Assessment of an Unstructured Grid Navier-Stokes Code for Predicting Aircraft Performance

AIAA CFD Drag Prediction Workshop June 9-10, 2001 Anaheim, CA

> Rick Hooker, Aerodynamics Lockheed Martin Aeronautics Company -Marietta

Introduction

• Purpose

- Assess LMAS tools drag prediction capabilities.
- Assess influence of select grid parameters on drag prediction.

Outline

- CFD tools description.
- Grid description.
- Convergence criteria.
- Code performance / computer description.
- CFD results.
- Summary / Conclusions

Aerodynamics Tools Description

• Grid Generator - GRIDTOOL / VGRID3D

- NASA LaRC developed
- Tetrahedral based unstructured grids
 - Advancing layers to resolve boundary layer
 - Minimizes grid generation time

• Flow Solver - USM3Dns

- NASA LaRC developed
- Euler and Navier-Stokes
 - Cell based
 - Implicit
- Spalart-Allmaras turbulence model
 - Wall function
- Fully turbulent
- LM Previous Experience
 - Extensively utilized main CFD code for over 3 years
 - Excellent correlation with wind tunnel and flight data

Grids Description

- Baseline FV (Full Viscous) Workshop Provided
 - Solutions generated but not reported
 - USM3D bug with force/moment calculation (FV only)
- **Baseline WF** (Wall Function) NASA LaRC Provided
- <u>MOD 1 WF</u> LMAC Developed
 - Similar to Baseline WF
- <u>MOD 2 WF</u> LMAC Developed
 - Refined wing LE and fuselage nose
 - Otherwise same as MOD 1 WF
- MOD 3 WF LMAC Developed
 - Same as MOD 2 WF with reduced y+

	Number of	Volume	Surface	
Title	Layers	Cells	Nodes	y+
Baseline FV	35	2.74E+06	23290	3
Baseline WF	11	2.39E+06	25175	50
MOD 1 WF	11	3.08E+06	32716	40
MOD 2 WF	11	3.61E+06	40371	40
MOD 3 WF	12	3.93E+06	40789	20

Mod 2 WF GRID

Alpha=0 degrees, M=0.75, Re=3.0x10⁶

5 10 June 01 JRH

Code Performance / Beowulf Cluster

Code Performance

- Baseline WF Grid (5,000 iters)
 - 2.39x10⁶ Cells
- 40 processors / 20 nodes
- CPU Time: 720 hours
- Wall Clock Time: 20.0 hours
- Memory Requirements: 168 words/cell

Cluster Description

- 64 Node Cluster
 - Dual Intel PIII 850 Mhz Processors
 - 128 Total Processors
 - 768 MB PC100 ECC RAM / Node
- 2 Clusters

USM3D Predictions on the DLR-F4 Wing/Body Configuration

M=0.75, Re=3.0x10⁶

7 10 June 01 JRH

USM3D Predictions on the DLR-F4 Wing/Body Configuration

USM3D Predictions on the DLR-F4 Wing/Body Configuration

9 10 June 01 JRH

USM3D Predicted Wing Surface Pressures on the DLR-F4 Wing/Body Configuration

Summary / Conclusions

• Assessed USM3Dns drag prediction capabilities

- Evaluated baseline wall function grid
- Evaluated 3 LMAS generated grids
 - Investigated wing leading edge and fuselage nose grid refinement effects
 - Investigated initial viscous grid spacing effects
 - Not considered optimal or drag converged grids
- Not able to report on full viscous drag results
- Grid refinement effects
 - Minimal CL impact
 - ~5% drag reduction
 - Not drag converged
 - Slight CM impact
- Initial viscous grid spacing effects
 - Minimal CL and CD impact
 - Slight CM impact
 - y+ of 40 or 50 sufficient for wall function results with ~8 cells across BL
- Future work
 - Evaluate latest USM3Dns recommendations from NASA LaRC