

ATS-85: Advanced Manufacturing Technology for Single Crystal IGT Components

Allen R. Price Mei Ling Henne, Max Yang Howmet Research Corporation Whitehall, MI 49461

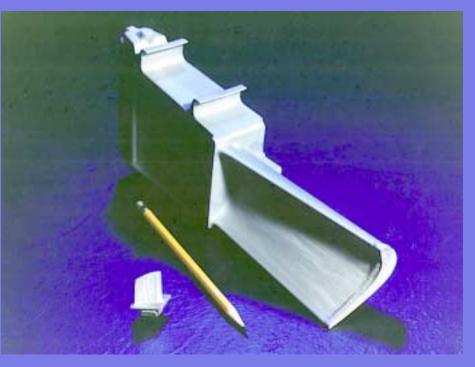
Turbine Airfoil Manufacturing Technology Program Review December 5, 2000 Washington, DC

ATS Phase III Program Introduction

State of the Art

- Directional solidification of components is generated by withdrawing the mold at a controlled rate from a heated susceptor into a cooling cavity
- Heated susceptor and cooling cavity develops a high thermal gradient during withdrawal
- Casting yields on fully developed aircraft gas turbine single crystal casting process exceed 95 percent
- Significantly increased size of IGT components compared to aero-sized components

Howmet Castings


an Alcoa business

Introduction

Aero-engine/Land Based Turbine Comparison

Comparison	<u>Aero</u>	Land Based
Size differential	1X	2 to 3X
Weight differential	1X	5 to 10X
 Surface area differential 	1X	20 to 100X

IGT Casting Difficulties

- Density differences between the interdendritic liquid and the liquid ahead of the interface drive thermosolutal convection and when severe, develops solute plumes
- Freckle defects and macrosegregation then result from the severe solute plumes
- Large cross sections, low thermal gradients, and later generation alloys enhance the tendency to form freckles and segregation
- Increased casting size increase the propensity to form additional grain defects such as high angle boundaries and spurious grains

Program Objectives

Howmet Castings an Alcoa business

Three Technology Thrust Areas

VIM Furnace Enhancements

 Define furnace enhancements which will improve control of mold temperature and thermal gradient on IGT components

High Conductivity Shell System

- Determine what factors limit shell thermal conductance
- Develop shell to meet needs of high gradient DS/SC casting process
- Novel Cooling Development
 - Establish & quantify the magnitude of the principle heat transfer modes in an IGT DS/SC casting

Advanced VIM Efforts

Benchmark IGT Components

- Compile existing processing and quality data
- Perform additional metallography work as necessary
- Examine mold features
- Perform casting trial
- Characterize casting to obtain baseline
- Update computer model
- Add furnace configurations to model

Better/Novel Susceptor & Baffle Material

- Conduct a literature search and commercial availability search of new materials
- Compare physical characteristics of current material to candidate materials
- Conduct feasibility study

Control Methods Evaluation

- Optimize TC configurations within the casting furnace
- Select best control sensors
- Conduct a designed experiment

VIM Furnace Enhancement Modeling

- Combine final configurations into one model
- Perform casting trials on nonthermocoupled molds
- Furnace configuration
- Mold configuration
- Combination configuration
- Characterize for comparison with benchmark standard

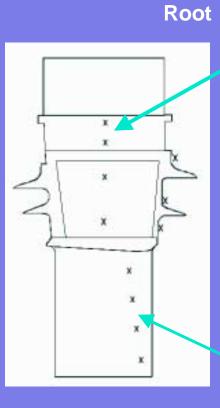
Furnace Configuration Study

- Evaluate efforts of susceptor, coil design and baffle configuration
- Conduct a designed experiment using empty molds

