Petaflop Computing for
Protein Folding

Shannon K. Kuntz, Richard C. Murphy, Michael T. Niemier,
Jesus lzaguirre, and Peter M. Kogge

1 Introduction

Protein Folding is considered one of today’s most significant “grand challenge” problems
and, together with other computational chemistry problems, has been one of the driving
forces for the development of bigger, better, faster supercomputers. IBM is currently
proposing to build the “Blue Gene” [5], a petaflop computer to tackle the protein folding
problem, while Silicon Graphics has been continually working to produce more powerful,
multiprocessor systems for researchers working in this area [8]. Protein folding has sig-
nificance in numerous areas of health care including better understanding of diseases and
the development of drugs to combat them. However, the size, complexity, and time scale
of the three-dimensional structures in protein folding make simulation extremely memory
and computationally intensive. Therefore, larger more powerful machines are necessary
to enable the larger, more accurate simulations needed to further understand this complex
process.

This paper addresses the mapping of protein folding to a million-processor array for
petaflop performance. A new scalability model is defined which incorporates the charac-
teristics of highly-distributed multithreaded architectures. The model is used to compare
the scalability of various algorithms and decompositions and facilitates the prototyping
of a million node Processing-In-Memory array to achieve petaflop performance during a
molecular dynamics simulation typical of protein folding. In addition, simulations are used
to validate the model and parallel implementations are demonstrated. Although parallel
implementations of MD simulations exist, none have been attempted at the scale that we
are proposing and more accurate algorithmic complexity models are needed to assist in
such attempts.

2000/12/:
page 1

e

2000/12/-
page 2

e

2

2 The Core of Protein Folding

Protein folding is used to describe the interactions and motions of proteins due to the forces
around them. Protein folding is estimated to take 10's of microseconds and, due to its
complexity, cannot be fully simulated with the current computing technology. Molecular
dynamics solves the classical equations of motion for a systeM atbms interacting
according to a potential energy force field and, as such, can provide a good estimate of
protein folding.

In a molecular dynamics simulation there are two main components of each time
step, calculating forces and updating the positions and velocities of atoms. The force com-
putations make up the majority of the simulation time and can be divided into two types,
bonded and non-bonded with the non-bonded force computations making up 80 to 95 per-
cent of the computation and involving many pairwise interactions often over long distances.
However, because the effects of these forces over very long distances are minimal a cutoff
is often used to compute only the force contributions from those atoms within the cutoff
radius, reducing the number of force computations needed.

Also, for accurate solutions the time step must be very small, on the order of fem-
toseconds. This small time step poses a serious limitation to the total time of simulation
because even a nanosecond simulation would involve a million time steps, therefore a mil-
lion calculations for energy, position and velocity. This is a problem not only because of
the time it would take to execute these computations but because of the degradation of
accuracy during such long simulation runs. Finally, molecular dynamics simulations may
contain a large number of atoms making it difficult to simulate on a traditional memory
machine.

Our work focuses on mapping the core computations of molecular dynamics simula-
tion to a PIM array utilizing the mobile thread model. The issues involved in decomposing
the computations as well as the structure of the PIM array and execution model will be
explained in more detail in the following sections.

3 PIM Array Configuration

The system to which we are mapping the MD simulation is an array of Processing-In-
Memory (PIM) chips. In classic systems, processing logic and memory logic are placed on
separate chips. However, new fabrication processes have allowed both processor and mem-
ory to be placed on the same chip, creating PIMs. On a given PIM chip you may have more
than one processor/memory pair termed a node. Each of these nodes can communicate
with other nodes on chip very quickly while they must communicate with nodes on other
chips via the communication network. As such, PIMs provide the basic building blocks for
many different types of systems.

A PIM system could come in several forms (see Figure 1): it could be an array con-
sisting entirely of PIM nodes; relatively small array which constituted part of the memory
hierarchy of a conventional processor; or one or more levels of a complex parallel ma-
chine’s memory hierarchy. Given the diverging assumptions needed by any of the choices
above, this work will concentrate on inter-PIM memory addressing and communication.

Since the purpose of PIM is to utilize the on-chip bandwidth of a local memory macro
(hence eliminating the von Neumann bottleneck), emphasis will be placed on the ability to

CONVENTIONAL
CPU

A HOMOGENIOUS PIM ARRAY PIM ASTHE MEMORY FOR A CONVENTIONAL SYSTEM

MEMORY
HIERARCHY

OTHER PROCESSORS

PIM ASPART OF A LARGE MEMORY HIERARCHY

Figure 1. Types of PIM Systems

effectively use local memory. Since a full row of memory (approximately 2 K-bits) must
be read during each memory access, and this full row can be reused at low cost, effective
re-use of the data in these rows is also important. Thus, the question of data placement will
consist of several parts: placement within the array; placement within a given node; and
placement within an “open row” and potentially even a “wide word” (256 bits).

