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3D modeling

What would be different now,
if 20 years ago we had access to the

computing, storage, and transmission,
power of today?
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Which 3D representation would be popular?

∪

2D 1D 0D
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Would we have “digitized” space (and time)

• Sample space (and time) on a regular 3D (or 4D) grid
– 4Kx4Kx4K(x4K)

• May need higher resolution temporarily model for solvers

• Store one or several scalar or vector values per sample
– F[x,y,z,t] is a scalar, a vector, a tensor

• Use a fixed precision format for the values
– 1 bit for Solid Modeling: in or out
– 14 bits for scalar fields: gives you better than 1/10,000 precision

• May need to adjust scope and unit to the problem

• Assume that nothing surprising happens between the samples
– Linear or higher order interpolation is sufficiently accurate
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Is such a discretization viable?

• Huge storage requirements, especially for 4D data sets
• Very costly transmission and processing (paging) costs
• The resolution and scale of the data continue to increase rapidly

– Model a human down to the molecules
– Model a city down to noticeable details
– Model the earth weather and ocean systems

• The storage and processing costs of voxel models do not scale

• Need a new computing technology, or…. compression
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Compression approaches

• Lower the resolution (regular subsampling)
– But this creates aliasing artifacts and can miss important details

• Compress the values
– Predict new value from previously processed ones
– Compress the residues

• Sub-sample where possible while preserving desired accuracy
– Need to encode where the samples are: Coordinates?
– Need to know which sets of samples to use for interpolation: Meshes?

(x,y,z)
(x,y,z)

t

P(x,y,z,t)

t

P(x,y,z,t)

structured unstructured



 7Jarek Rossignac, CoC / GVU / IRIS, Georgia Tech Meshing, 2004

LORENZO

with
Lorenzo Ibarria (GaTech)
Peter Lindstrom (LLNL)

Andrzej Szymczak (GaTech)

L. Ibarria, P. Lindstrom,  J. Rossignac, A. Szymczak, Out-of-core compression and
decompression of large n-dimensional scalar fields, Eurographics 2003.

Compression of structured nD
data through prediction
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Compute and compress residues

• A common technique for compressing the value F(s) of a
scalar function F at a samples s is to compute a prediction P(s)
and to encode the residue R(s)=F(s)–P(s).

• If the encoder and decoder perform the same prediction, P(s),
using previously transmitted data, then the decoder may
decode R(s) and restore the correct value F(s) as P(s)+R(s).

• If the prediction is accurate, the absolute values of the residues
are small and their distribution is biased towards zero.

• Residues of quantized (fixed precision) representations of
sampled values are compressed using entropy or arithmetic
coding that allocate fewer bits to more frequent values.
– Quantization is lossy, but can guarantee any desired absolute accuracy

 9Jarek Rossignac, CoC / GVU / IRIS, Georgia Tech Meshing, 2004

Interpolating/extrapolating predictions

• Interpolating prediction
– Send a lower-resolution model first and then refine it progressively
– Predict each new value from values at lower-resolution neighbors

• Use a linear or even cubic predictor
• p = (b+c)/2 + ((b+c)/2 – (a+b)/2))/8

– Lower-resolution models are expensive
• The relative signal frequency is increased
• They are more difficult to predict

• Extrapolating predictor
– Predict each value from the values of previously decoded neighbors
– All values may be predicted at the same resolution
– Better suited for streaming and selective downloading

• Small footprint

a b c dp

?

?
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Lorenzo: an extrapolating predictor

• Consider function F(x,y,z,t) sampled over a regular 4D grid
– Let Dx(x,y,z,t)=F(x+1,y,z,t)–F(x,y,z,t)
– Let Dy(x,y,z,t)=Dx(x,y+1,z,t)–Dx(x,y,z,t)
– Let Dz(x,y,z,t)=Dy(x,y,z+1,t)–Dy(x,y,z,t)
– Let Dt(x,y,z,t)=Dz(x,y,z,t+1)–Dz(x,y,z,t)

• Predict F(x+1, y+1, z+1, t+1) using Dt(x,y,z,t)=0

• Predict F at corner of hypercube
from values at the other corners

– Set origin at opposite corner
• 2D: F(1,1)=F(1,0)+F(0,1)-F(0,0)
• 3D: F(1,1,1)= ∑a–∑b+c
• 4D: F(1,1,1,1)=∑n1–∑n2+ ∑n3–n4

– ni is reachable through i edges

t

F(x,y,z,t)

(x,y,z)
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Lorenzo offers competitive compression

• In 4D, the Lorenzo predictor is perfect (zero residues) for
fields that are cubic polynomials in (x, y, z, t).
– Consequently, it behaves well in smooth areas

• It only accesses the immediate neighbors (7 in 3D, 15 in 4D)
and hence has less inertia than higher order predictors
– Thus, it recovers quickly from passing over noise or discontinuity

0 1 2 3 4

Bits per Symbol

Smooth 64^4

Harsh 64^4

Harsh 128^4

D
a
ta

se
t

Comparison with Wavelets

Lorenzo Predictor Cubic Wavelets
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• Very simple and fast
For t=0 to tmax do
  For z=0 to zmax do
    For y=0 to ymax do
      For x=0 to xmax do {
        Predict P(x,y,z,t) from visited neighbors
        Encode/decode the correction}

• The encoder and decoder only need to access the current and
the previous slice of the data
– Encoding/decoding requires a small footprint (good for out-of-core)
– Encoding/decoding may be performed as the data is streamed
– We can start from any slice (selective transmission)

Lorenzo has computational advantages
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Visualizing structured data

• How do you examine structured data sets?
– Imagine that F(s,t) is the temperature at any point s of this room at time t

• For 3D data sets (fixed t), make an animation:
– show a semi translucent volume (volume rendering) produces images

that are difficult to interpret, unless they can be rotated in realtime
– sweeping a cross-section plane through the room and showing a color-

coded temperature on it
– evolving p and showing the deformation of the isosurface S(p)

• For 4D data sets?
– Let the user control time and rotate interactively the volumetric

rendering of the time-slice
– Sweeping a cross-section of evolving p would produce a different

movie for each time slice t.
• The scientist would need to watch them all and integrate in her head how

they relate to each other.
• It is better to provide her with the means to control p and t interactively.

