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Exploring Collective Dynamics in Large-Scale Networks

What?

Why?

Our Twist?

We show some fundamental ideas behind our modeling approaches to
study collective dynamics in large-scale networks, and here we focus on 
the close relationship of network scale and time scale in modeling and 
simulation.

We seek models that can help network researchers and designers to 
understand the global implications of proposed control mechanisms for 
large-scale networks.

When viewed as a whole, networks might exhibit emergent properties, 
which cannot be deduced from properties of individual components. For 
example, we find that spatial-temporal evolution of network congestion 
mainly results from complex interactions among many traffic flows 
exchanged between various source-destination pairs, and routed among 
many shared nodes. Collective phenomena, which may emerge at large 
scale, can turn a collection of interactions into an individual, coherent 
whole. We explore some approaches to understand such global 
emergence. We expect that identifying differences between small systems 
and large systems, and even subsystems, in network modeling and 
simulation will have important engineering values.



Our Cellular Automata Approach
We use a two-dimensional cellular automata (CA) grid to reveal collective behavior from abstract 
mathematical models of individual network nodes. In the square grid with L×L nodes, each cell 
corresponds to a node with four neighbors. The queue length of each node represents the state of 
the cell. Such CA models can provide a discrete representation of the continuous behavior of a large-
scale network. This provides a natural mechanism to investigate behavior at multiple time scales.

To mitigate any long-memory in each node due to the input process, we generate traffic by “on/off” sources 
exponentially distributed with respective parameters �on and �off.

At each time step, every node forwards in parallel a packet to one of its nearest neighbors. Each packet is routed along 
the shortest path. The “ripple effect” occurs on the packet level because the finer-scale description contains the 
coarser-scale description.

TCP is used as a feedback control mechanism, which plays an important role in collective dynamics at a fine time scale.



Multiple time scales from small to large
To give an intuition about measures of interest at multiple time scales, in the left-hand column below 
we show three time series of the queue length, Nr, at three time scales, T = 1, 10, and 100 (time 
steps) with the same system size L = 16. In the right-hand column, we show three time series of the 
aggregate arrival traffic, xout, which denotes the number of packets consumed by a destination node 
during T at three time scales, T = 40, 100, and 500. We find that as T increases, the queue length and 
the consumed traffic change more violently. This suggests that dynamic behaviors at different time 
scales show different characteristics, which cannot be substituted for each other in simulations. 



Understanding the emergence of collective dynamics
Collective dynamics denotes behavior that parts of a system exhibit together that they would not 
exhibit individually. We seek to understand the emergence of collective dynamics arising from 
detailed structure, behavior, and relationships among individual nodes.

We start with a disordered system so that any propagating influence will quickly disperse and eventually be destroyed 
by random perturbations; thus, distant parts of the network are basically independent. Correlation gradually increases
over time from feedback control mechanisms that adapt to changes in TCP state in all directions. Eventually, correlation 
expands into a global order that arises as the complex system evolves over time.
The emergent phenomena occurs at a global or macro level, in contrast to the micro-level of the components. 
Observation of emergence, therefore, relates to behavior on this macro level. We have to ignore some details to “see the 
forest” conveniently when we describe the correlative pattern in evolving networks. 
To study collective dynamics of the model in both space and time, we develop a method: map the three dimensional 
structure of the network state to a binary pattern where the state of each node is congested or not congested, based 
on a threshold Y (Y = 5 in the checkerboard figure below). The middle column below shows the time series of the 
number of congested nodes (y) at three time scales T = 10, 100, and 1000. In the right-hand column appear two time 
series of y (with T = 100 for Y = 5 and 30), and the corresponding power spectra, Sy(f), of y. These power spectra are 
1/f-like, with similar slopes, near – 1.2. So we find that our method is robust w.r.t. the congestion threshold. 



Multiple network scales from small to large
How do collective dynamics differ between small and large networks? Correlation provides a useful measure to 
study transition a disordered to ordered state. The top row of three figures below shows the power spectra Sout (f ) 
of xout with three system sizes, L = 8, 16 and 32. These curves appear as 1/f noise, and have slopes near – 1.4. The 
bottom row of three figures shows the power spectra of y with three system sizes, L = 8, 16 and 32. These curves 
appear as 1/f noise, and have slopes about – 1.0 ~ – 1.2. 1/f noise suggests that correlation extends over a wide 
range of time scales, and provides indication of cooperative effect. Here, such long-range dependence may arise 
from complex collective interactions in the model.

Long-range dependence decays as T increases, but should emerge at larger time scale as system size L increases. 
This  suggests that the multiple timescale characteristics of the traffic patterns might be related to complex interactions. 
The low frequency component decays faster in a small network as T increases. 



Sub-network scales vs. small networks
A sub-area within a larger network may have different features as compared with a small network of the same size. 
In the checkerboard below, we illustrate a binary network pattern with L = 32 and indicate two sub-areas with 
system sizes l = 8 and 16. The two graphs below compare power spectra of y, the number of congested nodes. In 
the top graph, we compare a network of size L = 8 with a sub-area of size l = 8 in a network of size L = 32. In the 
bottom graph, we show similar results for a network of L = 16 compared to a sub-area of size l = 16 in a network of 
size L =32. These results show that sub-areas may more likely keep the 1/f noise feature for the same system size 
and time scale. Isolating a sub-area completely from the original system when simulating a network, ignores 
relationships and interdependencies, and may yield inaccurate analyses in some aspects of dynamic behavior in a 
large-scale network. This means that network scale and time scale are two closely related facets in the collective 
dynamics of a network. 



Expected impact of our work

Improved understanding of global emergence in large-scale networks, which 
should help to guide the analysis of network measurements

Help network researchers and designers to understand the global 
implications of proposed control mechanisms for large-scale networks 
without ignoring the close relationship between network scale and time scale 
in modeling and simulation


