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ABSTRACT

A semi-implicit, two time-level, three-step iterative time-difference scheme is proposed for the two-
dimensional nonlinear shallow-water equations in a conservative flux form. After a semi-implicit lineariza-
tion of the governing equations, the linear gravity wave terms are time discretized implicitly using a
second-order trapezoidal scheme applied over each iterative step, whereas the nonlinear terms including
horizontal advection and other terms left over from the semi-implicit linearization are time discretized
explicitly using a third-order Runge–Kutta scheme. The effectiveness of the scheme in terms of numerical
accuracy, stability, and efficiency is established through a forced initial-boundary value problem studied
using a two-dimensional shallow-water model.

1. Introduction

Two-time-level Runge–Kutta schemes of the third
and fourth order (hereafter RK3 and RK4) have been
widely used in computational fluid dynamics, but not in
atmospheric numerical weather prediction (NWP). The
traditional scheme of choice in atmospheric NWP has
been the three-time-level leapfrog scheme, which is for-
mally second-order accurate in time with a rather re-
stricted Courant–Friedrichs–Lewy (CFL) limit on the
time step for linear computational stability. Unfortu-
nately, the leapfrog scheme also includes a computa-
tional mode in time that is usually controlled by a time
filter (Asselin 1972), which makes the time-filtered
leapfrog scheme only first-order accurate. In spite of
these limitations, the leapfrog scheme continues to be
used in various NWP models, because it is easy to code
and needs only one evaluation of the right side of prog-
nostic equations per time step.

Compared to the leapfrog scheme, the RK3 and RK4
schemes have two advantages: (a) being based on two
time levels, the RK schemes do not have a computa-
tional mode in time, and (b) the RK schemes have more
relaxed CFL restrictions that allow relatively large time
steps (Durran 1999, 68–69). Mathematical development

and numerical properties of the Runge–Kutta family of
schemes, in general, can be found in a number of text-
books including Butcher (1987) and Gear (1971). The
main disadvantage of the RK3 and RK4 schemes, com-
pared to the time-filtered leapfrog scheme, is that they,
respectively, require three and four evaluations of the
right side of the prognostic equations per time step.
Primarily for this reason, until recently the RK3 and
RK4 schemes have not been widely used in atmo-
spheric NWP models.

Recently, Wicker and Skamarock (2002) have sug-
gested that the RK3 scheme can be an “excellent”
choice in terms of numerical accuracy, stability, and
efficiency for atmospheric NWP models. In fact, they
have developed a time-split form of the explicit RK3
scheme that employs relatively small and large time
steps for the high-frequency modes (primarily acoustic
and gravity–inertia waves) and low-frequency meteoro-
logical modes (primarily advection), respectively. The
time-split RK3 scheme is currently being used in the
Advanced Research Weather Research and Forecast
(WRF) model (Skamarock et al. 2001).

An established alternative to the split-explicit time-
differencing approach adopted by Skamarock et al.
(2001) is the semi-implicit time-differencing scheme
(Robert 1969; Kwizak and Robert 1971) that employs a
trapezoidal implicit scheme for the high-frequency
modes mentioned above. The semi-implicit time-
difference scheme, in contrast to a fully explicit scheme,
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eliminates the CFL restriction on time step imposed by
the high-frequency modes. Thus, in terms of numerical
efficiency, the semi-implicit scheme provides an alter-
native to the split-explicit scheme mentioned earlier.

In this paper, a semi-implicit Runge–Kutta scheme is
developed for the two-dimensional nonlinear shallow-
water equations in flux convergence form. As noted by
a reviewer, there is a growing body of implicit and semi-
implicit Runge–Kutta schemes available in the litera-
ture. For example, Ascher et al. (1997) has proposed a
family of semi-implicit Runge–Kutta schemes applied
to the advection–diffusion equation; Butcher (1964) has
developed fully implicit Runge–Kutta schemes that re-
quire a simultaneous solution of equations at each time
step. We have not explored such alternative approaches
prior to developing the semi-implicit Runge–Kutta
scheme proposed here.

In section 2, we present the mathematical derivation
of the scheme, followed by some numerical results that
compare the semi-implicit RK scheme to the explicit
RK3 scheme and to the time-filtered semi-implicit leap-
frog scheme. A summary is presented in section 3. Fi-
nally, a linear stability analysis of the proposed scheme
is presented in the appendix.