But how would she chose to evolve p and t? It is a large 2D space!
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SAFARI

with
Peter Lindstrom (LLNL)
Lutz Kettner (UNC)
Valerio Pascucci (LLNL)
Jack Snoeyink (UNC-Chapel Hill)

L. Kettner, J. Rossignac, J. Snoeyink, The Safari Interface for Visualizing Time-dependent
Volume Data Using Iso-Surfaces and a Control Plane, CGTA 25:1-2(2003), pages 97-116

A. Mascarenhas, J. Snoeyink, Seed Set Computation for Isosurface Extraction in Time-
varying Volumetric Data

Interactive isosurface-based
inspection of 4D structured data
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Safari: P-T terrain
• Want to visualize isosurfaces S(p,t)={(x,y,z): F(x,y,z,t)=p}
• Color Safari terrain using precomputed characteristics of S(p,t)
• User moves cursor in the control plane: (p,t)

– Plan, plot, annotate SAFARI path in p-t plane
• Selected Isosurface can be inspected interactively in 3D

t

(x,y,z)

F(x,y,z,t)

P-T terrain

characteristic
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Extracting Iso-surfaces quickly

• Must extract all shells of S(p,t) from 4D volumetric data
• Each shell may be retrieved from a seed without having to visit

the whole 4D field (invade it by walking from cell to cell)
• Problem: quickly find the seeds for S(p,t)
• Solution: study the evolution of characteristic points

– Study time-evolution of Reeb-graphs
– Trace its critical points through time (Jacobi sets)

• Snoyink, Mascarenhas, Edelsbrunner, Harer, Pascucci
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Stability of iso-surface characteristics

• Topological properties may be used to characterize an
isosurface and to color the corresponding point on the SAFARI
p-t terrain
– Number of components, holes, handles

• How stable are these characteristics with respect to the
accuracy of the scalar field values computed or measured at the
samples?

• How dependent are they on the choice of the isosurface
extraction algorithm?
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Local stability formulation (with F. Palop)

• Will the perturbation of F(s) by a small amount E or an edge
collapse (simplification) alter the topology of any iso-surface?

• What if the values of all samples have a tolerance of ±E?

• Analysis cannot blindly rely on topology measures
– without understanding the impact of numeric errors on it
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MINIMAC

with
C. Andujar, P. Brunet, A. Chica, I. Navazo, A. Vinacua (UPC)

“Optimal Iso-Surfaces", C Andujar, P Brunet, A Chica, I Navazo, J Rossignac, A Vinacua.
CAD Conference, 2004. Best Paper Award.

"Optimizing the topological and combinatorial complexity of isosurfaces", P Brunet, A Chica, I
Navazo, J Rossignac, A Vinacua. Journal of Computer Aided Design.

Minimizing the computational and
topological complexity of iso-surfaces

extracted from structured data
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• Threshold the samples: green (below p, or inside) or red (above p or outside)
• A cube (not a voxel) spans interstice between 8 samples
• Each vertex of isosurface lies on lattice-edge between red and green vertices
• Only cubes with mixed (red/green) vertices contribute to the isosurface
• The contribution is bounded by edges on mixed (red/green) faces
• These edges form loops on the boundary of each mixed cube
• These loops bound sheets (portions of isosurface contributed by the cube)

• Is the isosurface connectivity defined
      by the red/green labeling?

Isosurface connectivity in 3D
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• We can choose how to cut an x-face (face with alternating red/green vertices)

• If a cube has more than one loop, we can choose whether to interpolate them
in a single sheet, or have separate sheets

• We make choices that minimize different measures of “complexity”
– triangle count T and (genus H or number of shells S)

• Triangulating each loop independently reduces T
• Increasing L reduces T (=4V–2L) and (H–S) (= (V–L)/2)

Exploiting ambiguities

?

?
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How to maximize L ?

• Cube with no x-faces:
– Nothing to decide

• Cube with 1 x-face:
– Slash it one way and then flip if this adds a loop on the cube

• Flip changes by 1 the number of loops for both incident cubes
• Flipping an x-face changes L by –2, 0, or 2 (can’t improve on our strategy)

• Cubes with several x-faces:
– Build their connectivity graphs (x-faces are links)
– Propagate choices from leaves (cubes with a single x-face)
– Break cycles arbitrarily and resume

• Analysis should use optimal connectivity/topology measures

?

 23Jarek Rossignac, CoC / GVU / IRIS, Georgia Tech Meshing, 2004

Transmitting isosurfaces and animations

• Isosurfaces could be transmitted implicitly by sending the
volumetric data used to derive them
– But the scientist may not be interested in all the isosurfaces
– And the volumetric data set may be far too large to be transmitted or to

fit on the client station
• Animations could be transmitted implicitly by sending the

initial conditions and the physical attributes or designer’s
directives
– But the computation of the simulation (including collisions and

dynamics) may be too expensive to be rederived on the client

• Therefore, it is important to develop compact encodings for
static or time-dependent (iso)surfaces
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EDGEBREAKER

with
Andrzej Szymczak (Georgia Tech)

"Edgebreaker: Connectivity compression for triangle meshes", J. Rossignac. IEEE Transactions on
Visualization and Computer Graphics, Vol. 5, No. 1, pp. 47-61, January - March 1999. GVU Tech.
Report GIT-GVU-98-35.

