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1.  INTRODUCTION 
 Trading-day effects reflect variations in monthly 
time series due to the changing composition of months 
with respect to the numbers of times each day of the 
week occurs in the month.  A relevant question 
regarding trading-day effects is whether they remain 
constant over time?  This is especially pertinent for 
retail sales data in which trading-day effects 
presumably depend on consumers’ shopping patterns 
and on hours that retail stores are open, two things that 
have changed over time in the U.S.  Seasonal 
adjustment practitioners sometimes deal with this issue 
by restricting the length of the series to which the 
trading-day model is fit.  However, this can provide 
only a crude approximation to trading-day effects that 
vary through time.  In this paper we explore some 
alternative models for time-varying trading-day effects 
and investigate possible time variation in trading-day 
effects in some Census Bureau monthly time series.  
 Monsell (1983), Dagum, Quenneville and 
Sutradhar (1992, hereafter DQS), and Dagum and 
Quenneville (1993, hereafter DQ) considered stochastic 
models for time-varying trading-day coefficients.  
Monsell used random walk models for the coefficients; 
DQS and DQ considered a more general model in 
which applying some order of differencing (not just 
first order) to the trading-day coefficients yields white 
noise.  A limitation to the analysis of Monsell and of 
DQS is that they considered just trading-day plus white 
noise irregular models.  Monsell applied this model to 
simulated data, DQS to data filtered by X-11 irregular 
filters to remove trend and seasonality.  DQ considered 
a more general model including seasonal, trend and 
irregular components in addition to time-varying 
trading-day, though for the example presented they 
chose a model with fixed trading-day coefficients.  
Harvey (1989) and Bell (2004) considered models for 
time-varying trading-day coefficients in general 
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contexts, and we discuss their models in more detail in 
later sections.   

In the next section we review a model for fixed 
trading-day effects and then discuss some alternative 
models that allow for stochastically time-varying 
trading-day coefficients.  Section 3 discusses aspects of 
fitting the models.  Section 4 gives results of fitting the 
models to some Census Bureau time series.  The final 
section gives conclusions and also discusses directions 
for future research. 
 
2.  MODELS FOR TRADING-DAY EFFECTS 
 Monthly time series that are accumulations of daily 
values (flow series) are often affected by the day-of-
week composition of the month, i.e., by which days 
occur five times and which days occur four times in the 
month.  Let  be the observed value for month t  (or 
its logarithm) in a monthly flow time series.  A basic 
model incorporating trading-day effects is  

ty

  ,t ty TD Z= +  (1)
(Bell and Hillmer 1983, hereafter BH) where  is the 
trading-day effect, and the remainder series 

tTD

tZ  follows 
some time series model such as an ARIMA 
(autoregressive-integrated-moving average) model 
(Box and Jenkins 1976) or an ARIMA components 
model (Harvey 1989). 
 We will use linear regression models for .  We 
first consider a basic model with fixed coefficients, and 
then discuss alternative ways that this model can be 
generalized to allow for stochastically time-varying 
trading-day coefficients.  We could include additional 
regression effects (other than for trading day) in the 
model (1), such as Easter holiday effects as in BH, but 
we ignore that possibility in this section to focus 
attention on alternative models for .  In the 
examples of Section 4 we bring in some additional 
regression effects and the time series model for 

tTD

tTD

tZ . 
 
2.1 A model for fixed trading-day effects 
 Let the average effect of day  on the monthly 
value of the series be 

i
iα , , so 1, 2,...,7i = 1α  is the 

average effect on the series of Monday, 2α  the average 
effect of Tuesday, …, and 7α  the average effect of 
Sunday.  For month t , let  be the number of 
Mondays in the month,  the number of Tuesdays, 
…, and  the number of Sundays.  Also, let 
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≡ ∑ itD  denote the length of month t  (28, 29, 