2. The semi-implicit Runge–Kutta time-difference
scheme

a. Formulation of the scheme in a space-continuous
form

Let us consider a generic tendency equation:

��

�t
� F ���, �2.1�

where � is an arbitrary prognostic variable that is a
function of space and time. The explicit RK3 (hereafter
expRK3) time-difference scheme for (2.1) is expressed
as follows.

stage 1,

�* � �n �
�t

3
Fn; �2.2�

stage 2,

�** � �n �
�t

2
F*; and �2.3�

stage 3,

�n�1 � �n � �tF**; �2.4�

where F* � F(�*) and F** � F(�**). Here the su-
perscripts n and n � 1 denote the time-level indices,
while �t is the time step. The superscripted asterisk (*)

and double asterisk (**) denote the “provisional” time-
level indices. This particular form of the explicit RK3
scheme has also been adopted by Wicker and Skama-
rock (2002). However, there are many other possible
forms of the explicit RK3 schemes (see Butcher 1987)
that have not been explored in this paper.

Notice that the RK3 scheme given above is an ex-
plicit, three-step, iterative, two-level time-difference
scheme. In this scheme, (2.2) represents a predictor
step that is a forward scheme with a time step of �t/3
over the time interval [n�t, (n � 1/3)�t], (2.3) repre-
sents another predictor step that is a centered scheme
with a time step of �t/2 over the time interval [n�t,
(n � 1/2)�t], and (2.4) represents a corrector step that
is also a centered scheme with a time step of �t over the
time interval [n�t, (n � 1)�t]. Thus, the three iterative
steps of the explicit RK3 scheme can be rewritten in a
compact form,

�n��k � �n

�k�t
� F ��n��k�1� � Fn��k�1, �2.5�

where the subscript k � [1, 2, 3] denotes the three steps
of the RK3 scheme and {	k} is a sequence of real con-
stants:

�0 � 0, �1 � 1�3, �2 � 1�2, �3 � 1. �2.6�

For a semi-implicit extension of the explicit RK3
scheme, we first rewrite the generic tendency Eq. (2.1)
as

��

�t
� F ��� � L��� � N���, �2.7�

where L and N denote the “linear” and “nonlinear”
parts of F. This semi-implicit linearization of F is done
with respect to a time-independent reference state. In
general, the linear part L represents the high-frequency
wave solutions and the nonlinear part N represents the
low-frequency solutions representing advection and
other processes. For the proposed semi-implicit RK3
(hereafter siRK3) scheme, we employ a trapezoidal
scheme for the linear part L and the expRK3 scheme
for the nonlinear part N. Thus, in view of (2.5), the
three steps [k � 1, 2, 3] of the siRK3 scheme for (2.1)
can be written in a compact form:

�n��k � �n

�k�t
�

1
2


�1 � �g�Ln��k � �1 � �g�Ln�

� Nn��k�1, �2.8�

where �g is the uncentering parameter restricted by 0 �

�g � 1. Here, �g � 0 represents the trapezoidal scheme
that is second-order accurate, and �g � 1 represents the
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backward scheme that is first-order accurate. Introduc-
ing the real constants �

k and �
k , defined by

�k
� �

1
2

�1 � �g��k�t; �k
� �

1
2

�1 � �g��k�t

	k � 1, 2, 3, �2.9�

we can rewrite (2.8) as

�n��k � �n � �k
�Ln��k � �k

�Ln � ��k�t�Nn��k�1,

or

�n��k � �k
�Ln��k � �n � �k

�Ln � ��k�t�Nn��k�1 � Rk

	k � 1, 2, 3. �2.10�

The set of three equations given by (2.10) constitutes
the siRK3 scheme. Quite like the semi-implicit leapfrog
scheme (Kwizak and Robert 1971), the siRK3 scheme
is conditionally stable. The CFL restriction on �t is
basically dictated by the expRK3 scheme used for the
slow-moving (e.g., advective) processes. A traditional
von Neumann stability analysis of the siRK3 scheme is
presented in the appendix. Next, we apply the siRK3
scheme to the two-dimensional shallow-water equa-
tions.