"Wrap&Zip decompression of the connectivity of triangle meshes compressed with Edgebreaker", J.
Rossignac and A. Szymczak, Journal of Computational Geometry, Theory and Applications, Volume
14, Issue 1-3, pp. 119-135, November 1999. GVU Tech. Report GIT-GVU-99-08.

“3D compression made simple: Edgebreaker on a Corner Table”, J. Rossignac, A. Safonova, A.
Szymczak, J. Rossignac, Shape Modeling International Conference, pp: 278-283, Genoa, Italy May
2001.

Tri-mesh representation
and compression
(a quick review)
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Corner Table: connectivity of Tri-Meshes

• Store table of tuples, one per corner c
– c.v is the vertex of corner c
– c.o is the opposite corner (cached for speed)

• Other links need not be stored
– c.t = c DIV 3
– c.n = 3 c.t + (c+1)MOD 3, c.p=c.n.n
– c.l = c.p.o and c.r =  c.n.o

vertex 1  x  y  z

vertex 2  x  y  z

vertex 3  x  y  z

vertex 4  x  y  z

Triangle 0 corner 0  1    7

Triangle 0 corner 1  2    8

Triangle 0 corner 2  3    5

Triangle 1 corner 3  2    9

Triangle 1 corner 4  1    6

Triangle 1 corner 5  4    2

v o

1

2

3
40

1
2

3

4 5

 26Jarek Rossignac, CoC / GVU / IRIS, Georgia Tech Meshing, 2004

Compute the O table from V

For Each corner a Do
For Each corner b Do

If (a.n.v==b.p.v && a.p.v==a.n.v) { O[a]:=b; O[b]:=a } ;

Computing adjacency, O, from incidence, V

a

a.n.v=b.p.v

b

a.n a.p
b.nb.p

a.p.v=b.n.v
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1. List all of triplets {min(c.n.v, c.p.v), max(c.n.v, c.p.v), c}
– 230, 131, 122, 143, 244, 125, …

2. Bucket-sort the triplets:
– 122, 125 ...131... 143 ...230...244 …

3. Pair-up consecutive entries 2k and 2k+1
– (122, 125)...131... 143...230...244…

4. Their corners are opposite
– (122,125)...131...143...230...244…

A faster computation of the O table

Triangle 1 corner 0  1         a

Triangle 1 corner 1  2         b

Triangle 1 corner 2  3         c

Triangle 2 corner 3  2         c

Triangle 2 corner 4  1         d

Triangle 2 corner 5  4         e

v o a

Triangle 1 corner 0  1         a

Triangle 1 corner 1  2         b

Triangle 1 corner 2  3    5   c

Triangle 2 corner 3  2         c

Triangle 2 corner 4  1         d

Triangle 2 corner 5  4    2   e

v o a

1

2

3
40

1
2

3

4 5

0

1
2

3

4 5

1

2

3
4
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? ?
x

?
x

?
x

?
x

?
x

?

?

?

Edgebreaker is a state machine

C

L

R

S ?

E

if tip vertex not marked then C
else if left neighbor marked

then if right neighbor marked then E else L
else if right neighbor marked then R else S

Encode sequence of codes
C: 0, L:110, R: 101, S:100, E:111

and vertices
as encountered by C operations

Marked (visited)

Not marked

? Next to be encoded

To-do stack

x Last visited

Only 2T bits (because |C|=V=T/2)
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Edgebreaker compression steps and symbols

C? ?

L? ?

R? ?

? S ?

? E?

x

x

x

x

x

C
C

CC
C

C

C
C

R

R

R

CCCCRCCRCRC…

R
L EC

RRR
L

E

…CRSRLECRRRLE
C R

S
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recursive procedure compress (c)
repeat {

c.t.m:=1; # mark the triangle as visited
if c.v.m == 0 # test whether tip vertex was visited
   then { write(vertices, c.v); # append vertex index to “vertices”

write(clers, C); # append encoding of C to “clers”
c.v.m:= 1; # mark tip vertex as visited
c:=c.r } # continue with the right neighbor

else if c.r.t.m==1 # test whether right triangle was visited
   then if c.l.t.m== 1 # test whether left triangle was visited

   then {write(clers, E); # append encoding of E to clers string
               return } # exit (or return from recursive call)
   else {write(clers, R); # append encoding of R to clers string
               c:=c.l } # move to left triangle

   else if c.l.t.m == 1 # test whether left triangle was visited
   then {write(clers, L); # append encoding of L to clers string
                c:=c.r } # move to right triangle
   else {write(clers, S); # append encoding of S to clers string
               compress(c.r); # recursive call to visit right branch first
                c:=c.l } } # move to left triangle

2T bit guaranteed with: C=0, L=110, R=101, S=100, E=111. Entropy: 1T bit

Edgebreaker compression algorithm
Source: http://www.gvu.gatech.edu/~jarek/edgebreaker

C R
S R

L EC
RRR

L
E a

b

C
C
CCC

C

C
C

R
R

R

clers=CCCCRCCRCRC…

clers=…CRSRLECRRRLE
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Wrap&Zip EB decompression (with Szymczak)

Orient bounding edges while building triangle tree at decompression.
All oriented clockwise (up tree), except for C and the seed triangle:

Then ZIP all pairs of adjacent bounding edges when both point
away from their common vertex.

