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Abstract
We introduce a filter-based evolutionary algorithm (FEA) for constrained optimization.
The filter used by an FEA explicitly imposes the concept of dominance on a partially
ordered solution set. We show that the algorithm is provably robust for both linear and
nonlinear problems and constraints. FEAs use a finite pattern of mutation offsets, and
our analysis is closely related to recent convergence results for pattern search methods.
We discuss how properties of this pattern impact the ability of an FEA to converge to
a constrained local optimum.
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1 Introduction

Although evolutionary algorithms (EAs) have been successfully applied to many un-
constrained optimization applications, the investigation of constrained EAs has re-
ceived far less attention (Coello, 2002). Despite this, handling constraints in EAs is
necessary for their application to many problem domains. Thus the development of
provably robust EAs is crucial to ensure that these methods can be effectively applied
to a wide range of problems, including linear, non-linear, equality and inequality con-
straints.

Of the many different constraint-handling techniques used with EAs, the most
common are penalty functions. Although penalty functions can have good conver-
gence properties for specific problems, they have drawbacks that limit their use in prac-
tice. Some penalty functions require an initial feasible solution that must be provided
by the user or by another algorithm. Penalty approaches may also require extra param-
eters that can be hard to choose, especially when they are problem-dependent. Part of
the difficulty in implementing penalty functions is the automation of their definitions,
because the boundary between the feasible and infeasible regions is usually unknown
(Coello, 2002).

Alternatives to penalty functions tend to be developed for very specific problems
and problems in which estimating good penalty functions and generating even a single
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feasible solution are difficult. Some of the techniques surveyed by Coello (2002) include
approaches that use problem-specific representations and operators, algorithms that
repair infeasible points to make them feasible, and approaches that separate objectives
and constraints (e.g. multi-objective optimization techniques). Unfortunately, these
methods sometimes have difficulty preserving diversity and avoiding stagnation. Ad-
ditionally, some of these approaches require the generation of an initial feasible point
(or population), which may itself be NP-hard (Smith and Coit, 1997).

Considering all of these challenges for handling constraints in EAs, an approach
that minimizes these difficulties and still maintains good convergence results is very
desirable. We propose filter-based evolutionary algorithms (FEAs), which use a
constraint-handling technique that is similar to multi-objective EAs. These are Pareto-
based EA’s, but we will call them FEA’s to allow for our changes. The optimization
problem that we consider is

min
x∈Rn

f(x)

s.t. C(x) ≤ 0

l ≤ x ≤ u

where f : Rn → R ∪ {∞} and C : Rn → (R ∪ {∞})m are the constraint functions with
C = (C1, . . . , Cm)T ; u, l ∈ Qn define upper and lower bounds on each dimension.

Our design of FEAs is inspired by a recent analysis of pattern search methods for
this class of problems (Audet and Dennis, 2004). Like EAs, pattern search methods
are direct search methods that do not attempt to estimate a derivative in their search
process. The main qualitative difference between pattern search methods and common
real-coded EAs is that pattern search methods restrict the search in each iteration to
a finite pattern of trial points, while most real-coded EAs employ continuous random
variables to generate mutation steps. However, this restriction provides mathematical
leverage for demonstrating convergence of pattern search methods, which has been
effectively translated to EAs (Hart, 2005).

The following section describes FEAs and motivates their use for constrained opti-
mization problems. We define a simple FEA and discuss how this EA is related to other
EAs for constrained optimization. Section 3 describes general conditions for which
convergence is guaranteed, focusing on multipoint pattern search sequences. Section 4
demonstrates that FEAs generate a multipoint pattern search sequence with probabil-
ity one, so all of the convergence results described in Section 3 are applicable to FEAs.
Finally, we consider three examples that illustrate how the choice of search pattern can
impact the convergence of FEAs in Section 5.

2 Algorithmic Formulation

A filter-based optimizer uses a nonnegative continuous function to aggregate the con-
straint violations and then treats the resulting biobjective problem (Audet and Dennis,
2004). In other words, a filter-based optimizer tries to minimize both the objective func-
tion and the aggregate constraint violation function simultaneously. Since a feasible
solution is desired, priority is usually given to the aggregate function until a feasible
solution is found. We give two definitions that are very similar to those stated in Audet
and Dennis (2004), which will be used throughout this paper.

Definition 1. Given objective functions fi(), i = 0, . . . , k, if fi(x1) ≤ fi(x2) for every i ∈
1, . . . , k and there is at least one j such that fj(x1) < fj(x2), then x1 is said to dominate x2.
This is denoted by x1 ≺ x2. Also, x1 � x2 denotes that either x1 ≺ x2 or x1 = x2.
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Definition 2. Given a set of points S, a point s ∈ S is said to be a nondominated point if
there does not exist x ∈ S such that x ≺ s.

A filter F is a (finite) set of points in Rn such that no pair (x, x′) in the filter are
in the relation x ≺ x′. That is, no point in F dominates or is dominated by any other
point in F . Filter-based optimizers employ a filter that is used to eliminate trial points
from consideration if they are dominated by points in the filter either by having a worse
function value or worse aggregate constraint violation.

2.1 A Filter-Based EA

Figure 1 presents the basic steps of Algorithm A, a filter-based evolutionary algorithm
that implicitly applies the notion of a filter-based optimizer to an EA. This EA evolves
a set of points Wt = Yt

⋃

Xt, where Yt are infeasible and Xt are feasible. We say x ≺ x′

if and only if (f(x), h(x)) ≺ (f(x′), h(x′)), where f(x) is the objective function and
h(x) =

∑m
i=1 max[0, Ci(x)]2. Note that h(x) = ∞ if any of the constraint function

values at x are infinite.

Given ∆0, τ > 1 (τ ∈ Q) and mutation directions D
Randomly initialize X0 and Y0; W0 = X0

⋃

Y0

Select D0 ⊆ D
For t = 0, . . . ,∞

For j = 1, . . . , P
Randomly select d ∈ Dt and w ∈ Wt

ŵj = ∆td + w
Evaluate ŵj

End For
Update Xt+1, Yt+1; Wt+1 = Xt+1

⋃

Yt+1

Update x∗
t+1 and y∗

t+1

If (f(x∗
t+1) < f(x∗

t )) or
(h(y∗

t+1) < h(y∗
t )) or

((h(y∗
t+1) = h(y∗

t )) and (f(y∗
t+1) < f(y∗

t ))) Then
∆t+1 = ∆tτ

ν , where 0 ≤ ν ≤ νmax

Select Dt+1 ⊆ D
Else If x∗

t+1 or y∗
t+1 is locally optimal Then

∆t+1 = ∆tτ
ν , where νmin ≤ ν < 0

Select Dt+1 ⊆ D
Else

∆t+1 = ∆t and Dt+1 = Dt

Terminate if ∆t+1 < ∆min

End For

Figure 1: Pseudo-code for Algorithm A. For simplicity, we have not included the checks
to see if either x∗

t+1 or y∗
t+1 are not defined because a feasible or infeasible point has not

been encountered by iteration t+1. These checks would be used in all of the conditional
statements after x∗

t+1 and y∗
t+1 are updated.