The 2D nonlinear shallow-water equations in Carte-
sian coordinates (x, y) can be expressed in a flux con-
vergence form:

�U

�t
� fV � � �

�x
�Uu� �

�

�y
�U
��� g

�

�x �1
2

�2� � �Fx ,

�2.11�

�V

�t
� �fU � � �

�x
�Vu� �

�

�y
�V
��� g

�

�y �1
2

�2�
� �Fy, and �2.12�

��

�t
� ���U

�x
�

�V

�y � � S, �2.13�

where

U � �u, V � �
 , f�y� � f0 � �y. �2.14�

Here, u and � denote the velocity components in x and
y directions, respectively, and � denotes the depth of
the free surface; Fx and Fy denote the friction in x and
y directions, respectively, and S denotes the source or
sink of mass. For the semi-implicit linearization of the
shallow-water equations, we express the depth of the
free surface as

� � H � h, �2.15�

where H and h denote the mean depth of the shallow
layer and the perturbation depth of the free surface
from H. Then the system (2.11)–(2.13) is expressed as

�U

�t
� gH

�h

�x
� Nu, �2.16�

�V

�t
� gH

�h

�y
� N
 , and �2.17�

�h

�t
� ��U

�x
�

�V

�y � � Nh, �2.18�

where

Nu � � ���Uu�

�x
�

��U
�

�y �� fV �
g

2
�h2

�x
� �Fx , �2.19�

N
 � � ���Vu�

�x
�

��V
�

�y �� fU �
g

2
�h2

�y
� �Fy, and

�2.20�

Nh � S. �2.21�

As an intended consequence of the semi-implicit lin-
earization, the homogeneous system (2.16)–(2.18) gov-
erns the free-surface pure gravity waves with the uni-
form phase speed cg � (gH)1/2.

In view of the similarity between (2.7) and each of
(2.16)–(2.18), we obtain an analog of (2.10) for each of
the linearized shallow-water equations as

Un��k � �k
�gH

�hn��k

�x
� �Ru�k , �2.22�

Vn��k � �k
�gH

�hn��k

�y
� �R
�k, and

�2.23�

hn��k � �k
���Un��k

�x
�

�Vn��k

�y � � �Rh�k , �2.24�

where

�Ru�k � Un � �k
�gH

�hn

�x
� ��k�t�Nu

n��k�1, �2.25�

�R
 �k � Vn � �k
�gH

�hn

�y
� ��k�t�N 


n��k�1, and

�2.26�

�Rh�k � hn � �k
���Un

�x
�

�Vn

�y � � ��k�t�Nh
n��k�1.

�2.27�

Equations (2.22)–(2.24) applied in three successive
steps with k � 1, 2, 3, constitute the siRK3 time-

2918 M O N T H L Y W E A T H E R R E V I E W VOLUME 134



difference scheme for the shallow-water equations in a
space-continuous form. For a computational implemen-
tation of the scheme, we eliminate the unknown vari-
ables Un�	k and Vn�	k between (2.22), (2.23), and
(2.24), and obtain a Helmholtz-type elliptic equation
for the unknown variable, hn�	k:

� �2

�x2 �
�2

�y2�hn��k �
hn��k

gH��k
��2

�
1

gH��k
��2 ��k

����Ru�k

�x
�

��R
�k

�y �� �Rh�k� � ℜk.

�2.28�

For each step k � 1, 2, 3, after solving (2.28) for hn�	k,
we obtain Un�	k and Vn�	k from (2.22) and (2.23), re-
spectively.

For later comparison with the siRK3 scheme, we
have also developed a semi-implicit leapfrog (hereafter
siLF) scheme for the 2D shallow-water Eqs. (2.11)–
(2.13). Following the derivations of the siRK3 scheme
presented above, we can derive the siLF scheme as

Un�1 � ��gH
�hn�1

�x
� Ru, �2.29�

Vn�1 � ��gH
�hn�1

�y
� R
 , and �2.30�

� �2

�x2 �
�2

�y2�hn�1 �
hn�1

gH����2 � ℜ, �2.31�

where

�� � �1 � �g��t and �� � �1 � �g��t, �2.32�

and we have omitted the expressions for Ru, R�, and ℜ
for brevity. To suppress the separation of the solutions
at even and odd time steps due to the leapfrog scheme,
a time filter (Asselin 1972) is applied at each time step.
In this filter, the time average of a prognostic variable
� at time level n is given by