30, or 31), and let 7
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≡ ∑  denote the average 
daily effect.  To model fixed trading-day effects, BH 
start with 
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In equation (2) the term tNα  is a length-of-month 
effect that we do not consider as part of the trading-day 
effect, and in fact drop it from the model for reasons 
discussed below.  Thus,  is given by the second 
term on the right hand side of (2).  Since 
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where i iβ α α= −  and , 7  it it tT D D= − 1, 2,...,6i = .  
The parameters iβ  measure the differences between the 
Monday, … , Saturday effects and the average daily 
effect, α .  The difference between the Sunday effect 
and the average daily effect is given by 7 7β α α≡ − = 

6

1 ii
β

=
−∑ .  In equation (3) we use Sunday as the day of 
reference, however, clearly any of the other six days 
could be so used.  Notice that if ,  1, 2,...,7i iα =  are 
equal, the trading-day effect is zero.  Also, for a non-
leap year February, , , and the 
trading-day effect is zero. 

4itD = 1, 2,...,7i =

 Rather than include the term tNα  of (2) in our 
models, we shall instead divide the original series 
(before taking logarithms) by .  This is consistent 
with the default option in the X-12-ARIMA program 
(Findley, Bell, Monsell, Otto and Chen 1998).  We do 
this for the following reasons: (a) Bell (1984) noted that 
the length-of-month effect, 

tN

tNα , can be decomposed 
into a level effect, a fixed seasonal effect, and a leap-
February effect.  The first two will be accounted for by 
differencing in the models.  Thus, the term tNα  serves 
essentially to model leap-February effects.  (b) When 

 represents logarithms of the original series, we 
would expect 

ty
α  to be approximately log(29/28) = 

0.035, in which case it can be shown that including 
tNα  in the model is approximately equivalent to 

dividing the original time series (before taking logs) by 
.  (c) Including tN tNα  in the model and estimating α  

sometimes yields implausible values, i.e., values that 
differ substantially from 0.035.   
 
 

2.2  Models for stochastically  time-varying trading-
day coefficients 
 To adapt our trading-day model to allow for 
stochastically time-varying coefficients, we let 

,  1, 2,...,7it iα =  be the effect of day i  in month t , and 
,  it it tβ α α≡ − 1, 2,...,7i =  be the difference between 

the effect for day i  in month t  and the average weekly 
effect for the month, 7

1
(1/ 7)t iti

α α
=

≡ ∑ .  By definition 
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and thus one of the coefficients can be computed as a 
function of the other six.  With these time-varying 
coefficients, (3) becomes  

  
6

1
t it it t

i

TD T T tβ β
=

′= =∑ , (5) 

 where tβ  and  are column vectors with components tT

1 2 6( , , , )t t t tβ β β β ′= …  and 1 2 6( , , , )t t t tT T T T ′= … .  To 
complete the specification we need to give a model for 

tβ , or specify a joint model for the itα  and derive the 
implied model for tβ .   
 We shall use a random walk model to allow for 
time variation in the trading-day effects.  We choose the 
random walk model because it is both simple, and 
nonstationary.  It also includes a fixed coefficient as a 
special case when the random walk innovation variance 
is zero.  A simple model seems to be required because 
we are not likely to be able to estimate well an involved 
model for the stochastic trading-day coefficients.  We 
desire a nonstationary model because use of a stationary 
model, such as a stationary autoregressive model of 
order one (AR(1)), would imply erratic time variation 
in the trading-day coefficients.  In fact, unless the AR 
parameter in the stationary AR(1) model is extremely 
close to one, the trading-day coefficients would show 
erratic variation around the fixed means, and the model 
also would not allow for consistent movement up or 
down over long periods.  Hannan (1964) made an 
analogous observation in the context of using stationary 
AR models for a time-varying seasonal component.  
The random walk model is more appealing, as it will 
allow the coefficients to change more smoothly over 
time and will not tie them to fixed means.   
 Bell (2004) made a straightforward generalization 
of (3) by assuming that the itβ  follow independent 
random walk models: 
 (1 ) it itB β η− = , ,  (6) 1,2, ,6i = …
where  denotes the backshift operator , 
and the 

B ( )1t tBx x −=

itη  are mutually independent white noise series 
with variances 2

iσ .  As before, the reference day in (6) 
is Sunday with 7tβ  determined from (4) as  

    