The PIM communication mechanism is assumed to parael Parcels as defined
in [3] have the capability both of simple message-based communication, and of thread
initiation (similar to active messages [12]). Since the system is multithreaded, special
attention will be made in regard to code access and loading, as well as the potential for
covering memory access latency with threads. It should be noted that because parcels can
contain the state of a running thread, theymoemerely a light-weight remote procedure
call.

The fabrication process being considered is IBM’s Blue Logic SA-27E [4]. Assum-
ing we can fabricate .13 PIM chips in this technology we can determine many of the
configuration and performance characteristics of the PIM chips in our array. These basic
configuration and performance numbers are: 250,000 chips, 4 nodes per chip, 8 MB of
memory per node, 13 ns memory random access time, 6 ns memory access time in page
mode, and a simple 32-bit RISC processor running at 1 GHz. Given these numbers we
have250, 000 x4 = 1 million processors running &GHz which gives us the potential for
petaflop performance.

We must also consider the interconnection network. The configuration that provides
the best performance is one of the parameters we need to determine. A hypercube with
an assumed 4 Gb/s is one that we are considering, based on work by Dally and Horowitz
at Stanford [9]. The Data Vortex [2], a high bandwidth optical network with a parallel

2000/12/:
page 3

e

cylindrical topology, is another possibility as it boasts 640 Gb/s on each port. As we further
develop our model and simulations we will be better able to analyze the interconnection
configuration.

4 The Execution Model

Previous work [6] indicates that a given PIM node can sustain significant computation by
accessing only the contents of its working set, which is defined as the quantum of data upon
which a given thread operates over a finite period of time. This is primarily how all parallel
machines function. Execution proceeds over the working set until the working set must be
updated or altered. When that happens, execution stops (at least for the thread which is
attempting to access data outside working set) until the set can be updated. The expense
of updating the working set is defined by each architecture. On more traditional parallel
machines, that cost is driven by the speed of the interconnection network and coherency
hardware. Multithreading ameliorates this cost by allowing another thread to execute in the
place of the blocked thread. However, on a very large PIM system the sheer scale may make
it very difficult for the program to provide enough threads to keep the machine occupied.
The proposed method of updating the working set for the purposes of this paper is
the mobile thread or rolling snowball Rather than bringing the needed data to a thread
which requests it, the thread’s execution is brought to the data. PIMs are designed to take
advantage of local memory accesses. Therefore, the ideal situation is for a thread to execute
for a very long period of time on one node then move to the next.The ctstalfmemory
accesses is tolerated by having enough threads executing on a given node. The cost of a
remotememory access is amortized by the presumption that a thread, once moved, will
execute on the node to which it moves for a significant period of time. The data place-
ment and structure of the program must match these assumptions so that high performance
(measured in terms of the system’s throughput) can be achieved. Data placement, as well as
capturing the small amount of data which must be moved with a thread, is critical to avoid
thrashing. Additionally, “hot-spots” must also be carefully avoided. How this execution
model is utilized to map a molecular dynamics simulation to a PIM array will be discussed
in more detail later in the simulation description.

5 Computational Model

A computational model of algorithmic scalability is being developed to allow us to deter-
mine computationally the various scalability and system parameters needed to achieve a
petaflop. This model takes into account the multithreaded execution, communication costs,
and other characteristics of the molecular dynamics simulation and PIM arrays. Com-
putational models and simulation are used frequently in the development and analysis of
architectures both to determine design parameters and to analyze performance. These mod-
els frequently provide numbers which fairly accurately reflect actual execution data as il-
lustrated by Agarwal in [1] where he proposed and validated an analytical performance
model for multithreaded processors that included cache interference, network contention,
and context-switching overhead effects.

In order to analyze the molecular dynamics simulation on a PIM array we must con-

2000/12/:
page 4

e

sider the mapping of the simulation functions to individual threads and their resulting com-
putation and communication behavior as well as the mapping of the data to PIMs. At the
thread level this requires considering such issues as the average number of integer and float-
ing point instructions between loads and the number of loads from local versus non-local
memory, while at the system level we must consider the number of threads per processor
and the number and size of threads that move between processors.