�n � �n �



2
��n�1 � 2�n � �n�1�, �2.33�

where � is the filter parameter and the overbar denotes
a time-averaged quantity. For the numerical accuracy
and stability properties of the Asselin-filtered leapfrog
scheme, see Durran (1999, 60–65).

b. Space discretization of the equations

We have already discretized the shallow-water Eqs.
(2.11)–(2.13) in time using the siRK3 and siLF schemes,
but we have left the horizontal coordinates in a differ-
ential form. In this section, we briefly describe the main

features of the horizontal grid and discretization used
for the siRK3 scheme. An identical approach, not de-
tailed here, is also used for the siLF scheme (2.29)–
(2.31).

We employ an unstaggered A grid (Arakawa and
Lamb 1977) to discretize the �-plane geometry, with
the uniform grid size �x � �y � �. The horizontal
domain is bounded in x and y. The semidiscrete system
made up of (2.28), (2.22), and (2.23) is solved over the
rectangular grid domain [nx, ny] that is surrounded by
a boundary zone of six extra grid points that constitute
an energy-absorbing boundary-relaxation zone (e.g.,
Kar and Turco 1995). We have employed second-order
centered-difference schemes to discretize the spatial-
derivative terms that appear in (Nu , N� , Ru , R� , Rh , and
ℜh)k given by (2.19), (2.20), (2.25), (2.26), (2.27), and
(2.28), respectively.

The Laplacian operator in (2.28) is discretized as

�2��i,j �
1

�2 ��i�1,j � �i�1,j � �i,j�1 � �i,j�1 � 4�i,j�,

�2.34�

using a compact five-point stencil. This particular
choice helps eliminate grid-scale gravity wave noise on
the unstaggered A grid as shown in Kar (2000). The
resulting space-discrete form of the elliptic Eq. (2.28) is
solved iteratively by a generalized conjugate residual
(GCR) algorithm (Skamarock et al. 1997). The spatial
derivatives of hn�	k in (2.22) and (2.23) are also finite
differenced using second-order centered schemes. Fi-
nally, to control nonlinear computational instability as-
sociated with the horizontal advection, a scale-selective
spatial filter (Purser 1987) has been applied at each
time step to u, �, and h. This particular filter is defined
in the x direction as

�̃i �
1

4096

2668�i � 1080��i�1 � �i�1�

� 405��i�2 � �i�2� � 20��i�3 � �i�3�

� 90��i�4 � �i�4� � 36��i�5 � �i�5�

� 5��i�6 � �i�6��, �2.35�

and defined similarly in the y direction. The spectral
response of this filter displayed by the curve labeled (4,
1) in Fig. 1f of Purser (1987) shows the effective sup-
pression of wavelengths between two and four grid in-
tervals. No other numerical damping or diffusion has
been used in the model.

c. Numerical results

We have implemented three time-difference
schemes, namely, the expRK3, siRK3, and siLF
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schemes in the shallow-water model described above.
For numerical time integration, a forced initial-
boundary value problem is set up on a limited-area,
midlatitude � plane, with a time-dependent but station-
ary point source and point sink of mass of equal
strength aligned symmetrically in the middle of the do-
main with nx � ny � 100 and � � 100 km. The point
source and sink of mass vary sinusoidally in time with a
period of 2 days and are of maximum strengths �100 m
min�1. The � plane is centered at 45°N, with f0 �
1.03 � 10�4 s�1 and � � 1.62 � 10�11 m�1 s�1. The
other parameters are g � 9.81 m s�1 and H � 10 km.
Thus, the pure gravity wave speed is cg � 313.2 m s�1,
and the radius of deformation, �R � (gH)1/2/f0, � 3040
km. The source and sink of mass are placed roughly one
radius of deformation apart, at the grid points (34, 50)
and (66, 50), respectively. The time integrations are
started from rest and continued for 6 days.

For later convenience, we introduce a gravity wave
Courant number (�g) and an advective Courant num-
ber (�a) defined as

�g �
cg�t

�
and �a �

V�t

�
, �2.36�

where V denotes the absolute magnitude of the maxi-
mum horizontal wind speed attained during the time
integrations of the model. Also, let (�t)expRK3, (�t)siRK3,
and (�t)siLF denote the time steps used by the expRK3,
siRK3, and siLF schemes, respectively.