  7 1 (t t 6 )tβ β β= − + + . (7) 
Though the reference day is usually chosen to be 
Sunday, in principle we could change the model (6) to 
allow any given day to serve as the reference day.  The 
model (6) has the disadvantage that the itβ  
corresponding to the reference day has different 
statistical properties than the coefficients corresponding 
to the other six days.  To see this with Sunday as the 
reference day, note that applying the difference operator 

 to both sides of (7) gives 1 B−
    7 7 1(1 )  ( )t t tB 6tη β η η≡ − = − + + . (8)   
Thus, although 1 , ,t 6tη η…  are assumed independent of 
one another, 7tη  will be correlated with all of them  
(except if ( ) 0itVar η =  for some , in which case i

0itη =  almost surely).  Analogous results obviously 
hold if we change the reference day.  How much effect 
this issue has on actual estimates will be examined for 
the examples in Section 4.      
 Harvey (1989, pp. 43-44) instead generalized (3) 
by specifying a model for 1 2 6, , ,t t tβ β β…  that implicitly 
assumed that the itα  follow independent random walk 
models 
   (1 ) it itB α ε− = , , (9) 1, 2,...,7i =
where  the itε  are mutually independent white noise 
series with common variance 2

εσ .  If we still define 
(1 )it itBη β= −  as in (6) and (8), but now without 

assuming that the itη  are independent of one another, 
then we see from the definition of the itβ  and from (9) 
that  
 

(1 ) (1 )(  )it it it t it tB Bη β α α ε ε= − = − − = − 1,2,...,7i =, ,  (10) 
 
where 7

1
(1/ 7)t i itε ε

=
≡ ∑ .  From (10) it follows that the 

itη ,  have mean zero, variance 1, 2,...,7i = 2(6 / 7) εσ  

and , .  
Thus, unlike with Bell’s model, the seven innovations 

( ) 2, / 7it jtCov εη η σ= − , 1, 2, ,7;  i j i j= ≠…

1 2 7, , ,t t tη η η…  are correlated with one another, but all 
have the same statistical properties.  However, the 
assumption of a common variance for the itε , implying 
the common variance 2(6 / 7) εσ  for the itη , is more 
restrictive than the assumption of six different 
innovation variances in (6).  This raises a question as to 
whether this restriction is appropriate in situations 
where the effects of one day may be changing faster 
over time than those of other days.  We also note that 
(10) implies a multivariate random walk model for the 

itβ  since the innovations itη  are cross-correlated.  In 
this form, Harvey’s model cannot be handled by the 

software we use for model fitting because the software 
requires independent unobserved components.  We deal 
with this issue in the next section. 
 Notice that the variance-covariance matrix of 
( )1 7, ,t tη η…  for both Bell’s and Harvey’s models is 
singular since the constraint (7) implies that 

( )7 1 7 7, , 0t tVar η η′ =1 1… , where  is a column vector 
of seven ones.   
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3.  FITTING THE MODELS TO DATA 
 In this section we give details on fitting time series 
models that include either fixed or stochastically time-
varying trading-day effects using the REGCMPNT 
program (Bell 2004).  We first give background 
information on the RegComponent model, and then 
discuss the steps necessary to convert Harvey’s model 
to this form so that it can be fit by the REGCMPNT 
program. 
   
3.1 The RegComponent model  
 The general form of the RegComponent time series 
model is  

   (11) 
1

k

t t it i
i

y x h zδ
=

′= +∑ t

twhere 1( , , )t t rx x x′ = …  is a row vector of known 
regression variables at time  and t δ  is the 
corresponding column vector of fixed regression 
parameters.  The ,  1, ,ith i k= …  are series of known 
constants that we call “scale factors” and ,  1, ,itz i k= …  
are series of independent unobserved component series 
following ARIMA models.   
 The REGCMPNT program implements likelihood 
evaluation and maximization, forecasting, and signal 
extraction for RegComponent models.  The program 
puts the model in state space form and uses the Kalman 
filter with a suitable smoother to do the calculations.  
See Bell (2004) for more details.   
 Fixed trading-day effects are handled in 
REGCMPNT by incorporating the trading-day 
variables and regression coefficients in (3) as part of the 
regression effects tx δ′ .  Bell’s model (6) for time-
varying trading-day coefficients is also easily handled 
in REGCMPNT by identifying six of the ARIMA 
components  in (11) with the time-varying 
coefficients 