This FEA implicitly uses a filter, which is the subset of Wt containing the best non-
dominated infeasible solutions Yt and the best feasible solution x∗

t . Let x∗
t be the point

in Xt with the best function value, and y∗
t be the point in Yt with the minimal constraint

violation (as defined by h). If two points have the same minimal constraint violation, y∗
t
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is the point with the minimal function value. The following general assumption defines
the necessary criteria for the updates to Xt+1 and Yt+1:

Assumption 1. Given a set of new trial points Ŵt, let X̂t and Ŷt be the subsets of feasible and

infeasible points in Ŵt respectively. Xt+1 and Yt+1 satisfy the following criteria:

• Xt+1 ⊆ Xt

⋃

X̂t such that it contains the best feasible point in this set,

• Yt+1 ⊆ Yt

⋃

Ŷt such that it contains the nondominated point in this set with the minimal
aggregate constraint violation for which the objective function f is minimal, and

• |Xt+1| ≤ µF and |Yt+1| ≤ µI .

Note that Assumption 1 ensures that |Wt+1| < µF + µI , for some predefined pa-
rameters µF and µI . Additionally, this assumption simply requires that if the best
feasible or least-infeasible points are improved, those improvements are retained in the
next iteration. Consequently, this FEA could be implemented with a method similar to
a (µ + λ)-evolutionary strategy (ES): P new trial points are generated in each iteration,
and at most µF + µI of the best points are kept for the next iteration.

Intuitively, a point is locally optimal if it cannot be improved. In the context of
an FEA, a point cannot be improved if the mutation steps about it are dominated by
the points in the filter contained in Wt. The following definition formally defines this
notion of local optimality:

Definition 3. Let N (x, ∆t, Dt) = {x + ∆td | d ∈ Dt}. Given x ∈ Rn, we say that x is
locally optimal if all of the points N (x, ∆t, Dt) have been generated and there does not exist
d ∈ Dt for which x + ∆td ≺ x.

Note that Assumption 1 ensures that this notion of local optimality is well-defined.
Suppose that all points in N (x, ∆t, Dt) have been generated. If either x∗

t or y∗
t is in this

set, then x is locally optimal only if (f(x), h(x)) equals (f(x∗
t ), h(x∗

t )) or (f(y∗
t ), h(y∗

t )),
so generating this mutation step does not give a simple improvement in either x∗

t or y∗
t .

Suppose that neither x∗
t nor y∗

t is in N (x, ∆t, Dt). Then all of the points in N (x, ∆t, Dt)
are dominated by either x∗

t or y∗
t . Further, in subsequent iterations these values will

only improve so for all t′ > t, the points in N (x, ∆t, Dt) are dominated by either x∗
t′ or

y∗
t′ .

The following provides further details about the definition of Algorithm A:

• X1 and Y1 could be simply initialized by randomly generating P points within
the bound constraints, and then applying the standard update rule. However, in
practice this initialization could exploit domain knowledge of the structure of the
constraints.

• D ∈ Qn×q is a finite set of mutation offsets that can be applied. All subsets Dt ⊆ D
must be selected to ensure that Dt is a positive spanning set (i.e. non-negative
linear combinations of points in Dt generate Rn).

• The determination of whether x∗
t+1 or y∗

t+1 is locally optimal is not made with
respect to the current population Wt. Instead, this requires the explicit cataloging
of the history of mutation steps about these points.

• Algorithm A updates the step length ∆t by (a) possibly increasing it if some new
point dominates either x∗

t or y∗
t , or (b) decreasing it if x∗

t+1 or y∗
t+1 are locally opti-

mal (and thus no progress can be made about these points using Dt).
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• Algorithm A terminates if the step length shrinks below some predetermined
threshold, which is the termination rule commonly used with pattern search meth-
ods.

2.2 Numerical Example

To illustrate the search behavior of Algorithm A, we consider the linear problem de-
fined by Lewis and Torczon (2000)

min −a − 2b

s.t. 0 ≤ a ≤ 1

b ≤ 0

where the optimal solution is x∗ = (a∗, b∗) = (1, 0). We will begin with two initial
solutions x0 = (0, 0) (feasible) and y0 = (0, 1) (infeasible), an initial mesh size param-
eter ∆0 = 1, and an initial positive spanning set D0 which consists of four directions:
±(1, 1) and ±(1,−1). In this example, µI = µF = 1, so the FEA only considers two
points: the best feasible and best infeasible solutions. To simplify our presentation, we
suppose that P = 8, so all mutation steps are generated in each iteration.

Figures 2 and 3 show the first four iterations of Algorithm A. The points x∗
t and y∗

t

are denoted by black points. During the first iteration, the algorithm evaluates f(x) and
h(x) at the points generated from x0 and y0, and two new feasible points are produced.
One of these, the trial point (1, 0), dominates the other new feasible solution and the
feasible incumbent. Thus x∗

1 = (1, 0). Similarly, of the six new infeasible points gener-
ated, the trial point (1, 1) is the only nondominated solution and so y∗

1 = (1, 1). Thus
the new best infeasible point was generated from the feasible incumbent and the new
best feasible point was generated from the infeasible incumbent, which is only possible
because our algorithm allows searching around both feasible and infeasible solutions
simultaneously.

In the second iteration, the algorithm evaluates both functions at the points gen-
erated from the new incumbent solutions. No better points are found and so the mesh
size parameter ∆t is decreased for the next iteration, i.e. ∆3 = 0.5. In the third iteration,
a new best infeasible solution is found, but the best feasible point is unchanged. In fact,
the best feasible point is now the optimal point, so subsequent iterations simply refine
the search about the best feasible point.

2.3 Related Constrained EAs

The method of constraint handling proposed here shares some commonalities with a
few of the techniques surveyed by Coello (2002). Since Algorithm A separates con-
straints from objectives, it is most similar to approaches that also use this separation.
Consider the Similarity of Feasible Points technique proposed by Deb (2001). Deb gives
three rules for comparing points:

1. A feasible point is always preferred over an infeasible one.

2. Between two feasible points, the one having a better objective function value is
preferred.

3. Between two infeasible points, the one having a smaller constraint violation is pre-
ferred.
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  a
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Figure 2: Illustration of two iterations of Algorithm A. The initial step length is ∆0.
The infeasible region is denoted by the gray hashmarks along the feasible region. The
values [h(x), f(x)] are provided for each point in the search.
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Figure 3: Illustration of two iterations of Algorithm A that continue the search illus-
trated in Figure 2.
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Deb’s method also includes a selection procedure that only performs pairwise com-
parisons so that no penalty factor is required (Coello, 2002). Similarly, Algorithm A
performs pairwise comparison for selection and follows rules 2 and 3 of Deb’s method.
It does not necessarily follow the first rule because we want to keep infeasible points
(which are often needed to perform an effective search on constrained problems).