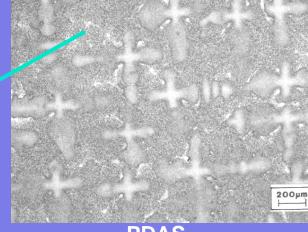
Novel Mold Design

Conceptual design of IGT mold details
Incorporate into model and evaluate

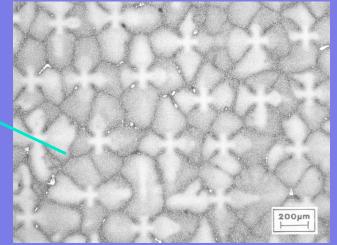
VIM Integration for Production


- Examine promising configurations
- Develop integration plan and design

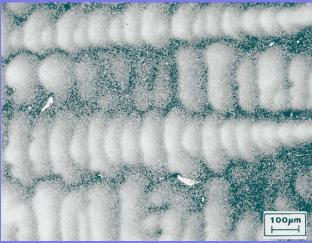
Benchmarking Efforts



Howmet Castings an Alcoa business

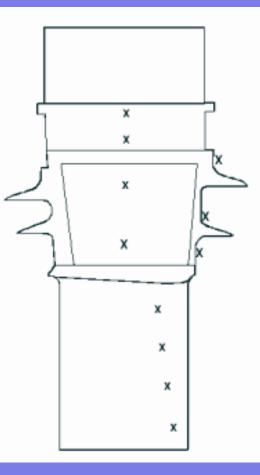

Microstructural Evaluation

Airfoil



SDAS

HOWMET RESEARCH CORPORATION


Benchmarking Efforts

Howmet Castings an Alcoa business

Thermocouple Data

- Mold
 - Coupled with casting trials
 - Thermocoupled for thermal survey
 - Thermal profiles
 - Evaluated for repeatability of various features
- Susceptor
 - Thermocouples
 - Thermal imaging

Control Methods Evaluation

Howmet Castings an Alcoa business

Optimal Control TC location

- Determined from susceptor thermal profiles
- Maximum temperature
- Insertion depth
- Height in susceptor
- Verified with Thermal imaging
- Alternate Sensors
 - Three different sensor technology utilized
 - Each sensor responds differently to:
 - Susceptor temperature
 - Mold temperature
 - View factors

Better/Novel Susceptor & Baffle Material

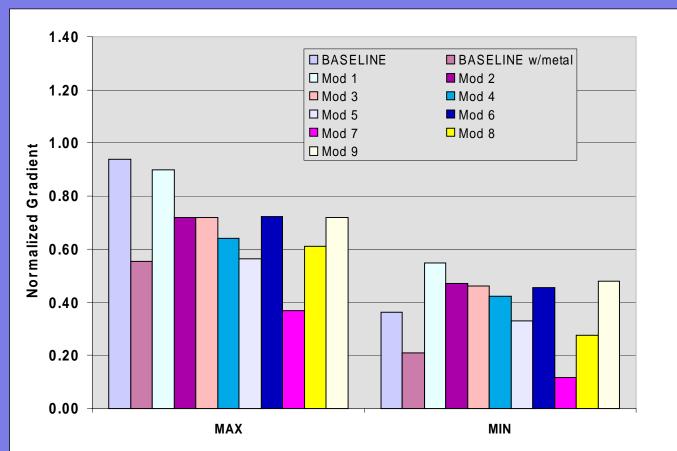
Compare current and potential baffle materials

- Material properties Conductivity test
 - Thermal isolation testing in a casting furnace
 - 13 distinct designs evaluated
- Mechanical integrity
- Developed computer models of furnace & baffle
 - Current baffle thermal conductivity with varying thickness
 - Current baffle thickness with varying thermal conductivity
- Validated with temperature data for experimental runs

Howmet Castings

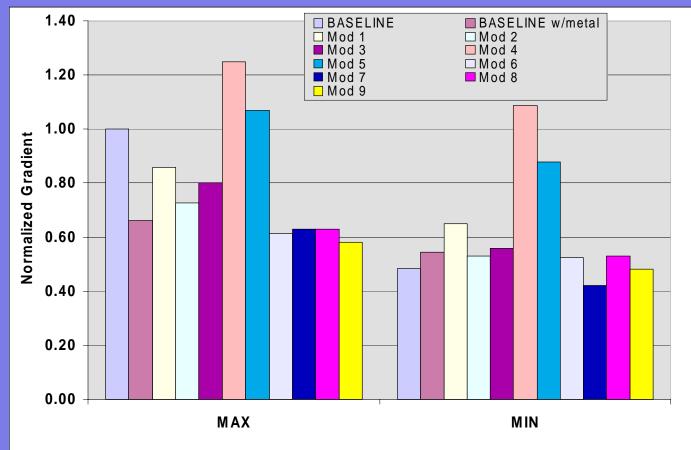
an Alcoa busines

Furnace Configuration Study


Howmet Castings an Alcoa business

Integrate Controls and Baffle Evaluations

- Model predictions
- Validation runs with temperature data
- Analysis Criteria Thermal Gradients
 - Maximum and Minimum
 - Grain defects implications
 - G_X, G_Y, & G_Z resolution Directionality effects
 - Principles of Sensitivity Study of Novel Cooling Techniques
 - Not experimentally resolved
 - Mushy zone size, profile, & location
 - Mold geometry effects in airfoil & root