We have an initial model that addresses the issue of the number of threads needed per
processing node to mask the memory access latencies. This model focuses on a number of
different variables including:

N7 = Number of instructions

Nops = Number of operations between memory accesses

N¢e = Number of remote memory accesses (communications)
Npray = Number of local memory accesses

The model can then use this information combined with latencies to predict the number of
threads needed for optimum throughput.

In order to develop this computational model we focus on the instructions, most
specifically the memory reference instructions, found in a given program and their break-
down. Every instruction can either be a memory reference or a non-memory reference
(operation) and the associated probability of each type can be statistically determined for
a specific piece of code. Memory reference instructions can again be divided into two
categories depending on whether they are local or non-local references. Finally, local ref-
erences can be differentiated depending on whether the item referenced is already held in
the memory macro’s row buffer or whether it has to be randomly accessed and pulled into
the row buffer. Each of these different types of memory accesses has a different access
latency as well as a different probability of for a specific code/data set.

We define three different types of memory access latency equations: a “normal ac-
cess” (row hit), a local random memory access, and a remote memory access. In a “normal
access” the data is found in the local memory macro’s row buffer and the equation is

PMR * PLocal * PRow * LRow

where Py g represents the probability of a memory referertég,..; represents the prob-
ability that the reference is locaRg,., represents the probability the data is in the row
buffer, andL g,., represents the latency of an access to the row buffer which we assume to
be approximately one clock cycle. In a local random memory access the data is not found
in the row and the associated equation is

Pyr % Procal * (1 - PRow) * Lpry

whereL pyys represents the latency for a random memory access. Finally, a remote mem-
ory access is represented by

PMR * (1 - PLocal) * LRemote

whereL gemote 1S the latency for access to data in a remote memory. Curréntly, os. is
a single value but, in actuality, it depends on the location of the remote value and the char-
acteristics of the communication system. As we revise the model to increase the accuracy

2000/12/-
page 5

e

this will be taken into account anflg.,,,.. Will likely become a function reflecting these
parameters.

Given these latency equations we can define our model for determining the number of
threads needed to mask memory access latency. Ideally we want to mask the remote access
latency as that would be the longest. In order to compute the number of threads needed to
do this we compute the latency of a remote access divided by the number of operations per
thread. Thus the number of threads is:

LRemote
Nops

However, in more practical terms we want to be able to maskveeagememory access
latency wherel, represents the average time for an arithmetic operation. In this case the
number of threads is represented by:

PLLAR(PLocalpRowLRow + PLocal(l - PRow)LPIM + (1 - PLocal)LRemote)

This initial model allows us to determine the number of threads necessary to mask
the average memory latency for a given piece of code. The use of simulations will both
provide some of the parameters for the model as well as provide a means of comparison to
determine the accuracy of model.

Given this simple model we have begun to extend it to allow comparison of different
implementations. We assume the following characteristics:

e L¢ = Latency for a parcel communication (remote access)
e Loy, = Latency for an arithmetic operation
e Lpry = Latency for a local memory reference

So, our equation for total execution time per thread is
NC(LOpsNOps + LPIMNPIM + LC)

For each of these values, averages can be assumed such as the average remote access
latency that we assumed for our initial model or statistics can be gathered to further break
down the characterization such as was done for memory accesses.

LprvNprv = Ni# Pyg % Procal * (1 — Prow) * Lprm

A similar breakdown for the arithmetic operations would require that we consider dif-
ferences in instruction latencies. For simplicity in our initial model we assume that one
instruction is equivalent to one clock cycle while in actuality there are differences between
various integer and floating point operations. Most significantly, divides take much longer
than other operations. By finding the percentage of divides in a given code and the associ-
ated latencies and incorporating these factors into the model we can increase the accuracy
of the execution time.

LopsNops = Nr* (Pprv * Lpry + (1 — Ppry) * LinsT)

2000/12/:
page 6

e

2000/12/:
page 7

e

Finally, we can extend the communication to include parcel packing and unpacking over-
head,L po, parcel sizeSp, and interconnection bandwidtBJ7, yielding:

Le =Lpo + Sp/BW

Together these give us a much more accurate representation for the execution time of
a thread. However, the model still does not accurately represent the interaction of multiple
threads both within a processor and within the interconnection network. Currently our
simulations focus on the activities within a single thread but further simulations will address
the issues of the movement and interaction of threads among nodes in the system and will
help to provide this additional data. The final model, in conjunction with simulation, will
be used not only to predict the number of threads, but also other system configuration
parameters to allow us to reach petaflop execution. The details of the various simulations
and their roles is discussed in the next section.