itz

itβ , 1, 2,...,6i = , and setting the 
corresponding scale factors  to the trading-day 
variables .  An additional ARIMA component 
is necessary for the residual series 

ith
1 , ,tT T… 6t

tZ  in (1).  An 
important point is that the RegComponent model, and 
hence the REGCMPNT program, requires that the 
innovations in the models for the  in (11) be itz

    



independent.  Since this is not true for the innovations 
associated with the random walk model for the itβ  in 
Harvey’s model (9), to fit his model special treatment is 
needed.  We discuss this next.     
 
3.2 Expressing Harvey’s model as a RegComponent 
model 
 For notational purposes, let mI  denote an identity 
matrix of order ,  a column vector of  ones, and 

 a column vector of  zeroes.  To convert Harvey’s 
model (9) to an equivalent model in RegComponent 
form, we make a linear transformation of 

m m1 m

m0 m

tα  to a 
multiple of tα  and six series 1 2 6, , ,t t tγ γ γ…  following 
independent random walks.  We do this using a 7 7×  
matrix  of the form  7G

  7
7

     

(1/ 7 )

C
G

⎡ ⎤
= ⎢ ⎥

′⎢ ⎥⎣ ⎦1
. 

Any matrix  with rows that are orthogonal to 
each other and to the constant vector  will work.  A 
convenient choice is generated by the trigonometric 
functions with period seven.  Using these trigonometric 
functions, the six rows of the matrix C  that we used 
have entries (for columns

6 7× C
71

1,2, ,7j = … ) 

  ( )1 2 / 7 cos 2 / 7jc jπ=   ( )2 2 / 7 sin 2 / 7jc jπ=  

 ( )3 2 / 7 cos 4 / 7jc jπ=   ( )4 2 / 7 sin 4 / 7jc jπ=  

  ( )5 2 / 7 cos 6 / 7jc jπ=   ( )6 2 / 7 sin 6 / 7jc jπ= .   

The factor 2 / 7  is used to normalize the rows of C  
to have length one.  The matrix  is thus orthonormal, 
i.e. .  

7G

7 7 7 7 7G G G G I′ ′= =
 Define the new variables 1 2 7( , , , )t t t tγ γ γ γ ′= …  by 

7t G tγ α≡ , and note then that 7 tG tγ α′ = .  We have, 
  7 7(1 ) (1 )t tB B G G t tγ α ε ξ− = − = ≡ .  (12)              

                         
From (12), 
  .                    ( ) 2

7 7 7 7( )t tVar G Var G G G Iεξ ε σ′ ′= = = 2
7εσ

Thus the vectors tξ  have the same scalar variance-
covariance matrix as tε .   
 We recover tβ  from tγ  in the following manner.    
Define the 6  partitioned matrix 7× H  by 

[ ]6 6 6    (1/ 7)H I ′≡ −0 71 1 ).  Then, if ( 1 7, ,t t tα α α ′≡ … ,  
  7t t tH HG tβ α γ γ′= = = Γ  (13)                                   
where 7HG′Γ ≡  is the  matrix given by  6 7×

  , (14) (      CΓ = 60 )
with  being the 6  matrix obtained by taking the 
first six rows of the matrix C .  From (13) and (14) we 

obtain 

C 6×
′

tβ  as a linear combination of the six coefficients 

( )1 2 6, , ,t t t tγ γ γ γ ′≡ …  using the equation 

  t tCβ γ= .  (15)  
Substituting (15) into (5) gives 
  ( )t t t t t tTD T T C C T tβ γ γ′′ ′ ′= = = . 
This shows that by transforming the trading-day 
variables each month from  to , we can write tT tr C T′= t

tt tTD rγ′=  in terms of the vector tγ  that has 
components that follow six independent random walks 
with common variances 2