Maximum & minimum gradients within the mushy zone Root Section

HOWMET RESEARCH CORPORATION

Maximum & minimum gradients within the mushy zone Airfoil Section

HOWMET RESEARCH CORPORATION

Furnace Configuration Study

Howmet Castings an Alcoa business

Remaining Efforts

- Perform evaluation of combination of furnace designs
- Analyze based on gradient examination
- Evaluate promising designs for implementation
- Phase 3: Determine a plan to transition of promising, cost effective methods

Novel Cooling Methods Evaluation

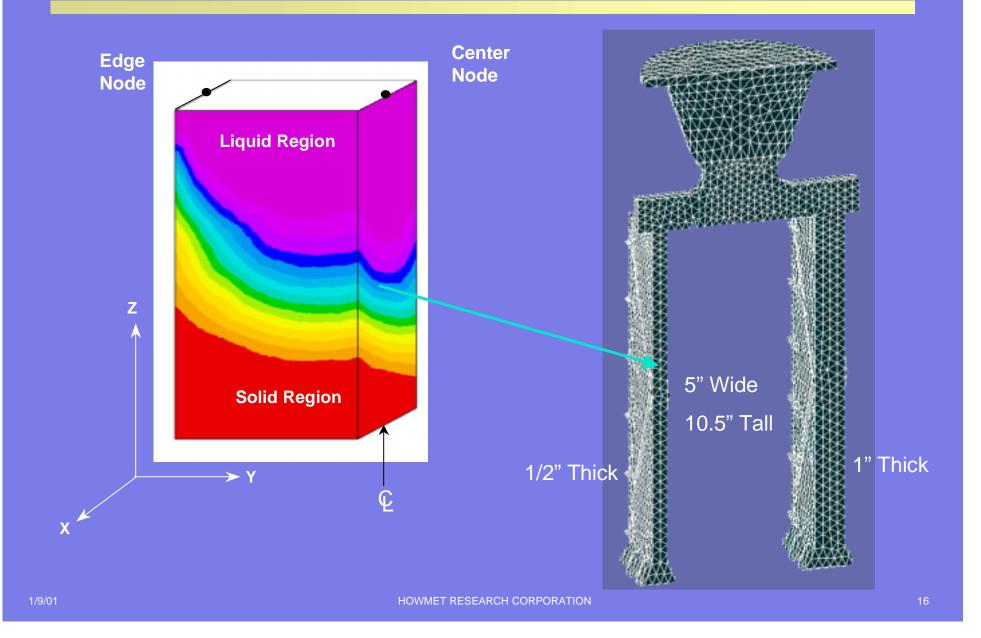
Howmet Castings an Alcoa business

Sensitivity Study of Novel Cooling Techniques

- Quantify thermal resistances within casting system
 - Heat transfer coefficient between casting and mold
 - Thermal conductivity of mold
 - Heat removal from mold external surface
- Use simplified casting as a test vehicle
- Perform "What-if" scenarios
- Rank by risk/benefit/cost
- Perform experiment on condition with greatest impact

Novel Cooling Experimental Evaluation

- Validate model with experiment casting using simplified casting
- Variables may include gas film and liquid metal techniques
- Analyze and prepare thermocouple data
- Repeat model simulation with updated values
- Characterize microstructure and crystal quality
- Apply most promising condition to GEPS 9H Model


Novel Cooling Feasibility

- Analyze computer modeling data (GEPS 9H)
- Develop a conceptual design for a production system
- Compare improvements to advanced VIM (Task 2.1)

Mushy Zone Profile

Howmet Castings an Alcoa business

1st DOE Matrix

FACTOR	LEVEL 1	LEVEL 2
A: Metal/Mold Interface	Standard	Experimental
B: Shell emissivity	Real	Experimental
C: Shell conductivity	Standard	5x
D: Shell thickness	Thin	Standard
E: Susceptor temp	Low	Standard
F: Baffle temp	Standard	Experimental
G: W/D rate	1X	5X

2nd DOE Matrix

FACTOR	LEVEL 1	LEVEL 2
A: Baffle Gap	Tight fit	Standard
B: Susceptor profile— f(time)	Standard	Experimental
C: Baffle thickness	Thin	Thick
D: Shell Properties	Standard with standard σ	Thin at 5X σ
E: Susceptor temp	Low	Standard
F: Baffle temp	Standard	Experimental
G: W/D rate	1X	5X

Sensitivity Study of Novel Cooling

Howmet Castings an Alcoa business

Thermal Gradient vs Growth Rate 1st DOE

• Polygons indicate the various R vs G regimes each run contains.