For the expRK3 scheme, we set (�t)expRK3 � 6 min.
Then, using (2.36) one obtains (�g)expRK3 � 1.12 � 1.73,
which is required for linear computational stability
(Durran 1999, 68–69) of the free-surface gravity waves.
For the siRK3 and siLF schemes, however, the choice
of time steps is limited by the linear computational sta-
bility of horizontal advection, as both schemes are un-
conditionally stable, by design, for the free-surface
gravity waves. We have tested a number of differ-
ent values for (�t)siRK3 and (�t)siLF, but here we only
show the results for (�t)siRK3 � (�t)siLF � 90 min �
15(�t)expRK3 and (�t)siRK3 � 180 min � 30(�t)expRK3.
For such choices of time step, the corresponding gravity
wave Courant numbers are obtained from (2.36) as
(�g)siRK3 � (�g)siLF � 16.9 � 1 and (�g)siRK3 � 33.8 �

1. Thus, both the siRK3 and siLF schemes are uncon-
ditionally stable for the surface gravity waves. Here, the
expRK3 scheme requires 1440 time steps to complete
the 6-day time integration. With time steps of 90 and
180 min, the semi-implicit schemes require 96 and 48
time steps, respectively, to complete the 6-day time in-
tegration.

As indicated above, both the siRK3 and siLF
schemes are conditionally stable for the horizontal ad-

vection in the model. Thus, the CFL restrictions for the
siRK3 and siLF schemes are given by (�a)siRK3 � 1.73
and (�a)siLF � 1, respectively. For the 6-day time inte-
grations that we have carried out, the model-predicted,
maximum current speed is V � 13 m s�1. Thus, from
(2.36), the advective Courant numbers for the siRK3
scheme are given by (�a) ≅ 0.7 and 1.4 for (�t)siRK3 � 90
and 180 min, respectively. Similarly, the advective Cou-
rant number for the siLF scheme is given by (�a)siLF ≅
0.7 for (�t)siLF � 90 min. Clearly, for the present hori-
zontal resolution, the “largest” time steps for the siRK3
and siLF schemes are (�t)siRK3 � 180 min and
(�t)siLF � 90 min. Note that the uncentering parameter
�g is set to zero for both the siRK3 and siLF schemes.

Figures 1, 2, and 3 show the expRK3, siRK3, and
siLF scheme based shallow-water models predicted
perturbation free-surface heights at day 1, day 2,
and day 5 of the time integrations. Each figure con-
sists of four panels: (a) for the expRK3 scheme with
(�t)expRK3 � 6 min; (b) and (c) for the siRK3 scheme
with (�t)siRK3 � 90 min and 180 min, respectively; and
(d) for the siLF scheme with (�t)siLF � 90 min. The
perturbation height field shows the time evolution (not
the entire sequence) of a forced large-scale wave-one
pattern that is influenced by the � effect. We notice that
on day 1, the overall solution for the siRK3 scheme is
reasonably close to that for the expRK3 scheme and the
siLF scheme. On day 2, compared to day 1, we notice
that the low and high centers have switched positions
because of the 2-day periodicity of the mass-source and
mass-sink terms. We also notice that except for some
differences near the source and sink areas, the siRK3
solutions are again reasonably close to the expRK3 and
siLF solutions. The same observation continues to hold
acceptably well into day 5, as shown in Fig. 3. These
results demonstrate that over a period of several days,
the siRK3 scheme is numerically stable with a solution
that is nearly as accurate as that of the expRK3 scheme,
with the semi-implicit scheme using a time step that is
an order of magnitude larger than that used by the fully
explicit scheme. Note that the siLF scheme also per-
forms acceptably well compared to both the expRK3
and siRK3 schemes.

