INVESTIGATION OF SHORT-LIVED Pt AND Pb α EMITTERS NEAR THE PROTON DRIP LINE¹

C. R. Bingham², J. Wauters², and B. E. Zimmerman², K. S. Toth, J. C. Batchelder³, E. F., Zganjar³, D. J. Blumenthal⁴, C. N. Davids⁴, D. J. Henderson⁴, D. Seweryniak⁴, L. T. Brown⁵, B. C. Busse⁶, L. F. Conticchio⁷, W. B. Walters⁷, T. Davinson⁸, R. J. Irvine⁸, and P. J. Woods⁸

In a series of experiments at the Argonne ATLAS Accelerator Facility, several α emitters near the proton drip line were produced with fusion evaporation reactions, separated from the beam and dispersed in M/Q with a recoil mass spectrometer, and implanted and studied in a double-sided silicon strip detector. In ⁷⁸Kr bombardments of ⁹²Mo and ⁹⁶Ru, the new isotopes ¹⁶⁶Pt and ¹⁶⁷Pt were identified via their α -decay properties and more accurate half-lives were measured for ¹⁶⁸Pt and ¹⁷⁰Pt. The light isotopes of lead, ¹⁸⁰Pb, ¹⁸²Pb, and ¹⁸⁴Pb were produced in Mo bombardments of Zr target nuclei. The α -decay energies and half-lives of the new isotopes are as follows: 1) 166 Pt, $E_{\alpha} = 7110(15)$ keV, $T_{1/2}$ = 0.3(1) ms; and 2) 167 Pt, E_{α} = 6988(10) keV, T_{1/2} = 0.7(2) ms. Also, the half-life of ¹⁶⁸Pt, which was previously unknown, was determined to be 2.0(4) ms and that of ¹⁷⁰Pt was observed to be 14.7(5) ms. The tentative α -decay energies and halflives of the even Pb isotopes are: I) ¹⁸⁴Pb, $E_{\alpha} = 6625(10)$ keV, $T_{1/2} = 500(25)$ ms; 2) ¹⁸²Pb, E_{α} = 6895(10) keV, $T_{1/2}$ = 62(5) ms; and 3) ¹⁸⁰Pb, E_{α} = 7250(15) keV, $T_{1/2}$ = 5.8(21) ms. The α -decay rates for these Pt and Pb nuclides are compared with earlier measurements and systematic trends of the reduced widths with neutron number are discussed.

¹Abstract of published paper: Application of Accelerators in Research and Industry, AIP Press, New York, (1997), p. 341.

²University of Tennessee, Knoxville, TN 37996.

³Louisiana State University, Baton Rouge, LA 70803.

⁴Argonne National Laboratory, Argonne, IL 60439.

⁵Vanderbilt University, Nashville, TN 37235.

⁶Oregon State University, Corvallis, OR 97331.

⁷University of Maryland, College Park, MD 20742.

⁸Edinburgh University, Edinburgh, EH9 3JZ United Kingdom.