Algorithm A is also similar to some of the multiobjective optimization techniques
surveyed by Coello (2000). The most closely related technique is the one proposed
by Camponogara and Talukdar (1997). Their procedure restates a single optimization
problem to consider two objectives: the optimization of the original objective function
and the optimization of

Φ(x) =

n
∑

i=1

max[0, Ci(x)].

Thus Φ is the analogue of h using the L1 norm instead of the squared L2 norm. Cam-
ponogara and Talukdar use pareto sets (implicitly using a filter) to impose dominance-
based selection, which is used to estimate new search directions. The technique we
propose implicitly uses a filter to impose dominance-based selection, but it is not used
to generate new search directions. Instead, the filter is used to determine when step
lengths are expanded and contracted (by imposing conditions for local optimality).

3 Multipoint Pattern Search Sequences

The main goal of our analysis is to show that there exist subsequences of {x∗
t , y

∗
t } that

have interesting convergence properties. The sequence {x∗
t , y

∗
t } represents the sequence

of the best feasible, x∗
t , and best least-infeasible, y∗

t , points generated by Algorithm A.
In this section, we describe multipoint pattern search sequences and discuss their conver-
gence properties. In Section 4 we demonstrate that Algorithm A generates a multipoint
pattern search sequence with high probability, thereby demonstrating that this FEA is
provably convergent.

We consider the convergence properties of a pair of points vt = {xt, yt} that have
a corresponding step length sequence {∆t} and pattern sequence {Dt}. We consider
xt, yt ∈ Rn⋃{̟}, where the value ̟ represents an “undefined” point. The point xt

is either feasible or it is ̟, and similarly the point yt is either infeasible or it is ̟. Let
f(x) < f(̟) and h(x) < h(̟) for all x ∈ Rn. We require that vt only contains points
that are either the same as the points in vt−1 or improvements of these points via steps
taken from Dt−1. Thus, either xt = xt−1 or xt ≺ xt−1, and similar conditions apply to
yt. We refer to vt as the t-th iterate in the sequence.

Definition 4. Consider a sequence {vt}, where vt = {xt, yt} with xt, yt ∈ Rn⋃{̟}. Let
{∆t} be a corresponding step length sequence and {Dt} a corresponding pattern sequence,
where Dt ⊆ D ∈ Qn×q and Dt is a positive spanning set. We say that {vt} is a multipoint
pattern search sequence when the following conditions hold:

1. {vt} is an infinitely long sequence for which all points {x0, y0, x1, y1, . . . | xt, yt ∈ Rn}
lie in a compact set,

2. ∆t = ∆0τ
rt for some τ = τn/τd, τn, τd ∈ Z+ and for rt ∈ Z,

3. Let ∀t ≥ 0, ρt = mink=0,...,t rk. There exist rmax > 0 and ui ∈ Rn, i = 1, . . . , g (where g

is independent of t), such that xt, yt ∈ {̟}⋃
(

⋃g
j=1{ui + ∆0τ

−rmax

d τρt

n Dz | z ∈ Zq}
)

.

8 Evolutionary Computation Volume x, Number x
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4. If vt+1 = vt, then

• Either xt or yt is locally optimal with respect to ∆t and Dt, and

• ∆t+1 = ∆tτ
ν , where −∞ < νmin ≤ ν < 0

5. If vt+1 6= vt, then

• Either xt+1 ≺ xt or yt+1 ≺ yt (or both), and

• ∆t+1 = ∆tτ
ν , where 0 ≤ ν ≤ νmax < ∞

If vt+1 = vt, then a multipoint pattern search requires that all neighboring points
have been generated for either xt+1 or yt+1, and that all of these points are not improv-
ing. Consequently, the step length is reduced. Similarly, if vt+1 6= vt, then either xt+1

or yt+1 is an improving point, and the step length may be expanded. Note that the
condition that the points {x0, y0, . . . | xt, yt ∈ Rn} lie in a compact set is an assumption
that is commonly made in the analysis of optimization algorithms.

The following theorem demonstrates a key feature of a multipoint pattern search
sequence: a subsequence of the step lengths converges to zero.

Theorem 1. If {vt} is a multipoint pattern search sequence, then lim inft→∞ ∆t = 0.

Proof. We assume toward a contradiction that there exists ∆min > 0 such that ∆t ≥
∆min for all t. Now ∆t = ∆0τ

rt , so there is a greatest lower bound of {rt}, ρmin > −∞.
We know from the definition of a multipoint pattern search sequence that for all t,

xt, yt ∈ {̟}
⋃





g
⋃

j=1

{ui + ∆0τ
−rmax

d τρmin

n Dz | z ∈ Zq}



 .

Thus the points xt and yt lie on a union of meshes defined by D. From the definition
of a multipoint pattern search sequence, we know that the points in {vt} lie within a
compact set. It follows that there are finitely many values of xt and yt, so there are
finitely many possible iterates vt. Since we have xt+1 � xt and yt+1 � yt, it follows
that there are finitely many iterations for which vt 6= v̂. Consequently, there must be
infinitely many iterations for which vt equals vt+1. The step length ∆t is contracted in
these iterations, so it follows that ∆t is reduced infinitely often. This contradicts our
assumption.

Let zk = {x0, y0, x1, y1, . . . | xt, yt ∈ Rn} be the sequence of real-valued points
taken from {vt}, and let {∆k} denote the associated lengths for each of the points in
{zk}. The following definition describes a refining subsequence of {zk}, about which we
will demonstrate convergence results.

Definition 5. A subsequence of a multipoint pattern search sequence {zk}k∈K (for some subset
of indices K) is said to be a refining subsequence if {zk}k∈K is convergent and limk∈K ∆k =
0.

We say that a point z′ generated from zk is filtered if ∃k′ ∈ K , k′ ≤ k such that
zk′ ≺ z′ (so z′ does not improve on either the best feasible or least infeasible point). A
search direction d ∈ Rn is said to be associated with the refining subsequence {zk}k∈K

if for every term of the subsequence, the point zk + ∆kd has been evaluated and fil-
tered. A positive spanning set consisting of directions associated with a given refining
subsequence is said to be an associated positive spanning set.

The following lemma demonstrates the existence of refining subsequences.

Evolutionary Computation Volume x, Number x 9
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Lemma 1. There exists a refining subsequence of a multipoint pattern search sequence {zk}
with associated positive spanning set D̂.

Proof. Note that ∆t only decreases if either xt or yt is locally optimal. Consider the
subsequence K that defines such locally optimal points in {zk}. Let {Dk}k∈K be the
associated sequence of positive spanning sets for which these points are locally optimal.

Since ∆k is only reduced for iterates in K , we know from Theorem 1 that there
exists a subsequence K ′ ⊆ K for which limk∈K′ ∆k = 0. Further, the sequence {zk}k∈K′

lies in a compact set, so it has a convergent subsequence K ′′ ⊆ K ′ (by the Bolzano-
Weierstrass Theorem (Ross, 1980)).