6 Code Decomposition

The simulation code used for our initial numbers is SAMD2, a serial object-oriented molec-
ular dynamics simulation using Blitz++ [13]. Force computation is the most performance-
intensive part of the simulation, so this part of the program has been optimized. To compute
the non-cutoff non-bonded forces, blocks of atom pairs are evaluated, and each distinct pair
is passed to the one-atom-pair evaluator. For cutoff non-bonded forces, cell list pairs are
pre-tested, and if they pass, they are looped through and evaluated by the same do-one-
atom-pair evaluator as before. On each pair, if the switching function is enabled, a rough
test is performed to determine if this pair is completely out of range. If it is not, the switch-
ing function and non-bonded force function are evaluated. The product rule for derivatives
is used to compute the forces, which are then multiplied by the difference between the
atoms, and this is added into the atom forces. To compute bonded forces, a list of the atoms
and type of each bonded force is kept. To evaluate the forces, this list is looped through one
force at a time, and a bonded force class is called on each one. The bonded and non-bonded
forces are from a CHARMM force field from tiéAMD Programming GuidgVersion 1.5.

Because of the size, complexity, and time scale of molecular dynamics simulations,
parallel implementations are often necessary. There are a number of approaches to decom-
posing an MD simulation to enable it to be implemented in parallel across a number of
processors. These approaches focus on both the distribution of the atoms and associated
state as well as the distribution of the force computation. Force decomposition (FD) is an
approach where the N x N force matrix is partitioned into P blocks and each block assigned
to a different processor. Each block requizes(N/+/P) atoms to compute the force and,
as such, may require up ©()N/v/P) non-bonded communications. Spatial decomposi-
tion (SD) is an approach where the system is partitioned into boxes (cells) of a size a little
larger than the cutoff distance. These boxes are then distributed across the processors in
the system and the computation of the forces for each atom in the box is computed. In this
way all the communications for cutoff computations are with neighboring boxes, possibly
on the same processor.

The type of decomposition that is most efficient depends largely on the configura-
tion and execution model of the system on which the simulation is being run. For our

Non-local
Reference

Local
Reference

Memory
Access

Compute
Forces

Rescheduled

Atom
Originated
on Different
Cell

Position &
Velocity

New
Position
on Different
Cell

Originated

on this Cell
Execute Next

Step of Iteration
If Data Available
(Synchronization)

Update
Local

@f -\ State

New Position
on Same Cell

Update
Local
Cell-list

Figure 2. Execution Flow of a Thread

simulations, the serial code for the non-bonded force computation was broken down into
individual threads to be mapped onto the multithreaded SHADE simulator. A spatial de-
composition was used whereby each cell-list was placed on a different processor. Each
atom was then instantiated as a separate thread and that thread computed the force compu-
tations for the atom associated with it. In this way, each thread iterated through the atoms
in the cell-list computing the accumulated force on its atom and then moving to another
processor’s cell list. The instructions in each individual thread were tracked to determine
data such as the number of integer and floating point instructions between memory accesses
and the number of local and remote memory accesses. The details of the simulation will be
discussed in the next section.

In addition to the SHADE simulation, a hybrid simulation was developed that consid-
ers a system of chips and the communication and movement of threads among chips. In this
way we will be able to gather data on communication patterns and latencies to facilitate the
evaluation of various configuration parameters. The sequential code and SHADE results
were used to develop the execution flow shown in Figure 2 for mapping the molecular dy-
namics simulation to the hybrid PIM system based on the spatial decomposition described.
The flow represents the execution for one thread during one iteration of a molecular dy-
namics simulation. The bulk of the execution takes place during the computation of forces.

2000/12/:
page 8

e

2000/12/:
page 9

e

This thread represents one atom computing the sum of its forces with every other atom
within its cutoff range. For each instruction issued it is either computing the forces or it is
accessing memory with the memory access time determined by the type of access as dis-
cussed previously. If it does a non-local memory access this implies that the reference has
moved outside of its current cell and off-chip. This produces a parcel communication (la-
beled 1) which carries the thread to a new chip (and new cell) within which it will continue
with its memory access and force computations. (Note that the dotted lines in the figure
represent parcel movement to a new chip.) Ultimately, when the thread has completed its
force computations it must update its local position and velocity which may or may not be
on its current chip. Then, based on that new position, it may or may not reside in the same
cell as previously and must update the cell-list of the cell within which it now resides before
repeating the process for the next iteration. It is also important to note that all atoms in a
cell must have updated their local state and the associated cell-lists before the next iteration
can begin.