C L E R Sseed

CRSRLECRRRLE

C R
S R

L EC
RRR

L
E

C R
S R

L EC
R

RR
L

E
C

S
C R

R
L

R
RR

E
L E

Linear time complexity. Zip only after L and E.
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Wrap&Zip more complex example
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Vertex data compression

1. Reorder
2. Normalize and quantize
3. Predict
4. Compress residues
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Reordering the vertices

• Vertices transmitted in the order in which they are first
encountered by the Edgebreaker traversal
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Integers are best for coordinates

• Most Tri-meshes are only approximations of real shapes
– Imprecise measures or toleranced dimensions
– Limited accuracy in geometric computation
– Truncated coordinates to nearest float or double

• You should use very short integers to represent their coordinates
– Floats are bad for geometry

• Accuracy is not uniform: it grows with distance to origin
• Most geometric models/computations need uniform accuracy

– Integers are perfect
• Uniform accuracy through out the model
• More precise than floats for same number of bits

– Don’t need 32 bits
• 11 bits are usually sufficient

– they guarantee 0.5mm accuracy  for an engine block
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Vertex normalization and quantization

• Represent coordinates as normalized integers
– Coordinates relative to bounding rectangle
– Select unit for desired resolution [0..2B–1]
– Vertex coordinates = B-bit integers (6<B<14) Error EB

(7,7)

(0,0) Bunny after an overdose
of quantrization
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• Displacement from previous vertex (Deering)
• Parallelogram (Touma&Gotsman)
• Tree ancestors (Taubin&Rossignac)

– Construct vertex spanning tree
– Predict using linear combination of 4 ancestors

• Compute optimal coefficients (a,b,c,d)
– Encode corrective vector (X)
– Compresses vertex location to 12 bits per vertex

• Vertex split (Hoppe)
• Crowns (Pajarola&Rossignac)

Techniques for predicting a vertex

V=aA+bB+cC+dD+X

A
B

C
D

V

A B

C A+B–C
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Techniques for encoding the residues

• Normalize and quantize the coordinates
• Predict each vertex from previously encountered ones
• Compute the residues (actual – predicted) locations

– If predictions are good, residues are biased towards zero
• Use variable length coding to compress residues

– More frequent symbols (0, –1, 1,–2, 2…) will have shorter codes then
less frequent symbols (297, –319…)
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Combined compression and improvements

Total: 1 byte per triangle
• Connectivity compression is guaranteed to yield less than 2 bits

per triangle (improved Edgebreaker guarantees 1.8)
– In practice it yields about 1 bit per triangle (arithmetic coding)
– Can we further compress connectivity without loss?

• Why not predict it?

• Good geometry compression yields about 4 bits per
coordinate (varies widely with smoothness of the model,
density of sampling, quantization used).
– This is about 6 bits per triangle (T=2V…)
– What can we do to further increase total compression?

• Simplify the model (introduce loss)
• Resample (optimize connectivity and vertex location for compression)
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Delphi: Connectivity Prediction

with
Volker Coors

“Guess Connectivity: Delphi Encoding in Edgebreaker”, V. Coors and J. Rossignac, TVC
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Delphi: Guessed Connectivity = 0.74T bits

• Predict clers symbols from decoded mesh, encode corrections
Already traversed covered
area

Active loop

c
Xdg(c)

VrVl

v

G
E

c.v

c

c.n

c c

c

c.p

c.o

Figure 2: Connectivity guessed by
parallelogram prediction

Depending on the model,
between 51% and 97%
of guesses are correct.

83% correct guesses: 0.74T bits

Must encode wrongly guessed S-offsets!
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Apollo sequence encoding of Delphi

Figure 6: Example Apollo encoding: Let us assume that we guessed the first triangle of the example correctly as type C. We
than predict the tip of the right triangle at g(c) using the parallelogram rule. SinceBecause the distance of g(c) and the active
border is too large, we guess again a type C triangle. Unfortunately, that guess was wrong. In fact, the right triangle, shown
in gray color in the first picture, is of type R. In the Apollo sequence we encode this situation as (f,R) and continue the
traversal with the left triangle of R. The prediction scheme is performed for all triangle in Edgebreaker sequence and leads to
the following Apollo sequence: ((t), (f, R), (t), (t), (t), (t), (t), (t), (t), (f,R), (t), (t), (t)). With a trivial encoding scheme we can
compress this sequence with 16 bits instead of 32 bits for the corresponding CLERS sequence.
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Edgebereaker compression contributors
Rossignac
(Atlanta):
Edgebreaker

Szymczak
(Atlanta):
regularity,
resampling

King
(Atlanta):
1.84Tbits,
quadsSafonova

(CMU):
Holes, code

Coors
(Germany):
Prediction

Lopes (Brasil):
Handles Gotsman (Israel):

Polygons

Isenburg
(UCS):
Reversi

Gumhold
(Germany):
1.80T bits

Shikhare
(India):
translation

Attene (Italy):
retiling
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Resampling of surfaces

Still not satisfied? Willing to lose some accuracy?
You are ready for resampling!

Most resampling compression schemes do the following:
• Compute samples on or near the original surface
• Reduce their density to significantly reduce storage
• Make them more regularly spaced to improve connectivity

compression and prediction
– This is the opposite to what simplification does
– Simplification removes vertices in flat areas

• Use a single correction value per vertex by constraining the
location of each vertex to an a priori defined curve (axis aligned
line, circle)
– No longer need to send corrections for the x, y, and z coordinates
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PRM
with

Andrzej Szymczak
Davis King

“Piecewise Regular Meshes: Construction and Compression”. A. Szymczak, J. Rossignac, and D.
King. Graphics Models, Special Issue on Processing of Large Polygonal Meshes, 2002.
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Piecewise Regular Meshes (PRM)
• Split surface into terrain-like reliefs
• Resample each relief on a regular grid
• Merge reliefs and fill topological cracks
• Encode with Edgebreaker
• Compress with range coder (2 char context)
• Parallelogram prediction (x,y) & z

RESULTS

• 1T bits total
– 89% Geometry
–   8% Connectivity of regular part
–   3% Irregular triangles

• with error < 0.02% radius of
enclosing ball

 47Jarek Rossignac, CoC / GVU / IRIS, Georgia Tech Meshing, 2004

SwingWrapper

with
M. Attene, B. Falcidieno, M. Spagnuolo (CNR, Italy)

“SwingWrapper: Retiling Triangle Meshes for Better Compression”, M. Attene, B. Falcidieno, M. Spagnuolo and
J. Rossignac, Technical Report. March 2002.