Finally, the set D is finite, so there are finitely many positive spanning sets that can

be composed from directions in D. Thus there must be some positive spanning set D̂
that occurs infinitely often in {Dk}k∈K′′ . Let K ′′′ ⊆ K ′′ be the subsequence for which

D̂ is applied.

The following two theorems and their immediate corollaries give derivative results
for f and h. These result consider the properties of a directional derivative at a limit
point ẑ of a refining subsequence. Clarke (1990) defines the generalized directional
derivative of h in the direction s to be

h0(ẑ; s) = lim sup
y→ẑ, t↓0

h(y + ts) − h(y)

t
.

Theorem 2 shows that the generalized directional derivative of the constraint violation
function, h, is nonnegative when h is Lipschitz near the limit point.

Theorem 2. Let ẑ be the limit point of a refining subsequence {zk}k∈K with associated direc-
tion s. Assume h is Lipschitz near ẑ. Then the generalized directional derivative of h at ẑ in the
direction s is nonnegative, i.e., h0(ẑ; s) ≥ 0.

Proof. If the limit point ẑ is feasible, then h(ẑ) = 0 and nonnegativity of h implies that
h0(ẑ; s) ≥ 0 for any associated direction s.

Consider the case where ẑ is infeasible, and let K ′ ⊆ K be iterates for which h(ẑ +
∆ks) 6= 0. Since h is Lipschitz near ẑ, Clarke (1990) shows that we have:

h0(ẑ; s) = lim sup
y→ẑ, t↓0

h(y + ts) − h(y)

t
≥ lim sup

k∈K′

h(zk + ∆ks) − h(zk)

∆k
.

Since s is an associated direction of a refining sequence, we know that the point zk+∆ks
has been generated and filtered. It follows that h(zk + ∆ks) ≥ h(zk), so the quotient
h(zk+∆ks)−h(zk)

∆k

is nonnegative. Thus we have h0(ẑ; s) ≥ 0.

The following corollary generalizes Theorem 2 to the case where the constraint
violation function h is strictly differentiable at the limit point ẑ. Note that this result
would also apply if h was continuously differentiable, since that is a stronger condition
than strict differentiability (Clarke, 1990).

Corollary 1. Let ẑ be the limit point of a refining subsequence {zk}k∈K with an associated

positive spanning set D̂ ⊆ D. If h is strictly differentiable at ẑ then ∇h(ẑ) = 0.

Proof. If h is strictly differentiable at ẑ, then h0(ẑ; w) = ∇h(ẑ)T w for any direction w 6= 0

(Clarke, 1990). By Theorem 2, for all di ∈ D̂, 0 ≤ h0(ẑ; di) = ∇h(ẑ)T di. Since D̂ is a
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positive spanning set, we can write w as a nonnegative linear combination of di and λi:
w =

∑

λidi, λi ≥ 0. Thus we have

∇h(ẑ)T w = ∇h(ẑ)T
(

∑

λidi

)

=
∑

λi(∇h(ẑ)T di) ≥ 0.

Similarly, we can write −w as −w =
∑

λ′
idi, λ′

i ≥ 0. So we have

∇h(ẑ)T (−w) = ∇h(ẑ)T
(

∑

λ′
idi

)

=
∑

λ′
i(∇h(ẑ)T di) ≥ 0.

Consequently, ∇h(ẑ) = 0.

Theorem 3 provides an analogous analysis of the directional derivative for the ob-
jective function, f . However, this result imposes a condition on h that is only likely to
be satisfied if ẑ is a feasible point.

Theorem 3. Let ẑ be the limit point of a refining subsequence {zk}k∈K with associated direc-
tion s. Assume f is Lipschitz near ẑ. If h(zk) = h(zk +∆ks) for each k in K, then f0(ẑ; s) ≥ 0.

Proof. By way of contradiction, assume that f0(ẑ; s) < 0. Since f is Lipschitz near ẑ, we
again have from Clarke (1990):

f0(ẑ; s) = lim sup
y→ẑ,t↓0

f(y + ts) − f(y)

t
≥ lim sup

k∈K

f(zk + ∆ks) − f(zk)

∆k
.

Thus the right hand side of this inequality is bounded above by f0(ẑ; s), which is neg-
ative. It follows that f(zk + ∆ks) < f(zk) for sufficiently large k in K . But since
h(zk) = h(zk + ∆ks), it follows that zk + ∆ks ≺ zk. But this forms a contradiction;
zk+∆ks is filtered because s is an associated direction of the refining sequence {zk}k∈K ,
which implies that zk + ∆ks 6≺ zk. Thus we must have f0(ẑ; s) ≥ 0.

The following corollary to Theorem 3 demonstrates that multipoint pattern search
sequences have the desirable optimality properties for strictly feasible limit points.

Corollary 2. Let ẑ be the limit point of a refining subsequence {zk}k∈K and s an associated
direction. If ẑ is strictly feasible, then f0(ẑ; s) ≥ 0.

Proof. If ẑ is strictly feasible, then there exists ǫ > 0 such that h(x) = 0 for every x
satisfying ‖x−ẑ‖ ≤ ǫ. If k ∈ K is large enough, then both h(zk) = 0 and h(zk+∆ks) = 0.
In other words, there is a radius of length ǫ′ around ẑ for which this is true. Since
h(zk) = h(zk + ∆ks), Theorem 3 shows that f0(ẑ; s) ≥ 0.

Unfortunately, Theorem 3 does not ensure that when ẑ is on the boundary of the
feasible region, −∇f(ẑ) is in the normal cone to the feasible region at ẑ.1 However, the
following corollary provides a cone that contains both the normal cone to the feasible
region at ẑ as well as −∇f(ẑ).

Corollary 3. Let Cs be the cone generated by all the associated directions of all refining subse-
quences that converge to the limit point ẑ and that satisfy the conditions of Theorem 3. If f is
strictly differentiable at ẑ, then −∇f(ẑ) belongs to the polar C0

s of Cs.

Proof. Theorem 3 guarantees that f0(ẑ; s) ≥ 0 for any vector s that generates Cs. Since
f is strictly differentiable at ẑ,∇f(ẑ)T s ≥ 0 for all s. From the definition of Cs, any
vector y from ẑ pointing into Cs is a nonnegative linear combination of these associated
directions, i.e. ∇f(ẑ)T y ≥ 0. It follows that −∇f(ẑ)T y ≤ 0, so −∇f(ẑ) belongs to the
polar C0

s of Cs where C0
s = {x ∈ ℜn : xT y ≤ 0, ∀y ∈ Cs}.

1The normal cone of the feasible region at ẑ is the polar of the tangent cone to the feasible region at ẑ.
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4 Analysis of Filtered EAs

In this section we provide a convergence theory for Algorithm A. The main goal of the
analysis in this section is to demonstrate that with probability one, some subsequence
of the points {x∗

t , y
∗
t } generated by the Algorithm A provably converges. Let Xt and Yt

be the stochastic processes, defined on some probability space (Ω,F , P ), that describe
the behavior of how Algorithm A generates the sequence {x∗

t , y
∗
t } for some problem

and for some set of algorithmic parameters (e.g. µ, λ, etc.). We make the standard
assumption that the processes Xt and Yt generate points that lie in a compact set.