Using the model-predicted u, �, and h, we have also
computed a number of diagnostic quantities, namely,
the area-integrated mass (M), total energy (E), and
absolute potential enstrophy (�) defined by

M � ���, E � �1
2

��u2 � 
2� �
1
2

g�2�, and

� � � 1
2� �f �

�


�x
�

�u

�y�2�, �2.37�
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where

��� � 		 � dx dy. �2.38�

Note that by design of the spatial differencing, the area-
integrated total mass is conserved in the time-
continuous case. For the shallow-water equations in a

continuous form (2.11)–(2.13), it is readily verified that
M, E, and � are conserved in time, provided there are
no friction and mass source and sink terms. Even
though the current test involves a time-dependent
source and sink of mass, it is of interest to look into the
time series of M, E, and � computed from the model
solutions.

FIG. 1. Solution at day 1 of the 2D shallow-water model (a) using the explicit RK3 scheme with a time step of 6 min, (b) using the
semi-implicit RK3 scheme with a time step of 90 min, (c) using the semi-implicit RK3 scheme with a time step of 180 min, and (d) using
the semi-implicit leapfrog scheme with a time step of 90 min. Contours of perturbation height (m) are plotted at an interval of 5 m.
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Figure 4 shows the time series of the model-
computed M, E, and � for the expRK3, siRK3, and
siLF schemes. The plotted variables are normalized by
their respective initial values. The time variations of
both M and E, irrespective of the schemes, are bounded
and relatively small with a quasi-periodicity of 2 days.
The siRK3 and siLF solutions closely follow the
expRK3 solution, particularly in terms of phase. In

terms of amplitude, the siRK3 and siLF schemes regis-
ter slightly lower absolute magnitudes compared to the
expRK3 scheme. This particular aspect of the siRK3
solution is slightly enhanced when the time step is in-
creased. Figure 4c shows that the model-computed ab-
solute potential enstrophy � also remains bounded and
shows very similar phase variations in time for all
schemes. Compared with the expRK3 and siLF schemes,

FIG. 2. As in Fig. 1 but valid at day 2 of the time integration.
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the siRK3 scheme seems to incur a systematic increase
in �. Such an increase, however, amounts to about only
0.15% in the time-averaged sense.

Clearly, the sirk3 scheme allows for the use of rela-
tively large time steps compared to the expRK3
scheme, but it has the computational burden of solving
three elliptic equations per time step. To address the
issue of computational efficiency, we have computed

the total CPU time used by the siRK3 scheme for the
6-day run and compared it with the same used by the
expRK3 and siLF schemes. As indicated earlier, the
elliptic equations associated with the siRK3 and siLF
schemes are solved iteratively using a GCR algorithm
(see Skamarock et al. 1997, p. 591), where the iterative-
convergence parameter � is set to a value 10�6. The
shallow-water model was run on a Dell desktop com-

FIG. 3. As in Fig. 1 but valid at day 5 of the time integration.
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puter (Intel Pentium 4, 2.80 GHz) using Red Hat Linux
version 3 as the operating system. The total CPU time
used by the expRK3 scheme, for a 6-day run of the
shallow-water model is 28.42 s. The corresponding CPU
times used by the siRK3 scheme are 13.94 and 10.29 s
for (�t)siRK3 � 90 and 180 min, respectively. The total
CPU time used by the siLF scheme is 7.87 s for
(�t)siLF � 90 min. Thus, the siRK3 scheme with a time
step of 180 min costs nearly 30% more compared to the
siLF scheme with a time step of 90 min. Note that the
GCR solver used here does not include a precondi-
tioner that could accelerate its convergence and

thereby potentially improve upon the current efficiency
of the siRK3 scheme compared to the siLF scheme.

3. Summary

In the framework of a two-dimensional shallow-
water model in flux convergence form, a semi-implicit
Runge–Kutta time-difference scheme has been devel-
oped. The proposed scheme essentially extends an es-
tablished explicit third-order Runge–Kutta (expRK3)
time-difference scheme into a semi-implicit Runge–
Kutta (siRK3) scheme that employs (a) a second-order
trapezoidal scheme for the gravity wave terms, at each
of the three iterative steps of the third-order Runge–
Kutta scheme, but (b) continues to employ the explicit
third-order Runge–Kutta scheme for the nonlinear
terms including horizontal fluxes of mass and momen-
tum. A linear stability analysis of the proposed scheme
is presented in the appendix. The siRK3 scheme re-
quires a two-dimensional Helmholtz-type elliptic equa-
tion to be solved at each iterative step of the scheme. A
conjugate-residual solver without a preconditioner has
been used in the model to solve the aforementioned
elliptic equation.