εσ .  Having estimated 

1 2 6, , ,t t tγ γ γ…  by signal extraction with the fitted 
model, we convert these results to estimates of tβ  
using (15).  That is, letting 1 2( , , , )ny y y y ′≡ …  denote 

the available data, ( ) (tE y CE yβ γ= )t , with signal 

extraction variance-covariance matrix ( )tVar yβ =  

( )  tC Var y Cγ ′ , where ( tE yγ )  and ( tVar yγ )  are 
respectively the signal extraction mean and covariance 
matrix of tγ .  (These were computed here by the 
REGCMPNT program, though a modification was 
needed to print the full covariance matrices.  Ordinarily 
the program only prints out the diagonal elements, 
which are the component signal extraction variances 

( )itVar yγ .) 
 
4. RESULTS FOR EXAMPLE SERIES 
 To investigate possible time variation of trading- 
day effects and to compare results using the alternative 
models discussed in Section 2, we used REGCMPNT to 
fit models to three U.S. retail sales time series 
published by the Census Bureau: sales of department 
stores (excluding leased departments), sales of 
women’s clothing stores, and sales of shoe stores.  All 
three time series are for the 384-month period from 
January 1967 to December 1998.  (Note: results 
presented here for department store sales differ some 
from those presented in Bell (2004) because the time 
frame of the series used is different, and because 
benchmark revisions are regularly made to the data over 
time.)   
 Let  denote the monthly series obtained by 
taking logarithms of the specific retail sales series in 
question, after dividing by length of month.  In the 
model for , in addition to trading-day effects, we 
include an Easter effect with a 10-day window (BH) 
and an airline model for the remainder: 

ty

ty

  t t ty TD E Ztω= + + , 
 ,  (16)  12 12(1 )(1 ) (1 )(1 )t tB B Z B B aθ− − = − −Θ

    



where  is the Easter effect variable and tE ω  the 
associated parameter, and  is white noise with 
variance 

ta
2
aσ .  We fit (16) with  representing either 

fixed or stochastically time-varying trading-day effects, 
using the models discussed in the last two sections.   

tTD

 Figures 1 and 2 are plots of the signal extraction 
estimates of the time-varying trading-day coefficients 

itβ ,  over the 384 months for retail sales of 
department stores and of women’s clothing stores, 
respectively.  The estimates for shoe store sales are not 
shown due to space limitations.  The estimates 

1,2, ,7i = …

ˆ
iβ  

assuming fixed trading-day effects (3) are included on 
the plots as a dashed straight line for comparison 
purposes.  Eight different plots of estimated 
stochastically time-varying coefficients are included on 
each graph.  Seven of these come from Bell’s model 
(6), with each of the days of the week serving as the 
reference day in one of them.  The plot for which the 
reference day corresponds to the day of the estimated 
coefficient is plotted with long dark dashes, to 
differentiate it from the plots for the other six reference 
days that are plotted as dotted lines.  These six plotted 
curves tend to look similar, and in many cases, some of 
them approximately coincide, so that the plots for less 
than six of the reference days are visible.  The eighth 
line in each graph, corresponding to time-varying 
coefficient estimates from Harvey’s model (9), is 
plotted as a solid line. 
 For each of the three series, the fixed-effects 
estimates indicate large positive effects for Friday and 
Saturday, and a large negative effect for Sunday.   Most 
of the estimated fixed effects for the other days were 
not significantly different from zero.   
 For department store sales, the most noticeable 
feature in the graphs of the time-varying coefficients is 
the large increase in the effect of Sunday, from an 
effect on sales of less than  early in the series, to a 
nearly neutral effect at the series’ end.  Also, while the 
estimated fixed-effect coefficient for Tuesday is close 
to zero, the estimated time-varying coefficients for 
Tuesday show decreases in the effect through time from 
positive to negative values.  The Friday coefficient 
estimates also decrease over time.  Plots of the 
coefficient estimates for the other days of the week vary 
less over time.   

2%−

 For retail sales of women’s clothing stores, the 
increase in the estimated time-varying coefficient for 
Sunday was much less than for the department stores 
series: a little more than half a percent over the length 
of the series.  The Friday coefficient displayed a 
similarly moderate decrease, but the estimated 
coefficients for the other days showed very little 
movement.  