For all ω ∈ Ω, consider the sequence vt(ω) = (x∗
t (ω), y∗

t (ω)), where x∗
t (ω) equals ̟

if no feasible point has been generated by Algorithm A (and similarly for y∗
t ). Further,

consider the index set T (ω) such that t ∈ T (ω) if

• either x∗
t+1(ω) ≺ x∗

t (ω) or y∗
t+1(ω) ≺ y∗

t (ω), or

• either x∗
t (ω) or y∗

t (ω) is locally optimal.

The following lemmas will be used to demonstrate that a sequence {vt(ω)}t∈T (ω)

is a multipoint pattern search sequence. The proof of Lemma 2 follows directly from
the definition of Algorithm A.

Lemma 2. Let ω ∈ Ω. Let {∆t(ω)} be the sequence of step lengths generated by Algorithm A.
Then ∆t = ∆0τ

rt for some rt(ω) ∈ Z.

The following lemma demonstrates that points generated by Algorithm A lie on a
set of lattices.

Lemma 3. Let ω ∈ Ω. We define ∀t ≥ 0, ρt(ω) = mink=0,...,t rk(ω). There exist rmax >

0 such that x∗
t (ω), y∗

t (ω) ∈ {̟}⋃
(

⋃g
j=1{wj(ω) + ∆0τ

−rmax

d τ
ρt(ω)
n Dz | z ∈ Zq}

)

, where

{w0(ω), . . . , wg(ω)} = W0(ω).

Proof. Recall that {x∗
t (ω)} and {y∗

t (ω)} lie within a compact set. Thus there exists a
diameter R such that for any two points within the set, the distance between the two
points is less than or equal to R. Now if the step length ∆t(ω) is greater than R, all
of the points generated about x∗

t (ω) and y∗
t (ω) lie outside this compact set, so these

points must necessarily be locally optimal. Consequently, ∆t(ω) is bounded above by
a constant independent of t, so there exists rmax such that rt(ω) ≤ rmax for all t.

If x∗
t (ω) 6= ̟, then we can write x∗

t (ω) as

x∗
t (ω) = w(ω) +

t−1
∑

i=0

∆i(ω)Dzi(ω),

where zi(ω) ∈ Zq and w(ω) ∈ W0(ω). Now τ = τn/τd, for τn, τd ∈ Z+. It follows that

x∗
t (ω) = w(ω) +

t−1
∑

i=0

∆0τ
ri(ω)Dzi(ω) = w(ω) + ∆0τ

−rmax

d τρt(ω)
n

t−1
∑

i=0

Dz′i(ω),

for some z′i(ω) ∈ Zq . Note that
∑t

i=1 Dz′i(ω) = Dz′′(ω) for some z′′(ω) ∈ Zq. Further,
this argument applies equally well to y∗

t (ω). Thus we have

x∗
t (ω), y∗

t (ω) ∈ {̟}
⋃





g
⋃

j=1

{wi(ω) + ∆0τ
−rmax

d τρt(ω)
n Dz | z ∈ Zq}



 ,

where {w0(ω), . . . , wg(ω)} = W0(ω).
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The following theorem is the main result of this section. This result demonstrates
that with probability one, Algorithm A generates a multipoint pattern search sequence.
Consequently, the results of Section 3 apply to Algorithm A with probability one.

Theorem 4. Let A = {ω ∈ Ω | {vt} is a multipoint pattern search sequence}. Then
P (A) = 1.

Proof. Our goal is to show that the five conditions in Definition 4 are satisfied for se-
quences vt(ω). Consider ω ∈ Ω. Lemmas 2 and 3 demonstrate that conditions 2 and
3 are satisfied. Conditions 4 and 5 are naturally enforced in Algorithm A through the
update rule for x∗

t (ω) and y∗
t (ω), and from the definition of T (ω). Thus we need to

show that condition 1 is satisfied with probability one. Again, we make the standard
assumption that the sequences {vt(ω)} lie in a compact set, for all ω.

If {vt(ω)}t ∈ T (ω) is finite, then there exists K0(ω) such that for all t > K0(ω),
vt(ω) = vt+1(ω) and ∆t(ω) = ∆t+1(ω). We also know that for these iterations, vt(ω)
is not locally optimal, so for all t > K0(ω), Dt(ω) = Dt+1(ω). Further, there is at least
one direction d(ω) ∈ Dt(ω) that is never sampled for all t > K0(ω). It follows that d(ω)
is sampled finitely many times.

Now, let B ⊂ Ω be events such that for all ω ∈ B, {vt(ω)} is finite. Consider
ω ∈ B, and let d(ω) be the corresponding direction in limt→∞ Dt(ω) that is sampled
finitely many times. Note that B =

⋃∞
k=1 Bk, where Bk is the set of events where

vt(ω) = vt+1(ω) and ∆t(ω) = ∆t+1(ω) for all t ≥ k. From the definition of Algorithm A,
we know that the probability of sampling each d ∈ D is at least 1/|D|. Thus since d(ω) is
only sampled finitely many times, it follows that P (Bk) = 0. Further, since Bk ⊆ Bk+1,
we have P (B) = limk→∞ P (Bk) = 0. Note that A = Bc, so {vt(ω)}t∈T (ω) is infinitely
long with probability one. Note that we have assumed that Xt and Yt generate points
in a compact set, so condition 1 is satisfied.

5 Convergence Examples

Theorem 4 demonstrates that Algorithm A generates a multipoint pattern search se-
quence with probability one. Thus there are interesting limit points generated by this
method. However, we have noted that our convergence analysis does not guarantee
that if a limit point ẑ is on the boundary of the feasible region then −∇f(ẑ) is in the
normal cone to the feasible region at ẑ. Although Algorithm A generates convergent
limit points, it may generate limit points on the boundary of the feasible region that are
not constrained stationary points (i.e. KKT points (Gill et al., 1981)).

The following examples illustrate the implications of Theorem 3 and Corollary 3 on
test problems. Specifically, these examples illustrate how the choice of search directions
impacts the ability of Algorithm A to converge to constrained stationary points. In
each of these examples, we consider the case where Algorithm A is used with a single
search pattern throughout the search, which is consistent with the manner in which
most pattern search methods are employed. We discuss this point further in the next
section.

5.1 Example I

Consider the problem

min −ab
s.t. a2 + b2 ≤ 16

0 ≤ a, b ≤ 4

Evolutionary Computation Volume x, Number x 13
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for which the optimal solution is x∗ = (a∗, b∗) = (2
√

2, 2
√

2). Consider the behavior of
Algorithm A using the search pattern Dt = D = {±(1, 1),±(1,−1)}. As in our earlier
example, we simplify our presentation by assuming that µF = µI = 1 and P = 8, so all
mutation steps are generated in each iteration. We consider feasible starting points, so
in initial iterations P is effectively equal to 4.

