce nearest neighbor
- For x = 0.04, probability of isolated Ce impurity (1-0.04)⁴ = 0.85 \Rightarrow dominates spectrum
- Probability for an <u>isolated Ce-ion pair</u> = $4 \times (0.96)^3 \times 0.04 \times (0.96)^3 = 0.125$
 - ⇒ <u>almost negligible in spectrum</u>

Beamline 25SU

SPring

Photon energy--- 882 eV

- Bulk sensitive
- Measure very dilute sample with good S/N from Ce 4f cross-section resonance at Ce 3d edge
 Energy resolution 100 meV
 Temperature 20K
 Fractured polycrystal. samples (UCSD)

Angle integrated Ce 4f spectrum ≈ x-independent in (La_{1-x}Ce_x)Al₂

Hubbard model and Mott-Hubbard insulators

if t/U small ⇒ Mott-Hubbard INSULATOR

residual antiferromagnetic coupling J_{AF} ~ t²/U but magnetic ordering not essential for insulator

many Mott-Hubbard insulators exist in nature

Mott insulator to metal transition the early thinking

Mott idea: increase t/U, lose gap get insulator to metal transition

Also from Mott: self consistent screening to reduce U in metal state (beyond Hubbard model, long range Coulomb)

Mixing of Kondo and Mott-Hubbard Physics: Dynamic Mean Field Theory

Paradigm example: $(V_{1-x}M_x)_2O_3$ (M=Cr, Ti)

T-dependent LDA +DMFT(QMC) theory compared to PM phase low hv photoemission for V₂O₃

Intensity (arb. unit)

Early evidence of bulk/surface difference for V₂O₃

J.-H. Park thesis NSLS "dragon" beamlin (Univ. of Michigan 1994)

Systematic reduction of near E_F peak in metallic phase for low photon energy relative to high photon energy

implies surface effect

but resolution not good at high photon energy at that time.

High resolution possible at SPring-8 \rightarrow newly observed E_F peak for V₂O₃

SPring8 collaboration with S. Suga et al. Early small spot work at ALS with J. D. Denlinger important! Monotonic increase of peak with increasing $hv \Rightarrow$ Probe depth increase outweighs k_z dependence

S.-K. Mo et al, PRL 90, 186403 (2003)

Comparison of data to LDA+DMFT PM phase theory

Qualitative agreement on presence of prominent E_F peak in spectrum

Previous "agreement" of 1160 K theory and 300K data at 60 eV now seen as fortuitous due to peak suppression from high T in theory and surface effect in data.

Compare V₂O₃ PM phase spectrum to LDA + DMFT (t-orbitals, U=5.0 eV, 300K)

Qualitative agreement on presence of prominent E_F peak in spectrum

But experimental peak <u>width</u> larger than theory width, roughly by factor of 2

And

experimental peak <u>weight</u> larger than theory weight

Didn't do RESPES at V 2p→3d edge (near 500 eV) to avoid Auger contribution

Giving up RESPES <u>hard</u> because of small off-resonance cross-section but helped by small photon spot well matched to sample area probed by analyzer

Small spot essential for large E_F peak !

Reduced coordination the basic origin of bulk/surface difference

Reduces bandwidth on surface
 ⇒ reduced t/U

Surface cohesive energy less than bulk

 ⇒ surface binding energy |E| of local orbital increased
 B. Johansson, PRB 19, 6615 (1979)
 and so
 |E(corner atom)| > |E (edge atom)| > |E(smooth surface)|

Experimental Verification by M. Domke et al, PRL 56, 1287 (1986

Smooth Tm metal surfaces: shifted surface trivalent peaks Rough Tm metal surfaces: also show trivalent peaks

ARPES is possible! Example: Sr_{2-x}Ca_xRuO₄ (x=0, 0.2) Sekiyama et al, cond-mat/0402614

Time for the data-taking Angle integrated spectrum on resonance : 2 ~ 3 min off resonance : 30 ~ 40 min Angle resolved spectrum on resonance : 30 ~ 40 min off resonance : 30 ~ 40 min

Data-taking time is increased compared to typical low energy photoemission:

 i) lower photon flux (~ 10¹¹) compared to low E beamlines, for example, Port 071 at SRC (6 x 10¹² @ 50eV) or Beamline 5-2 at SSRL (3 x 10¹² @ 20eV)

ii) photoemission cross-sections are low at the higher photon energies

High photon energy high resolution photoemision studies on SPring-8 BL25SU challenging to get good S/N and small spot essentia

Nonetheless has given new results on important correlated electron problem:

 Anderson "dense impurity ansatz" in Ce systems good for angle integrated 4f spectra

Metal-insulator transition in V₂O₃
 DMFT "Kondo peak" in PM phase

No comparable capability now in the United States!