 “SwingWrapper: Retiling Triangle Meshes for Better Compression”, Marco Attene, Bianca Falcidieno, Michela
Spagnuolo and Jarek Rossignac. ACM Transactions in Graphics, Volume 22, No. 4 (October 2003).
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SwingWrapper: semi-regular retiling

• Resample mesh by unfolding triangles
– Follow Edgebreaker traversal

• Try to form regular triangles
– Each new edge has length  L
– All C triangles (50%) are Isosceles
– Fill cracks with irregular (L,R,S,E) triangles

• Encode connectivity with Edgebreaker
• Encode one hinge angle per vertex

C
x

!
x

180° 2/3L 180°+!

L

L
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SwingWrapper results: 0.4Tb total (0.01%)

C

L

E

R

S

C

L

E

R

S

134,074T

WRL=4,100,000B

13,642T

L2 error 0.007%

3.5Tb total

0.36Tb wrt original T

678-to-1 compression

1505T

L2 error 0.15%

5.2Tb total

0.06Tb wrt original T

4000-to-1 compression
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Error of resampling is in the chamfers

• Sharp features were missed by resampling (chamfered)
• This is where most of the error is concentrated
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Sharpen&Bend

with
M. Attene, B. Falcidieno, M. Spagnuolo

“Edge-Sharpener: A geometric filter for recovering sharp features in uniform triangulations”, Marco Attene (IME Genova, Italy),

Bianca Falcidieno (IME Genova, Italy), Jarek Rossignac, and Michela Spagnuolo (IME Genova, Italy). Eurographics

Symposium on Geometry Processing (S GP). June 2003. Aachen, Germany.

“ Sharpen&Bend: Recovering curved edges in triangle meshes produced by feature-insensitive sampling”  M. Attene, B. Falcidieno, J.

Rossignac and M. Spagnuolo
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Details of Edge-Sharpening

• Seven trivial steps of coloring edges, vertices, triangles
– Using only input from their neighbors
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Subdivide them to restore sharp features

• Split chamfer edges
– Snap new vertices to nearest point on intersection of 2 planes

• Split chamfer triangles
– Snap new vertices to intersection of 3 planes
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Smoothing surfaces, bending sharp features

• Butterfly subdivision for smooth parts

• New subdivision mask preserves sharpness of features

Fig. 12: Stencils used by Bender. ‘p’ is the point being computed as a linear combination of the depicted neighboring vertices. All the other possible
neighbors are assumed to have zero coefficient. Sharp edges are shown in red.
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Sharpen&Bend results
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Automatic reduction of resampling error

• Sharp features are missed by resampling
• Resampling replaces smooth surfaces (or close tiled

approximations of them) by coarse polyhedral models
• Sharpen&Bend restores the sharp features and the smooth

surfaces without any further information or user input
• Significantly reduces the error due to resampling

Fig. 1: An original model (a) was re-meshed through a feature-insensitive algorithm (b). The sharp edges and corners were restored by EdgeSharpener (c). Then, Bender faired the smooth
regions without rounding off the sharp features reconstructed by EdgeSharpener (d). For each model, the maximum distance from the original surface (Emax) and the mean-squared distortion
(L2) are reported. All the values are percent of the bounding-box diagonal.
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From surfaces to animations

• Many 3D animations are represented (and transmitted) as series
of 3D frames (triangle meshes)

• To compress an animation, one may simply compress each 3D
frame independently
– Great if you decompress directly on the graphics hardware (Deering).

• However, better compressions may be obtained by treating the
whole animation (or a short clip) as a whole and compressing it
by exploiting spatial and temporal coherence.

• Many animations have fixed connectivity
– It needs to be transmitted only once

• Unless you simplify the different frames independently
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DYNAPACK
with

L. Ibarria (GaTech)
P. Lindstrom (LLNL)

“Dynapack: Space-Time compression of the 3D animations of triangle meshes with fixed connectivity”, L.
Ibarria and J. Rossignac. ACM SIGGRAPH Symposium on Computer Animation, 2003.

“Clippacker: Simplification and Compression of 3D Animations”, Lorenzo Ibarria, Peter Lindstrom, Jarek
Rossignac

Compression and
simplification of

animations
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Space or time predictors

• Assume same connectivity for all frames
– Send connectivity up-front

• Compressed with Edgebreaker

• Could predict the trajectory of each vertex independently
– predict(c,f) = c.n.v.g(f-1) or higher order (Time only predictor)
– Does not exploit spatial coherence

• Could predict vertex location in each frame (parallelogram)
– predict(c,f) = c.n.v.g(f)+c.p.v.g(f)–c.o.v.g(f) (Space only predictor)
– Does not exploit temporal coherence

c.
o

c.
n

c.
p

c Predict(c,f)

c.n.v.g(f)

c.p.v.g(f)

c.o.v.g(f)
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Extended Lorenzo Predictor (ELP)

Use parallelogram to predict the speed of the next vertex from neighbors’ speed
predict(c,f) = c.v.g(f–1) + ( c.n.v.g(f) – c.n.v.g(f–1) )

                              + ( c.p.v.g(f) – c.p.v.g(f–1) ) – ( c.o.v.g(f) + c.o.v.g(f–1) )
– Exploits both space and time coherence
– Perfect predictor for translations

c.n.v.g(f)

predict(c,f)c.o.v.g(f)

c.p.v.g(f)

c

c.n

c.p

c.o

c.v.g(f–1)c.o.v.g(f–1)

c.p.v.g(f–1)

c.n.v.g(f–1)

c

c.n

c.p

c.o
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Replica Predictor

• predict(c,f) = c.o.v.g(f)+aA’+bB’+cC’
– Expresses a vertex in coordinate system of neighbor triangle
– Exact predictor for all rigid body transforms and scaling

