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Uncertain Predictions of Flow and Transport in Random Porous Media: The
Implications for Process Planning and Control
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Traditional predictions of flow and transport in
porous media are based on mass balance
equations in the form of partial differential
equations (PDEs), where the flux at every point
is defined by Darcy’s law, q = -K∇h, i.e., the
flux is proportional to hydraulic head gradient,
where K is the hydraulic conductivity of the
medium (a tensor or a scalar; essentially, a
material property); it is further assumed that
Darcy’s law applies to transient multiphase flow
in three dimensions [14,26,36,55]. The solutions
of these PDEs constitute groundwater models,
oil reservoir simulators, geothermal models, and
models of flow and transport in soils/vadose-
zone. Due to the similarity between the linear
Darcy’s law and Ohm’s law in electricity,
Fourier law in heat conduction, and Hooke’s law
in elasticity, such models (or PDE solutions) are
similar and commonly interchangeable between
these fields.

Natural porous formations are heterogeneous,
and display spatial variability of their geometric
and hydraulic properties. This variability is of
irregular and complex nature. It generally defies a
precise quantitative description because of
insufficient information on all relevant scales
[9,18,26, 29,30,32,33,86,91]. In practice, only
sparse measurements are available (limited by cost
of drilling and monitoring). Under lack of
exhaustive information, the higher the variability,
the higher is the uncertainty. Geostatistics is
commonly used to analyze and interpolate
between measurements in mining and oil
explorations, as well as hydrology and soil
sciences, using methods such as “kriging”, where
the uncertainties in “krigged” values are also
quantified [33,35,36,42,56-58,76,77,81,83,84,87,
104,105]. Frequently, these data are collected on
different scales that may differ from the required
scale of predictions. The task of quantitatively
relating measurements and properties on different
scales is difficult and intriguing [4,5,7,13,27,29,
30,38-40,46,59,78,86,91,101,108,109]. Lack of
information in both observed results (output) and
measured material properties (parameters) causes
uncertain predictions. Spatial variability and
uncertainty have lead engineers and geologists to
use probabilistic theories that translate the
uncertainty to a random space function (RSF) or a

random field, consisting of an ensemble of
(infinite number of) equally probable
“realizations” of parameter values, all having the
same spatial statistics, particularly correlation
structure [107,76,77,23,33,35,36,42,56,58,83,84,
85,87,91]. Imbedded in this approach is a
geostatistical model of an assumed joint pdf. In
practice, only the first two moments are
considered, with an underlying assumption of
multivariate normal distribution; in particular, the
theoretical semi-variogram (or simply,
“variogram”) - the reciprocal of the covariance
function, and the mean and variance of the pdf.
Since these joint moments are inferred from
spatial data, the assumption of ergodicity (i.e.,
assuming that the ensemble and spatial statistics
are identical – a theorem that cannot be proven on
real data) must be invoked, which, in turn, implies
some kind of stationarity (or statistical
homogeneity) [33,35,36,49]. Further, in order to
determine the variogram model from available
spatial data, an inverse method has to be used to
estimate the parameters of this variogram;
sensitivity to data errors on one hand, and
identifiability problems (of model parameters) on
the other hand [81,87,104,105] lead to uncertainty
in the geostatistical model itself, which is usually
ignored (in fact, the common practice is to fit the
variogram model to the experimental variogram
by eye and by subjective judgement of model
type, degree of stationarity (drift), and statistical
anisotropy). Another ignored uncertainty is in the
“measured” hydraulic conductivity value that are
actually inferred from hydraulic tests interpreted
by simplistic models that assume local
homogeneity, which is somewhat inconsistent
with the RSF approach.

The use of RSF to predict behavior of
uncertain systems is not limited to flow in porous
media; great efforts have been devoted in all
science and engineering fields to (a) estimate or
predict mean behavior of the system under
different stresses, and (b) compute the uncertainty
associated with these predictions (expressed by the
variance-covariance of the solution), i.e., the first
two statistical moments of system output
[4,5,7,10-12,15,16-22,25,28,31-33-35,44,47-51,
57,62,63,68-71,73-78,82-93,97,99-101,103,106,
107,110,111,112,114]. The resulted approximate
solutions are usually limited to simple geometry
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and boundary conditions, and to moderate to low
variability, as they mostly rely on variations of
small-perturbation methods. Recently developed
approximations for higher variability in material
properties using integro-differential
representations have been limited to simple 2D
geometry and simple boundary conditions
[91,114], with little use, yet.