- In the z direction
- For both thicknesses

Thus...

• Varying geometry can produce different RG values.

Number of times a factor was significant (maximum of 4 times center/edge, thick/ thin) Positive is better at level 2, Negative is better at Level 1 (total for experiments 1 & 2)

Matrix 1 and 2 Combined	Interface	Shell conductivity	Shell thickness	Shell emissivity	Susceptor profile	Susceptor temp	W/D rate	Baffle temp	Baffle thickness	Baffle Gap
Gradients										
X							-2	-1	1	
Υ							-2	-1		
Z	2					3	-4	4		1
Solidification										
Rate										
X							-4			
Υ							-2		-1	
Z		1					4	-1		

Sensitivity Study of Novel Cooling

Howmet Castings an Alcoa business

Sensitivity Matrix

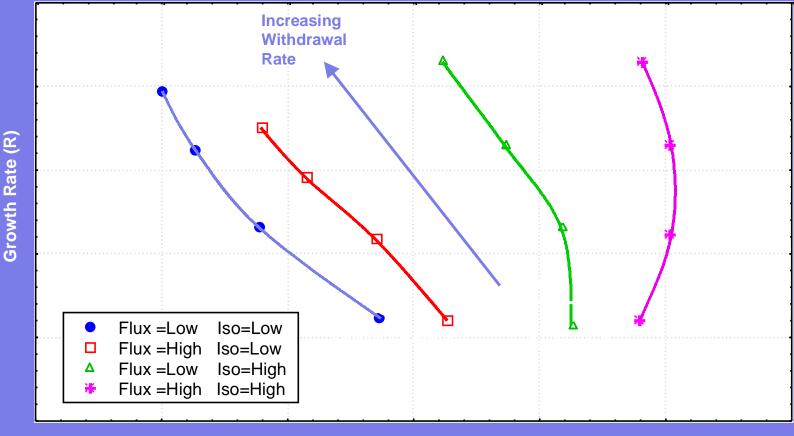
Runs*	Isolation	Conductivity
1, 2, 3, 4	Std	Std
5, 6, 7, 8	Std	High
9, 10, 11, 12	High	Std
13, 14, 15, 16	High	High

* 4, 8, 12, and 16 inches per hour

Fixed Factors

Shell Thickness Susceptor Profile Baffle Gap Susceptor Temp

Isolation Factors

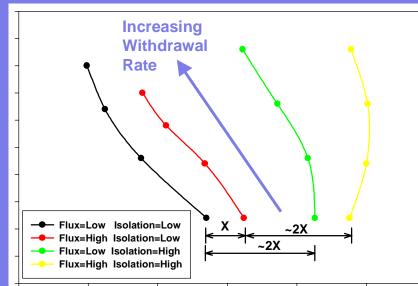

Baffle Temp Baffle Thickness

Conductivity Factors

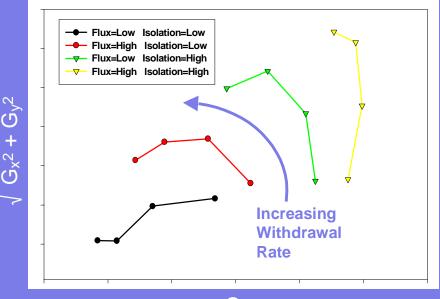
Mold Metal Interface Shell Emissivity Shell Conductivity

Gradient vs Growth Rate as a function of withdrawal rate for significant changes in mold and susceptor properties

Gradient (G)



Increases in the total magnitudes of G & R also comes with an increase in the horizontal components (x & y vs z)



 $G_z vs \sqrt{G_x^2 + G_y^2}$

Average Total Gradient (°F/in)

Gz

Sensitivity Study of Novel Cooling -Summary

 Compare sensitivity of process factors on resultant solidification responses

- Withdrawal rate and thermal drivers make significant impact on thermal gradient and solidification rate
- Metal/Mold interface effects
 - Only thermal gradient in Z-direction
- Shell conductivity
 - Only solidification rate in Z-direction
- Heat removal from mold surface
 - No significant response
- Directionality of G & R also significant

Howmet Castings

an Alcoa business

Summary

Howmet Castings an Alcoa business

• We Know ...

- Higher solidification rates benefit production throughput
- Higher thermal gradients combined with higher R improve quality

♦ But...

 Must balance the needs for part quality and production throughput