A

B

D

aA

bB

cC

c.o.v.g(f–1) c.p.v.g(f–1)

c.n.v.g(f–1)

c.v.g(f–1)
A’

B’

D’

aA’

bB'

cC'

c.o.v.g(f)

c.p.v.g(f)

c.n.v.g(f)

Predict(v,f)
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Dynapack Algorithm

dynapack(c) { #compression of a component of a frame
IF c == –1 THEN RETURN; #return if a border is reached
IF NOT c.t.m THEN { #if triangle c.t not yet visited

IF NOT c.v.m THEN { #if tip vertex not yet visited
encode(c.v.g( f ) – predict(c, f ) ) #encode residue coordinates
c.v.m := TRUE}; #mark the tip vertex as visited

c.t.m := TRUE; #mark the triangle as visited
dynapack(c.r); #try to go to the right neighbor
dynapack(c.l);}} #try to go to the left neighbor

• Use Edgebreaker for the connectivity and the geometry of the first frame
• Use Dynapack (modified Edgebreaker) for the geometry of other frames
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Analysis of compression results

• As scientists, we must ensure that the compression results we
report are not simply due to the fact that we use oversampled
original models or a particular quantization

• We have compared the various approaches used models at
– Various (sub)sampling resolutions
– Various quantization
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Quantization: controlled loss

11 bits

9 bits 7 bits

Original
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Dynapack results: sub-sampled Head
• Space-only predictor is poor (does not exploit frame-to-frame coherence)
• Other 3 are similar at 13 bit quantization
• Replica is the best for coarser quantization

2.021.390.940.60Replica

2.051.420.960.61ELP

2.021.521.130.80Time Only

9.166.984.943.07Space only

13 Bit11 Bit9 Bit7 BitHead Shaping
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Dynapack results : Chicken Crossing
• ELP and Replica are much better than the other two
• They yield similar results

2.912.351.831.37Replica
3.012.281.791.37ELP
6.915.033.291.78Time Only
7.195.203.371.90Space only

13 Bit11 Bit9 Bit7 BitChicken Crossing Chicken Crossing:

 © Microsoft, courtesy of John Snyder

•400 Frames

•31 connected components

•3030 vertices

•5664 triangles
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From surfaces to volumes

• Let’s now consider the compression of tetrahedral meshes
• Can we extend to tet-meshes the simple Corner Table data

structure originally developed for tri-mehes?
• Can we extend the simple Edgebreaker compression scheme to

tet-meshes?

 68Jarek Rossignac, CoC / GVU / IRIS, Georgia Tech Meshing, 2004

Standard representation for tet meshes

Vertices and values:
3x16+k bits/vertex

x y z c
x y z cvertex 1

vertex 2
vertex 3 x y z c

Without compression incidence dominates storage
4Tlog2(V) bits

Tet/vertex incidence:
4xlog2(V) bits/tet

1  2  3 6

3  2 4 6

6  5  8 4
tet 4 7  5 6  2
tet 5

Tet 1

4  2  5 8
Tet 2

tet 3

tet 6 8  5 1  5

3  2 4  5

6  5  8 1
 

tet 17

tet 7

4  2  5 2
tet 8

tet 9

tet 18 8  5 1  2

1  2  3 4

…. T ~ 6.5V

Need to cache adjacency
to accelerate mesh
traversal and processing
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A Tet Corner Table

• A corner represents and entry in the tet/vertex incidence table
• Write them linearly in the V[4T] table

Tet/vertex incidence:
4xlog2(V) bits/tet

1  2  3 6

3  2 4 6

6  5  8 4
tet 4 7  5 6  2
tet 5

Tet 1

4  2  5 8
Tet 2

tet 3

tet 6 8  5 1  5

3  2 4  5

6  5  8 1
 

tet 17

tet 7

4  2  5 2
tet 8

tet 9

tet 18 8  5 1  2

1  2  3 4

….

1
2
3
4
3
2
4
6
4
.

V
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Reorder V to orient the tets

• List the 4 indices for each tet in increasing value order (a,b,c,d)
• If (b,c,d) appears clockwise from a, flip indices 3 and 4

1
2
3
4
3
2
4
6
4
.

V
1
2
3
4
2
3
4
6
4
.

V

d

a

b

c

c

a

b

d

1
2
4
3
2
3
4
6
4
.

V
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Compute an O table

• c.o is the integer index to the opposite corner
• The twist {0,1, or 2} can be cached,

• but is simple and fast to re-compute

1
2
4
3
2
3
4
6
4
.

V
6
x
x
x
x
x
x
1
8
.

O

c

c.o

c

c.o
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Wedge operators

• A wedge w
– ordered pair (a,b) of corners

• Operators derived
– From V

• 4x4 look-up table
– From V and O

• Using twist
w

w.b

w.l w.r

w.b.r
w.b.l

w.c

w.n

w.p
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Corner Table representation of tet meshes
• Store only Integer tables V[4T] and O[4T]

– The integer reference c.v to its vertex
– The integer reference c.o to the opposite corner
– No need to store the list of incident tets per vertex

• Other references are cheap to re-compute when needed
– c.t = c DIV 4
– c.n is c–3, when c MOD 4 is 2, and c+1 otherwise
– The twist {0,1, or 2} could be cached,

• but is simpler and fast to re-compute it when needed (local test)

• We can now easily walk from one tet to its neighbors using wedge operators
– Can spiral around edges and vertices (as in Edgebreaker)
– Can also walk on the tri-mesh boundary a tet-mesh as with Edgebreaker without

building an explicit representation of the tri-mesh boundary

• The code for edge collapse, vertex splits,and tet subdivision is simple
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Grow&Fold

with
Andrzej Szymczak (Georgia Tech)

"Grow&Fold: Compression of Tetrahedral Meshes", A. Szymczak and J. Rossignac.
Proc. ACM Symposium on Solid Modeling, June 1999, pp. 54-64. GVU Tech. Report
GIT-GVU-99-02.