Figure 4a illustrates the convergence behavior of Algorithm A when started from
a set of points along the x- and y-axes. The lines in this figure connect the initial and
final points, and it is clear that in every case the FEA converges to the optimal solution.
This can be explained using Corollary 3. Note that −∇f(x) = (b, a). Now suppose that
Algorithm A generates a limit point ẑ = (a, b) on the constraint boundary for which
b > a. It follows that the directions (−1,−1) and (1,−1) are the associated directions
that satisfy Theorem 3 at this limit point (because the constraint violation function is
constant in these directions), and they define the cone Cs. The polar cone Co

s is defined
by the directions (−1, 1) and (1, 1). However, at ẑ we have −∇f(ẑ) = (b, a) which is
not in this cone if b > a (note that (−1, 1)(b, a)T = a − b < 0). Consequently, the only
limit point that Algorithm A could generate that satisfies the conditions of Theorem 3
and Corollary 3 is the point (a∗, b∗).

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

(a) (b)

Figure 4: Illustration of the convergence of Algorithm A for Example I when (a) Dt =
D = {±(1, 1),±(1,−1)} and (b) Dt = D = {±(1, 0),±(0, 1)}. The lines in these figures
connect the initial and final points. The lack of symmetry in (b) is due to the fact that
ties are broken arbitrarily.

Now consider the behavior of Algorithm A using the search pattern Dt = D =
{±(1, 0),±(0, 1)}. Figure 4b illustrates the convergence behavior of Algorithm A with
this pattern when started from a set of points along the x- and y-axes. It is clear that
this FEA does not consistently converge to the optimal solution. Again, this can be
explained using Corollary 3. Suppose that Algorithm A generates a limit point ẑ =
(a, b) on the constraint boundary for which b > a. It follows that the directions (−1, 0)
and (0,−1) are the associated directions that satisfy Theorem 3 at this limit point, and
they define the cone Cs. The polar cone Co

s is defined by the directions (1, 0) and (0, 1),
which includes the direction −∇f(ẑ) = (b, a) when b > a. Consequently, this limit
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point is allowed within our convergence theory for Algorithm A.
The contrast between these two search patterns highlights the degree to which the

choice of search pattern can impact how closely Algorithm A converges to constrained
stationary points. If the search pattern is selected well, you may be able to ensure that
a constrained stationary point is generated, but if the search pattern is selected poorly
then any point on the nonlinear constraint boundary may be a limit point. Further-
more, it is clear that if the search pattern Dt = D = {±(1, 1),±(1,−1)} were perturbed
slightly then this FEA could converge to points other than the constrained stationary
point. Consequently, this method may be sensitive to numerical instabilities such as
round-off errors.

5.2 Example II

Consider the problem

min f(a, b)
s.t. 1

5a + 4
5 ≤ b

5a − 4 ≥ b
0 ≤ a, b

where f : R2 → R is an arbitrary function. The solution to this problem lies within the
feasible region, but we consider the convergence of Algorithm A starting from an initial
point (λ, λ) for some λ > 1. The following analysis shows that Algorithm A converges
to the point (1, 1) on the constraint boundary, regardless of whether this is a constrained
stationary point. In fact, all iterates remain infeasible on this problem, so f could even
be minimized at a strictly feasible point. Again, we assume that µF = µI = 1, and
that all mutation steps are generated in each iteration (so we are taking the best of all
neighboring points).

Figure 5 illustrates the initial point and the three search directions in the search
pattern used in this example. From a point (a, b) the solution set steps during the search
are 120 degrees apart from one another, given by

(

a + ∆cos
(π

4

)

, b + ∆sin
(π

4

))

=
(

a + ∆
√

2/2, b + ∆
√

2/2
)

(

a + ∆cos

(−5π

12

)

, b + ∆sin

(−5π

12

))

=
(

a + ∆
√

2 ω2, b − ∆
√

2 ω1

)

(

a + ∆cos

(

11π

12

)

, b + ∆sin

(

11π

12

))

=
(

a − ∆
√

2 ω1, b + ∆
√

2 ω2

)

where ω1 = (
√

3+1)/4 and ω2 = (
√

3−1)/4. We label these points a, b and c respectively,
and we label the initial point x.

We denote constraint (1) to be b ≥ 1
5a + 4

5 and constraint (2) to be b ≤ 5a − 4. Let
Dx

1 be the shortest squared distance from x to constraint (1), and let Dx
2 be the shortest

squared distance from x to constraint (2). We define similar values for a, b, and c. To
compute these values, we need to be able to compute the shortest squared distance
from a point to the constraints that point is violating. The following lemma defines the
point on a line that is closest to a given point.

Lemma 4. The shortest squared distance between a point (r, s) and a line y = mx + b is at

x = r+(s−b)m
m2+1 .

The following corollary follows directly from Lemma 4.
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Constraint 1

Constraint 2

b

D

D

2

1
x

x

Figure 5: An illustration of the initial point and associated search directions in Example
II.

Corollary 4. The squared distance from (r, s) to constraint (1) is (4+r−5s)2

26 , and the distance

to constraint (2) is (4−5r+s)2

26 .

The following theorem demonstrates that Algorithm A converges to the feasible
point (1, 1), though all iterates remain infeasible.

Theorem 1. If z0 = (λ, λ) for some λ > 1, then no feasible point is generated and limt→∞ zt =
(1, 1).

Figure 6 illustrates the four different algorithmic states that can occur when Algo-
rithm A searches from a point (λ, λ). The four lemmas in Appendix A demonstrate
how the search progresses as follows:

(a) The point zt is at some point (λ′, λ′) and the points b and c are infeasible for both
constraints. Lemma 5 shows that either (1) the step length is reduced or (2) either
zt+1 = b or zt+1 = c.

(b) The point zt is at some point (λ′, λ′) and the points b and c are each feasible for a
single constraint. Lemma 6 shows that the step length is reduced.

(c) The previous algorithmic state was state (a), and the point b is infeasible for both
constraints. Lemma 7 shows that zt+1 = (λ′, λ′), where λ′ > 1.

(d) The previous algorithmic state was state (a), and the point b is feasible for a single
constraint. Lemma 8 shows that zt+1 = (λ′, λ′), where λ′ > 1.

We now prove Theorem 1 using this decomposition of the search of Algorithm A.

Proof of Theorem 1. Beginning at some point z0 = (λ, λ), λ > 1, it is clear from the results
of Lemmas 5, 6, 7 and 8 that Algorithm A generates a sequence of points such that if
xt 6= yt then xt+1 = yt+1. At most half of the iterations do not lie on the line x = y, and
a simple inspection of these iterations (cases (c) and (d) in Figure 6) confirms that for
all iterations t such that xt = yt, xt > 1.