With respect to mean behavior, it is especially
desired to define effective properties of
heterogeneous media [1-3,7,8,25,33,37-41,43,45,
52,54,60,61,64-66,71-73,75,77,78,91,93,97,98,
102,108,109,114]. With the two statistical
moments of system output, one hopes to
optimize and control systems such as oil
production, groundwater remediation, irrigation,
leaching, etc. However, approximating the
statistical behavior of a complex system of flow
in random porous media based on the statistics of
the hydraulic parameters is a formidable task, at
best [46,114, 91-93], because this implies
solving the stochastic flow and transport
equations (analogous to the Heat/Diffusion
Equation) or other stochastic PDEs in other
fields (ibid). Since a direct, explicit (closed-
formed) solution to the problem of random
parameters (or coefficients) is practically
impossible1 [74,93,112,114], only approximate
solutions have been reported in the literature for
relatively simple cases [ibid,28,31-33,49-50,83-
93,100-101]. Interest in this class of stochastic
differential equations has its origins in quantum
mechanics, wave propagation, turbulence theory,
random eigenvalues, and functional integration
[8,20,51,48,62,63,68-71,74,78,99,103,111]. Due
to the limited types of problems that can be
tackled by stochastic theories (closure
approximations), in practice, numerical
approximations in the form of high-resolution
                                                
1 A solution to a stochastic PDE consists of
specifying the (joint) probability density function
(pdf) of the response, h(x), given those of K(x)
(and forcing functions and boundary conditions).
Unfortunately, one cannot obtain the joint
cumulative distribution function (CDF) of the
random response at all (infinite number of)
points. Even for a finite set of points, one cannot
obtain closed-form equations for a finite number
of moments. This problem can be circumvented
by either approximations (e.g., perturbation
methods, Neumann series) or by numerical
approximations, i.e., Monte Carlo simulations
(MCS).

Monte Carlo simulations (MCS) are used;
however, MCS require ample computer power
and CPU time [46,114,88-89] Orr [114]
describes and analyzes other difficulties and non-
quantifiable uncertainty associated with MCS,
particularly the generation of correlated random
fields that are faithful to the geostatistical model,
and simulations of flow in highly
heterogeneous/erratic media.

The geostatistical model provides the statistics
of the parameters, particularly the permeability; in
MCS, it provides the spatial distribution of
parameter values for each realization. Based on
these values and assumed model structure (i.e., the
conceptual model of flow and transport, including
large geologic features, boundary- and initial-
conditions, sources and sinks), stochastic solutions
are approximated (analytically or numerically).
Since the model structure itself is frequently
uncertain due to (a) unknown boundary and initial
conditions, (b) extent of large-scale geologic
features, and (c) information pertaining to
geochemical reactions and phase transition, such
sets of 500-1000 MCS need to be repeated for
several, if not many alternative conceptual models
or equally probable model structures [116].
Subsequent optimization requires many repetitions
of each Monte Carlo simulation in order to build
the search space (i.e., generate sufficient number
of scenarios or trajectories); hence, rigorous
optimization under uncertainty is prohibitive in
terms of computer power and time for most
practical applications. In an attempt to optimize
best new well placement in an oil reservoir,
Guyaguler and Horne [53] were forced to perform
optimization on only 23 randomly selected,
“history matched” realizations in order to
overcome the obstacle of prohibitive computer
power and time, while continuously verifying their
results against a “truth” model (apparently based
on extensive calibration and some “effective”
properties). Indeed, the authors concluded that “a
decision based on a single realization (though with
perfect history match) may differ substantially
from the true optimum”[53, p.4]. As was shown
theoretically by Neuman and Orr [91], unique
effective properties (of random media) that are
data independent do not generally exist except for
a few special cases. This explains why parameter
estimates obtained by traditional inverse methods
tend to vary as one modifies the database and/or
the imposed stress  [113,115]; consequently,
calibration of deterministic models may be
meaningless in term of predictive power.

Thus, on the way to optimal solutions using
stochastic predictions we already encounter
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significant theoretical and practical barriers,
particularly, uncertain interpretations, model
limitations, prohibitive computer power, and non-
existing effective parameters – all of which render
these predictions highly uncertain, while only part
of this uncertainty is being quantified. Our
presentation will discuss these barriers, and will
bring two examples where traditional stochastic
approximations (i.e., approximate solutions of the

governing stochastic PDEs) are unable to provide
reliable practical solutions. One example deals
with the difficult problem of finding the best
location of the next well in an oil reservoir [53].).
The following simplified block diagram describes
the work flow as described by Guyaguler and
Horne [53]. Note that “data” are inferred values
from field tests. Note also that at each step, there
are inherent errors, inconsistencies, and
unaccounted (as well as counted) uncertainty.
Another example involves optimal control of
heap leaching in the mining industry [94,95].

In both cases:
1. Rigorous MCS is already prohibitive in

terms of computing resources
2. Models cannot capture the full complexity;

hence, predictions are unreliable
3. Rigorous optimization is impossible due to

time and computer limitations

In each of these cases, decisions have been made
at every step of the solution. Many of these
decisions are made subjectively, based on
experience, knowledge, thoroughness,
understanding (or conceptual models of the
process), computer resources, and time limitation,
possessed by the modeler. These factors affect and

are being affected by the degree of belief (by the
modelers) in each decision made.