An extension to tet meshes of the
EdgeBreaker compression and of

the Wrap&Zip decompression
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Grow&Fold compression
• Encode tet-tree (3bits/tet)

– Visit tet spanning tree and for each tet,
• you enter from parent through one face
• you may access 0, 1, 2, or 3 children through the other faces
• Mark faces that lead to children (3 bits per tet)

– This 3T bits encode a tet tree
•  an “unfolded” tet mesh

• Mark “fold” edges on external faces (4bits/tet)
– Need to know how to fold back the tet-tree
– For each external face, mark zero or one edge (2 bits per face)
– On average: 2 free faces per tet

• Needs additional “glue” info
– Pairs of external faces
– That need to be glued for cycles

• Results: about 7T bits
– Improves considerably with Entropy

1

2 3
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TetraStreamer

with

Urs Bischoff (GaTech)
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View-order transmission

Encode a tet mesh in back-to-front visibility order
Stream it in a compressed format (connectivity: 1/7 bits per tet)
Great for out-of-core processing:

The decoder needs only to maintain a tri mesh rep of a slice of the tet mesh
and evolve it through vertex insertion, vertex deletions, and edge flips.

Implementation with wedge operators is simple and efficient
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TetraStreamer Compression details

• Start by transmitting Tri-mesh of back facing boundary
– Compressed with Edgebreaker

• It is the initial sheet to be swept forward, one tet at a time
• Compression visits tets in visibility layers

– Identify tets to be transmitted
• all the back faces  of the tet must be on the sheet

– Marks where new tets are to be attached to the sheet
• Single back face: Mark Triangle (I operation)
• Two back faces: Mark edge (F operation)
• Three back faces: Mark valence-3 vertex (D operation) or edge (F operation)

– Encode the masks in batches
• For each triangle indicate whether it is the only back face of a new tet
• For each edge indicate whether it bounds two back faces of a new tet
• Many bits need not be transmitted (context-based prediction)
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Tetrastreamer Decompression details

• Maintains Corner Table for the sheet
• Decode the batches, reads the masks while traversing the sheet
• Identify where new tets are to be attached
• Perform the operations one tet at a time

– Visualize the new tet
– Advance the sheet past it (update corner table)

• Operation
– I (vertex insertion)

– F (edge flip)

– D (Delete vertex)
• Identified from F
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Tetrastreamer results

• Current approach restricted to convex meshes
– Yes, this is limiting, but the approach is simple and elegant
– May inspire new research
– We are working on extensions (trying to preserve some of the elegance)

• Assumes no visibility lock (a back-to-front order exists)
– Extension leads to interesting topological and combinatorial questions

• Compress the connectivity down to about 1.7 bits per tet
– Better than all previous approaches

• In addition to compression offers view dependent order
• Reduces the foot print (in-core memory requirement) to a

single tri-mesh slice through the data (size of the front or back
boundary)
– Great for streaming the mesh for visualization (and more?)
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Towards a multi-resolution transmission

• What if we don’t need the full accuracy now?
– Should we transmit a compressed lower resolution first and then transmit

one or more compressed upgrades that may be used by the decoder to
refine the approximation

• The benefits of such a progressive transmission are especially
important when we expect that a full resolution may rarely be
needed.

• Can we do this for surfaces, volumes, and hyper-volumes?
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CPM

with
Renato Pajarola

Progressive coding of tri-meshes

"Compressed Progressive Meshes", R. Pajarola and J. Rossignac, IEEE Transactions on Visualization and
Computer Graphics, Volume 6, No. 1, pp. 79-93, January-March  2000. GVU Tech. Report GIT-GVU-00-04.

“Squeeze: Fast and Progressive Decompression of Triangle Meshes”, R. Pajarola and J. Rossignac, Computer
Graphics International conference, Switzerland, pp. 173-182, June 2000. GVU Tech. Report GIT-GVU-00-05.
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Progressive refinements of tri-meshes

• Previously covered connectivity compression is loss-less
• It is complemented by the compression of vertex data

– 3D coordinates, normals, colors, texture coordinates
– Exploiting a lossy quantization

• When these two are insufficient, we can simplify the tri-mesh
– Reduce triangle and vertex count through a sequence of edge-collapses
– Select sequence that minimizes the resulting (geometric or visual) error

• We can use progressive transmission that increases accuracy
– Download a compressed crude model first
– You may start navigation right away using the crude model
– When more accuracy is needed, download upgrades and refine the model
– Often you may not need to download the complete model at all
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Mesh refinement

?
simplification
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Simplifying a single frame
• Grow clusters of vertices one vertex at a time (through edge-collapses)
• Collapse a cluster of vertices into a single tip v*

• For each cluster define an error function Q(v) as the sum of the squares of
the distances between v and all planes defined by the vertices of the cluster,
its sharp edges, and its sharp vertices [

– Ronfard&Rossignac96, Garland&Heckbert97, Hoppe99, Lindstrom&Turk00]

• Compute v* as the vertex minimizing Q(v) [Ronfard&Rossignac96]
• Use Q(v*) as an estimate of the error that would result from merging two

clusters through an edge-collapse
• Collapse edge with lowest error first

v’ v

Garland
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CPM (Pajarola&Rossignac 99)