The effectiveness of the siRK3 scheme, compared to
the expRK3 and the semi-implicit (time filtered) leap-
frog (hereafter siLF) schemes in terms of numerical
stability, accuracy, and efficiency, is established
through an idealized numerical time integration of the
shallow-water model. The numerical results show that
even though the siRK3 scheme treats the gravity waves
with second-order accuracy in time, compared to the
third-order accuracy of the expRK3 scheme, the siRK3
provides a stable, reasonably accurate, and numerically
efficient solution with relatively large time steps. How-
ever, the siRK3 scheme costs about 30% more in terms
of CPU time compared to the siLF scheme. The addi-
tional computational burden is perhaps bearable in
view of the third-order accuracy in time obtained for
horizontal advection using the siRK3 scheme, com-
pared to less than second-order accuracy in time for the
same process using the Asselin-filtered siLF scheme.

The proposed siRK3 scheme was implemented in the
shallow-water equations in a flux convergence form.
This ensures conservation of total mass; however, the
same scheme can also be easily applied to the advective
form of the shallow-water equations.

The proposed siRK3 scheme can be implemented in
three-dimensional hydrostatic and nonhydrostatic mod-
els, once the semi-implicit linearization of the appro-
priate governing equations is established. The proposed
scheme can also be adapted to semi-Lagrangian dynam-
ics, if we employ a backward-trajectory-based semi-

FIG. 4. Time evolution of the area-integrated (a) mass, (b) total
energy, and (c) absolute potential enstrophy. Each quantity is
normalized by its initial value. The solid curve is for the explicit
RK3 scheme with �t � 6 min. The dotted and dashed curves are
for the semi-implicit RK3 scheme with �t � 90 and 180 min,
respectively. The dotted–dashed curve is for the semi-implicit
leapfrog scheme with �t � 90 min.
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Lagrangian advection scheme to each of the three it-
erative steps of the scheme. Some of these issues will be
addressed in the future.
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APPENDIX

Linear Stability Analysis of the siRK3 Scheme

To perform a von Neumann stability analysis of the
siRK3 scheme, let us substitute

L��� � i�� and N��� � i�� �A.1�

into (2.10). Here, � and � denote the relatively high and
low frequencies of �, and i � ��1. Then, (2.10) can
be expanded into the following component steps:

�1 � i�1�g
���t��* � 
1 � i�1��g

���t � ��t���n,

�A.2�

�1 � i�2�g
���t��** � �1 � i�2�g

���t��n

� �i�2��t��*, and �A.3�

�1 � i�g
���t��n�1 � �1 � i�g

���t��n � �i��t��**,

�A.4�

where

�g
� �

1
2

�1 � �g� and �g
� �

1
2

�1 � �g�. �A.5�

Eliminating the variables �* and �** from (A.2)–
(A.4), we can derive the (complex) amplification factor
� defined by

� � �n�1��n, �A.6�

in terms of the constants ��
g and ��

g , and the variables
��t and ��t. Note that for stability of the siRK3
scheme, one must satisfy the condition |� | � 1.

When � � 0 and � � 0, (2.10) reduces to the expRK3
scheme with the amplification factor

� � �1 �
1
2

���t�2�� i���t �
1
6

���t�3�. �A.7�

This leads to

|� |2 � 1 �
1

12
���t�4 �

1
36

���t�6, �A.8�

so that for the stability of the expRK3 scheme, |� | � 1
or |��t | � �3 � 1.73 must be satisfied.

However, when � � 0 and � � 0, the algebraic ex-
pression (not shown) for |� | does not readily yield an
explicit inequality in terms of ��t and ��t. To address
this issue numerically, we have plotted the contours of
|� | as a function of ��t and ��t in Fig. A1. Here we
have assumed �g � 0, for simplicity. The dashed con-
tours of |� | valued greater than unity display the un-
stable region. The region of stability is recognized by
the solid contours of |� | valued less than unity. Clearly,
the stable region is limited by ��t � 1.73, for all values
of ��t. Thus, the siRK3 scheme is conditionally stable
with the stability restriction, ��t � 1.73, which is essen-
tially dictated by the explicit RK3 part of the scheme, as
expected.
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