Initially, sampling (network) design
decisions have to be made re sampling locations
(an optimization procedure on its own that
depends on the end results as well, i.e., a feedback
mechanism with the goal of minimizing prediction
uncertainty [119]). Then, the following decisions
(and sub-decisions) have to be made: (a) type of

model and/or curve fitting to use to determine the
hydraulic conductivity or permeability (a mini-
inverse model that could be ill-posed); in the case
of two-phase flow (e.g., oil-water in a reservoir,
water-air in a heap), several other decisions (or
assumptions) have to be made, and an ill-posed
inverse procedure must take place [117-121, and
author’s personal experience]; (b) determining and
eliminating outliers; (c) determining optimal lag
distance for the experimental variogram; (d)
determining the pdf, variogram model, and model
parameters; particularly, choosing between
Gaussian and Indicator models, judging between
drift and/or anisotropy, and determining the drift
(requires a complex inverse procedure, with
typical ill-posed cases; see [36,81,104,105]); (e)
determining dimensionality, domain size, and
mesh resolution with respect to correlation scales,
measurement scales, and property/parameter
representation scales; (f) determining conceptual
model (or model structure) of flow and transport,
including the parameters to be treated as random,

Collect “data”
and construct
a geostatistical
model

Generate a random
field with many
realizations, and
run MCS

Select several calibrated
simulations/realizations
and perform optimization
on each (for max NPV)

Compare
w/”truth”
model

Collect historical
data on heap
construction, and
construct a
geostatistical model

Generate a random
field with many
realizations, run
MCS, and compute
“ensemble” statistics

I. Perform optimization on
the ensemble mean output
(predicted production) for
max NPV

II. Perform optimization
on selected realizations
that resemble production
behavior (for max NPV)
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the governing equations (PDEs, including reactive
transport and multiphase flow), and uncertain
boundary- and initial-conditions, boundary
locations, zones of specific character/features
(based on geologic and hydraulic information) –
i.e., the simulator (these decisions should be made
first, and re-evaluated as more information is
being analyzed); (g) for MCS: random number
generator (RNG; portable or not; RNG type; seed,
etc.); (h) random field generator (RFG), including
type and RFG parameters (in addition to the
variogram model and pdf); (i) number of
simulations (should be based on the behavior of
point output variance as a function of the number
of simulations, i.e., a trial & error procedure which
usually is not being done, including in the above
two cases), given the limited computer power); (j)
number of realizations required for optimization;
ideally, all (hundreds of) realizations are used; one
compromise may be reducing the number of
realizations [53]; another compromise would
consider mean system behavior (using the
resulting ensemble mean results, and optimize that
mean behavior (a major uncertain decision); (k)
type of optimization/search algorithms (l) number
of simulations (per realization) for constructing a
sufficiently dense search state-space; (m)
objective function and cost variables. The last
three decisions have to be made by all
optimization procedures.

In the well placement problem [53], due to
limited computer power, a decision was made to use
only 23 realizations (while 500-1000 simulations
are typically needed to provide meaningful
ensemble statistics [114,46]), and a decision was
made to calibrate randomly selected random
realizations, individually, which contradicts the
concept of random fields (or RSF), but may have
served a practical purpose (i.e., to find the
maximum NPV). Similar prohibitive computer
power problem prevails in the heap leaching
simulations. While unstable oil-water fronts in the
well placement case cannot be captured by the
simulator, unstable wetting fronts during heap
leaching cannot be captured even by high-resolution
two-phase models (like the one used by Orr and
Vesselinov [95]). In the latter case, lack of
information on essential reactive transport
properties, and unmonitored dynamic changes in
heap structure (particularly sealing of pore space by
clays and erosion products) cannot be determined
and modeled. Consequently, the simulators are
weak, missing on mean system behavior (or
predictions) with unaccounted uncertainty, resulting
in weak optimization and control.

We see that along the track of approximate

solutions and partial optimization of oil reservoirs
and heap leaching operations based on
predetermined stochastic PDEs, the confidence of
modelers and decision-makers is being eroded
with each decision being made, depending on their
knowledge and degree of belief at each decision
point. By the end of this process, decision-makers
find themselves with very little confidence and
very little decision power. Commonly, in this
stochastic approach, the degree of belief is not
quantified, though it contributes to the total
uncertainty. Alternative fuzzy logic techniques do
quantify the uncertainty associated with the degree
of belief.

We therefore propose to replace these
formidable stochastic approaches by a simpler
yet intelligent stochastic control, particularly, the
multiresolution decision support system (MRDS,
which includes fuzzy logic as one of its
components) in order to reach more reliable and
efficient optimal solutions, with reduced,
accountable uncertainty, in real time, with
minimal computer resources. Moreover, unlike
the rigid stochastic PDEs, MRDS can be
naturally extended to optimal control of linked
processes. In the oil field case, this includes
exploration, all surface installations and
operations, delivery system, and distribution. In
the heap leaching case, this includes subsequent
solvent extraction and electrowinning, as well as
all antecedent processes – from exploration and
blasting to transportation, crushing,
agglomeration, conveying, placement, and
design of the irrigation systems.
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