• Make batches of vertex splits (inverse of edge-collapse)

• In each batch, mark which vertices are to be split

mesh incidence
updates

Example

not marked

marked
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CPM encoding of connectivity

• Avoid log(V) cost by marking all vertices
– 1 bit per vertex in batch
– 30% to 50% vertices are split in each batch

• Improved encoding of cut-edges
– log(6)+log(2)

• Amortized total connectivity cost 3.6T bits
– 1.5 b/T for marking vertices (amortized)
– 2.1 b/T for identifying cut edges

c
j d

f
k

h

2

1

!i !i+1{vsplits}

{vsplits}
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CPM butterfly prediction

• Predict geometry based on previous LOD
– approximation using weighted sum of incident vertices and subset of topology 2

neighbors
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• Bunny
– 9666 triangles, 10 LODs, 11.3T bits (3.6 connectivity + 7.7 geometry)

• Horse
– 21622 triangles, 9 LODs, 10.6T bits (3.5 + 7.1)

• Skull
– 21904 triangles, 7 LODs, 10.9T bits (3.4 + 7.5)

• Fohe
– 7240 triangles, 7 LODs, 13.7T bits (3.5 + 10.1)

• Fandisk
– 12950 triangles, 9 LODs, 11.4T bits (3.7 + 7.7)

Total amortized cost per triangle
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Evaluating progressive transmission

Bits transmitted (or time)

Er
ro

r f
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d 

m
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Better

Time to first picture

Midway accuracy

Time to full accuracy
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bits
crude initial model CPM

125%

ap
pr

ox
im

at
io

n 
er

ro
r

TS
100%

PFS
254%

Estimated at 18T bits,
fewer LODs

TS [Taubin, Rossignac 98]
PFS [Taubin et al. 98]
CPM [Pajarola, Rossignac 99]

Comparison with TS and PFS
2832 vertices
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Multiresolution transmission of tet meshes

Can we extend CPM to tet meshes?
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IMPLANTSPRAY

with
Renato Pajarola

Andrzej Szymczak

Georgia Tech, Atlanta

Progressive Transmission
of Tet Meshes

ImplantSpray: Pajarola&Rossignac&Szymczak, IEEE VIS’99
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Decimating/refining a tet mesh

• Vertex split refinement operator
– Extension of vertex split for triangle meshes  [Staadt&Gross98]
– Defined by split-vertex and set of incident cut-faces
– Series of tetrahedral meshes defined by sequence of vertex-splits

• Send crude model and batches of refinement updates
– Mark split-vertices
– Encode cut-faces

split-vertex

ecol

vsplit

cut-faces
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Identifying cut-faces for the split-vertex

• A vertex has roughly
– 12 incident edges
– 30 incident triangular faces
– 20 incident tetrahedra

• A split-vertex has about 6 cut-faces
• We must select about 6 triangular faces out of 30
• Hull: The boundary of the star of the split-vertex

– A manifold surface
• Skirt: Cut-faces

– connected surface around split-vertex
• The skirt boundary

– a cycle of k edges in the hull
– closed path on planar triangle graph

cut-faces

split-vertex

hull

skirt
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Results of Progressive Tetrahedral Meshes

• Turbine blades
– blades and exterior as tetrahedral mesh
– 576576 tetrahedra
– 49 LODs
– 5.02 bits per tetrahedron

• connectivity information
• no geometry data

– Compare to indexed face list:
• 4x17 bits per tetrahedron
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Going 4D?

• Can we scale these approaches to 4D data
• Represent a time-varying 3D scalar field as an irregular mesh of

pentatopes (penta-mesh)
• Simplify the penta-mesh and compress it
• Compute upgrades and compress them
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4D

with
Peter Linstrom (LLNL)

Ajith Mascarenhas (UNC)
Jack Snoeyink (UNC)

Compression and progressive
transmission of 4D meshes
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Use unstructured mesh for 4D data?

(x,y,z)

t

P(x,y,z,t)

(x,y,z)

t

P(x,y,z,t)
pentatope in 5D
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Simplify penta-meshes by collapsing edges

• Meshes combine vertices and simplicies:
– 2D (2 tris per vertex),
– 3D (4.5-to-7 tets per vertex),
– 4D (about 28 pentas per vertex)

• We considered simplify mesh by collapsing an edge at a time
– Pick edges to

• minimize error
• avoid topology changes

• But could not do it
– Full resolution penta mesh

requires too much storage
• Naïve data structure: 244 words per sample
• Corner Table (28 corners per sample x 2 indices per corner, + match?)

split-vertex

ecol

vsplit

cut-faces
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Incremental refinements (Mascarenhas, Snoeyink)
• Implemented insertion heuristic to build interpolating mesh

– Start with few pentas
– Add points with greatest error to 4D Delaunay & re-triangulate

• Resulting penta mesh requires lots of storage
• Iso-surfaces extracted from low resolution penta meshes

exhibit severe aliasing artifacts

vertices:        16K               45K               72K

pentatopes:  0.4M             1.0M              1.7M
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Summary

• Structured data
– Compression: Lorenzo Predictor, simple, small footprint, streaming

• Isosurfaces S(p,t)
– Selection: Safari navigation on the P-T plane colored with characteristic
– Extraction: Jacobi sets of 4D data
– Optimization: Reduce tri count and handles or components

• Animations
– Compression: Dynapack predicts vertex trajectories from neighbors (ELP)

• Unstructured tet meshes
– Compression: Grow&Fold encodes tet-spanning tree and fold edges
– Tetrastreamer: back-to-front streaming, 1.7 bits per tet, small footprint
– Progressive: ImplantSpray encodes batches of mesh refinements

• Unstructured penta meshes
– Simplification: can’t store the full resolution model
– Refinement: Incremental insertion, aliasing artifacts in isosurfaces