Thus there is an infinite subsequence K s.t. xk = yk, ∀k ∈ K . Let {(λk, λk)}k∈K

denote this subsequence. We know that λk > 1 for all k ∈ K , so the sequence {λk}k∈K

is monotonic and bounded below. Thus there exists a limit point of {(λk, λk)}k∈K .
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Figure 6: The four different algorithmic states that can occur in Example II.
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Suppose that ∃ λ∗ > 1 s.t. (λ∗, λ∗) is this limit point. The sequence (λk, λk)k∈K is
a refining subsequence because limk∈K ∆k = 0, with associated positive spanning set
defined by the fixed pattern used in this example. Now h is continuously differentiable,
so h is strictly differentiable at z∗ = (λ∗, λ∗). Thus we know from Corollary 1 that
∇h(z∗) = 0. But this is a contradiction, because ∇h is only zero at the point (1, 1). Thus
we conclude that z∗ = (1, 1).

This analysis demonstrates a less obvious limitation of our convergence theory
than is illustrated in Example I. Specifically, this example shows that although the con-
vergence theory may ensure convergence to a feasible point, the local properties of
that point may be poorly characterized. Although the specific choice of search pattern
was crucial to our analysis, we conjecture that this is a more fundamental weakness of
multi-objective EA search strategies for constrained optimization. By treating the objec-
tive function as one of two or more objectives, the search may proceed to find feasible
solutions without regard to whether these solutions are interesting. Multi-objective EA
strategies must also search in the neighborhood of the limit point to ensure that it is a
constrained stationary point.

5.3 Example III

As we have seen in our previous examples, the choice of the search pattern can funda-
mentally impact the convergence properties of an FEA. However, our third illustrates
how a judicious choice of search direction can be leveraged by FEAs to ensure fast
convergence to a constrained stationary point. Consider the problem

min
∑n

i=1 x2
i

s.t. 0 ≤ xi ≤ 10
.

This is simply a bound-constrained quadratic, which should be easily solved by any
constrained EA.

We consider the relative performance of a simple FEA with a self-adaptive ES
(Schwefel, 1995). Specifically, we again consider a simple FEA with µF = µI = 1,
and P = 2n. The step length ∆t is contracted by a factor of 2 when current point is
locally optimal.2 For comparison purposes, we consider a (1 + 2n)-ES which rejects
infeasible points, using standard parameters for self-adaptation. Thus the FEA and ES
should have similar search dynamics and population sizes. Note that in this partic-
ular example, the FEA’s search dynamics are deterministic. The ES search dynamics
are stochastic, so we consider the performance of the ES over 30 random trials. These
optimizers were applied to this problem for several different dimensions, n, and they
were terminated after reaching a solution with value n ∗ 0.001. Finally, the step scale
used by both optimizers was set to 1.0, and the optimizers were started from an initial
point near 9n.

Figure 7 compares the performance of the FEA and ES. The vertical scale of this fig-
ure is the number of feasible function evaluations required before termination, normal-
ized by the dimension. Consequently, an ideal line would be flat. Figure 7 illustrates
the distribution of the ES results by plotting lines for the 25th, 50th and 75th quartiles of
the ES results. It is clear that the ES becomes increasingly more expensive as dimension
increases, while the FEA’s effort roughly scales with the dimension of the problem.

2A contraction factor of 2 is very commonly used with pattern search methods, and it appears to work
well in practice.
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Figure 7: Numerical comparison of self-adapting Evolutionary Strategies and basic pat-
tern search methods.

Although the ES uses a different methodology for adapting the search step scale,
it is well-known that ES can effectively minimize quadratic problems. Consequently,
the disparity between the ES and FEA performance in this example can be attributed
to how they generate new trial points. The search directions used by the FEA are well-
aligned with the local constraint boundary near the optimal solution, while the ES’s
search directions are uniformly scattered in all directions. This suggests that an ad-
vantage of FEAs is that they enable a user to exploit domain knowledge about the
constraint boundary to improve the (local) search performance.

6 Discussion

Our analysis of FEAs demonstrates that they generate interesting limit points with
probability one on a general class of constrained optimization problems. To our knowl-
edge, this is the only convergence theory for EAs on constrained problems that does
not require the use of derivative information. Consequently, these results suggest that
similar multi-objective constrained EA methods will be effective in practice.

An FEA’s use of a positive spanning set, D, is similar to the type of samples that
are required for estimating derivative information using standard finite differencing
techniques. The connection between EAs to pattern search methods is partially moti-
vated by the fact that so few researchers integrate gradient information into their search
process. Thus, it is intentional that FEAs are quite similar to previously formulated con-
strained EAs; this convergence analysis provides insight into other multi-objective EAs
for constrained optimization. More generally, there is a general sense that derivative-
free search methods like EAs and pattern search are more effective when derivatives are
either difficult to compute or they are noisy (Kolda et al., 2003). Thus, while our conver-
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gence of analysis of FEAs relies on standard smoothness assumptions for the objective
and constraint functions, we can expect FEAs to work effectively on a broader class of
applications.

Theorem 3 is not quite as strong as would be desired, since it does not guaran-
tee convergence to a first-order constrained stationary point. In particular, this result
depends on the set of search directions D that are predefined, since this ultimately lim-
its the cone that contains −∇f(x̂). The limitations of Theorem 3 beg the question of
whether or not better analytical approaches can be applied. Our analysis of FEAs is
directly related to recent analyses of filter-based pattern search methods (Audet and
Dennis, 2004). Although other convergence theories for pattern search methods on
constrained problems do not rely on derivative information (Kolda et al., 2003), it is
not obvious how these could be adapted for the population-based search used in EAs.
For example, Lewis and Torczon (2002) have analyzed the convergence of a pattern
search method that solves a series of bound-constrained sub-problems that are used
to estimate Lagrange multipliers. Using a similar strategy for EAs would require the
application of an EA to a sequence of bound-constrained problems, which would prob-
ably limit the EA’s ability to search globally. By contrast, the FEA we have considered is
closely related to existing multi-objective EAs, which effectively perform global search.

The examples in Section 5 illustrate how the performance of Algorithm A is sen-
sitive to the choice of the search directions, D. We expect that in practice Algorithm A
will perform a robust search for constrained local minima if a sufficiently rich set of
search directions are employed. For example, the examples in Section 5 employ a sin-
gle pattern throughout their search, but it is easy to imagine how search patterns could
be dynamically adapted using directions from a large, finite set D. More generally,
we argue that greater attention needs to be paid to how EAs search near constraint
boundaries. Although this is highlighted in our analysis of FEAs, our last experimental
example illustrates that this issue is also relevant for well-established EAs like ESs.

Finally, we note that these results have considered a very simple FEA design. How-
ever, we expect that these results can be generalized to account for recombination op-
erators, other selection strategies (so long as elitism is enforced), non-rational search
directions and per-individual step scale parameters. These types of generalizations
have been developed for unconstrained and bound-constrained evolutionary pattern
search methods (Hart, 2001, 2003), but a simpler presentation was chosen here to il-
lustrate the core search dynamics of FEAs. For example, the FEA and ES in our third
example would have worked more effectively if trial points were mapped onto the con-
straint boundary, rather than simply being rejected. This is a common mechanism for
bound-constraints, and it has been widely used with ESs. Although we expect that this
would also be useful for FEAs, this mechanism would require an extension of the FEA
convergence theory.
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A Analysis of Example II

Lemma 5. If x = (λ, λ) for some λ > 1 and b = (λ + ∆
√

2ω2, λ − ∆
√

2ω1)) violates both
constraints, then h(x) < h(a) and for sufficiently small ∆, h(x) > h(c) = h(b).