 The estimated time-varying coefficients for the 
data on shoe store sales display more variation than for 
the series on sales of women’s clothing stores.  
However, the estimated coefficients do not move up or 
down in a consistent fashion.     
 Many of the plots of the coefficient estimates from 
Bell’s model for the reference days used in constructing 
trading-day variables show somewhat erratic variation 
over time.  This highlights the point made earlier, that 
for Bell’s model the coefficient corresponding to the 
reference day has different statistical properties than the 
coefficients for the other six days.   
 For department stores and women’s clothing stores, 
the estimates from Harvey’s model behave similarly to 
the estimates from Bell’s model with reference days 
different from the coefficient day.  For the data on retail 
sales of shoe stores, however, estimating Harvey’s 
model yielded 2ˆ 0εσ ≅ .  The resulting estimates of the 

itβ  had virtually no variation, and in fact nearly 
coincided with the fixed-effects estimates.  In contrast, 
the estimates from Bell’s model vary over time for 
some of the days, as noted above. 
 
5. CONCLUSIONS AND FUTURE RESEARCH 
 In this paper we considered the modeling of time-
varying trading-day effects using models given in 
Harvey (1989) and Bell (2004).  The models are special 
cases of RegComponent models (Bell 2004), though in 
the case of Harvey’s model a linear transformation was 
needed in order to write the model in RegComponent 
form.  The REGCMPNT program was used to fit the 
models to time series of retail sales of U.S. department 
stores, women’s clothing stores, and shoe stores for the 
period January 1967 to December 1998.   
 Estimates from the various models used were 
mostly in agreement with regard to estimated time 
variation of the trading-day coefficients for the example 
series.  The main exception was that in Bell’s model, 
estimates of the trading-day coefficient for the 
reference day used in constructing the trading-day 
variables often showed erratic time variation.  Results 
thus varied with the choice of the reference day.  
Though this erratic behavior was not present in all cases 
and was not necessarily important relative to the overall 
time variation, it is nonetheless a limitation to Bell’s 
model.  The other exception was that for shoe store 
sales, results from Harvey’s model showed no time 
variation in the coefficients since the one innovation 
variance for the trading-day component was estimated 
to be approximately zero.  The trading-day coefficients 
for this example estimated from Bell’s models did not 
move in a consistent upward or downward direction, 
raising some concerns about whether this estimated 
time variation is real.  On the other hand, since 
Harvey’s trading-day model uses only one variance, if 
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 The results suggest several topics for future 
research.  One is to examine methods of testing for the 
presence of time-varying trading-day coefficients.  
DSQ and DQ considered this topic, but the methods 
suggested have significant limitations.  The work of 
Harvey and Streibel (1998) on testing for deterministic 
versus indeterministic cycles may be applicable. 
Another topic involves generalizing Harvey’s model to 
allow for different innovation variances for the different 
days.  We can easily do this by dropping the common 
variance assumption made for the random walk models 
given in (9), and following through with the model 
derivation as in Section 2.  However, if we convert the 
resulting model to RegComponent form as in 
Subsection 3.2, the transformation matrix  that will 
orthogonalize the 

7G

itε  via (12) will depend on the 
unknown variances.  This generalization cannot be 
accommodated by our current software.   
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Figure Captions 
 
Figure 1.  Estimated coefficients of the daily trading-day effects for retail sales in U.S. Department stores (excluding 
leased departments) during the period January 1967 to December 1998 
 
Figure 2.  Estimated coefficients of the daily trading-day effects for retail sales in U.S. Women’s clothing stores 
during the period January 1967 to December 1998.   
 
Legend for Figures  
 
The estimates of the stochastically time-varying coefficient using Bell’s model are plotted with a dark dashed line 
when the reference day corresponds to the day of the parameter estimate, and as dotted lines for other reference 
days.  Estimates from Harvey’s model are plotted as a solid line, and the estimated coefficient for the fixed-effect 
model appears as a dashed straight line.    
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