Proof. If h(x) < h(a) then we have Dx
1 + Dx

2 < Da
1 + Da

2 . Now Dx
1 = Dx

2 = 8(1−λ)2

13

and Da
1 = Da

2 = 8(1−λ−∆/
√

2)2

13 , so we need 16
13 (1 − λ)2 < 16

13 (1 − λ − ∆
√

2)2. But

0 > 1 − λ > 1 − λ − ∆/
√

2 since ∆ > 0. Thus this inequality is always true.

If h(x) > h(b) = h(c) then we have Dx
1 + Dx

2 > Db
1 + Db

2. Now

Db
1 =

8

13

(

1 − λ + ∆
√

2(ω2 + 5ω1)/4
)2

, and Db
2 =

8

13

(

1 − λ − ∆
√

2(ω1 + 5ω2)/4
)2

.
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Thus we need to show that

16

13
(λ − 1)2 >

8

13

(

(

1 − λ + ∆
√

2(ω2 + 5ω1)/4
)2

+
(

1 − λ − ∆
√

2(ω1 + 5ω2)/4
)2
)

=
8

13

(

2(1 − λ)2 + 2∆
√

2(1 − λ)(ω1 − ω2) + O(∆2)
)

.

Now for sufficiently small values of ∆, the ∆2 term will be dominated by the ∆ term.
Further, ω1 − ω2 > 0 so the ∆ term is negative. Thus for sufficiently small values of ∆,
this inequality is true.

Lemma 6. If x = (λ, λ) for some λ > 1 where Db
2 = 0, then h(b) > h(x).

Proof. If h(b) > h(x) and Db
1 = 0, then we must have Db

2 > Dx
1 + Dx

2 . Now Dx
1 + Dx

2 =
16(1−λ)2

13 and

Db
2 =

8

13

(

1 − λ − ∆
√

2(ω1 + 5ω2)/4
)2

.

Now since Db
1 = 0, we know that ∆ ≥ 2

√
2(λ − 1)/(ω2 + 5ω1). Thus, it suffices to show

that

8

13

(

1 − λ −
(

2
√

2(λ − 1)

ω2 + 5ω1

)(√
2(ω1 + 5ω2)

4

))2

=
8

13

(

1 − λ − (λ − 1)
ω1 + 5ω2

ω2 + 5ω1

)2

=
8

13

(

1 +
ω1 + 5ω2

ω2 + 5ω1

)2

(λ − 1)2

>
16(1 − λ)2

13
.

But this last inequality is true because
(

1 + ω1+5ω2

ω2+5ω1

)2

> 2.

Lemma 7. If x = (λ + ∆
√

2ω2, λ − ∆
√

2ω1)) for some λ > 1 and b = (λ + 2∆
√

2ω2, λ −
2∆

√
2ω1)) violates both constraints, then h(x) < h(a), h(c) < h(x) and h(c) < h(b).

Proof. We have

Dx
1 = 8

13 (−A + BC)2 Dx
2 = 8

13 (−A − BD)2

Da
1 = 8

13 (−A + B (C − ε))2 Da
2 = 8

13 (−A − B (D + ε))2

Db
1 = 8

13 (−A + 2BC)
2

Db
2 = 8

13 (−A − 2BD)
2

Dc
1 = 8

13 (−A + 2B)
2

Dc
2 = 8

13 (−A + 2B)
2

where A = λ − 1, B = ∆
√

2
4 , C = ω2 + 5ω1, D = ω1 + 5ω2, and ε = 2.

If h(x) < h(a) then we must have Dx
1 +Dx

2 < Da
1 +Da

2 . Thus we need to show that

(−A + BC)
2

+ (−A − BD)
2

< (−A + B (C − ε))
2

+ (−A − B (D + ε))
2

= (−A + BC)2 + 2 (−2A + B (C − D)) (−Bε) +

2B2ε2 + (−A − BD)
2
.

By combining like terms we get

0 < 2B2ε2

(

2A + D − C

ε
+ 1

)

.
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Since ε = 2, 2A+D−C
ε + 1 is positive for all values of A and this inequality is true.

If h(c) < h(x) then we must have Dc
1 + Dc

2 < Dx
1 + Dx

2 . Thus we need to show

2A2 − 8AB + 8B2 < 2A2 + 2ABD − 2ABC + B2
(

C2 + D2
)

.

Now, by expanding and combining like terms, we get

0 < 2AB (D − C + 4) + B2
(

C2 + D2 − 8
)

.

Since (D − C + 4) and C2 + D2 − 8 are both positive this inequality is true.

If b violates both constraints and h(c) < h(b) then we must have Dc
1+Dc

2 < Db
1+Db

2.
Thus we need to show

2A2 − 8AB + 8B2 < 2A2 + 4AB (D − C) + 4B2
(

C2 + D2
)

.

Now by expanding and combining like terms, we get

0 < 4AB (D − C + 2) + 4B2
(

C2 + D2 − 2
)

.

Since D − C = −2, 4AB(D − C + 2) = 0 and since 4B2(C2 + D2 − 2) is positive, this
inequality is true.

Lemma 8. If x = (λ+∆
√

2ω2, λ−∆
√

2ω1) for some λ > 1 where Db
1 = 0, then h(x) < h(b).

Proof. We have

Dx
1 =

8

13
(−A + BC)

2
, Dx

2 =
8

13
(−A − BD)

2
and Db

2 =
8

13
(−A − 2BD)

2
,

where A = λ − 1, B = ∆
√

2
4 , C = ω2 + 5ω1 and D = ω1 + 5ω2.

If h(x) < h(b) then we must have Dx
1 + Dx

2 < Db
2. Thus we need to show that

2A2 + 2AB (D − C) + B2
(

D2 + C2
)

< A2 + 4ABD + 4B2D2.

Now, by expanding and combining like terms, we get

A2 − 2AB (D + C) + B2
(

C2 − 3D2
)

< 0.

Since constraint (1) is not violated by b, we can compute a lower bound on ∆, which
gives us a lower bound on B. Additionally, the fact that x is feasible gives us an upper
bound on B. Specifically, we have B = ε A

2C where 1 ≤ ε < 2. Thus we need to show
that

A2 − A2ε

C
(D + C) +

A2ε2

4

(

1 − 3D2

C2

)

< 0.

By factoring out an A2 we get

A2

(

ε2

4

(

1 − 3D2

C2

)

− ε

2C
(D + C) + 1

)

< 0.

Now 1 > 3D2

C2 , so the second factor is a convex parabola in ε, with a minimum value at

ε = 6(9+2
√

3)

−31+24
√

3
. This parabola is negative at ε = 1, and it becomes more negative as ε

moves to ε = 2. So this inequality is true.
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