This decomposition allows many threads to be running simultaneously, taking ad-
vantage of the multithreading available in the PIM system, and allows the thread to move
its computation to take advantage of the locality provided. Additional discussion of the
simulations and associated results follows.

7 Simulation

Two phases of simulation are used in our work. First, a SHADE based simulation was used
to analyze the functions that implement a single thread and to trace memory access patterns
over several iterations of the force calculations (currently only the non-bonded calculation
since it is the most computationally intensive). Second, using the information collected
from SHADE, a hybrid PIM system simulator creates theoretical threads executing on a
machine of virtual nodes. The virtual nodes do not perform the actual execution, rather
they account for thread execution and remote and local memory access latencies using a
dynamically reconfigurable machine model and provide additional information on system
overhead and other aspects of the execution. Ultimately the simulator can be extended to
simulate up to millions of threads executing on millions of processors.

7.1 SHADE Simulation

One principle mechanism for benchmarking throughout this research was the use of the
SHADE suite [10] developed by Sun Microsystems. The tool allows any SPARC binary to
be analyzed architecturally in detail by providing a simple mechanism for analysts to write
their own code to track the execution of an application. SHADE provides information about
every instruction which is executed, as well as the effects which that instruction had on the
SPARC machine simulated.

As Figure 3 shows, programs are viewed simply as streams of instructions. The
simulator written for the purposes of this work uses those streams of instructions, combined
with information SHADE provides about the state of the machine, to perform accounting
for whatever is being tracked. There are some key things which SHdd2& notdo. It is
incapable of tracing calls to the kernel, and therefore does not include accounting for system

10

INSTRUCTION STREAM

INSTRUCTION INFORMATION:

INSTRUCTION 1 OP CODE, REGISTERS USED, |
TARGET (EFFECTIVE ADDRESS), |
ANNULED STATUS, ETC.

ANALY SIS ENGINE CODE

DATA REPORTING)
CODE |
STATE OF USER

| . ANALYZED OBJECTS
MACHINE STATE ' “ (CACHES, PAGED
(REGISTER FILE ' . |DATA,ETC)
CONTENTS, 1 >

CONDITION CODES,

MACHINE INFORMATION: |
(PRIMARILY STATE) ;

000

STATUS OF
BRANCH
INSTRUCTIONS, ETC)

INSTRUCTION N

Figure 3. SHADE Simulations

overhead. Generally, for the type of benchmarking we are performing that is advantageous
since only user code is of interest. Furthermore, SHADE does not trace multithreaded
applications. However, a package to allow SHADE to perform accounting on simple run
to completion threads was developed and used to simulate simple multithreading. This
required extensive kernel modifications and accounting.

7.2 SHADE Results and Analysis

The data from the initial SHADE simulations have allowed us to compute the averages
across the threads for a number of different variables. Further analysis can yield additional
information such as probability distributions and access patterns, which sometimes yield
additional insight. The important initial simulation results are as follows:

Percent of remote memory accesses per threxye—

Average number of integer operations between memory accessés —
Average number of floating point operations between memory acce&s&s P
Number of instructions per thread per iteration — 3,653

Additional SHADE data includes the number of each type of memory access and the
total number of instructions. Given this information, the percentages that are needed by our
computational model can be computed.

Pyr =12.5%

Prow = 35%

Py = 77.2463%

Premote =1 — Procal = 22.7537%

In addition to the memory access percentages, the memory access latencies are needed

for the model. Assumptions for these latencies were made based on our work with various
systems. These are as follows:

2000/12/:
page 10

e

2000/12/:
page 11

e

11

L, =1ns(i.e, 1 GHz clock)
Lgow =Lyx=1ns

Lpiy =10ns

LRemote = 500 NS

Finally we have the information necessary to utilize our model and compute the total
number of threads needed to mask the average memory latency in this application.
Number of threads (T) =

(%[(.7?2463)(.35)(1%) + (.77)(.65)(10ns) + (.227537)500ns]]] = 16

However, if we use the numbers specific to our IBM process based PIM welhayel
ns (i.e, 1 GHz clock)L gy = 6 NS, Lprys = 13 ns, andL gesmore = 500 NS yielding:

(%[(.7?2463)(.35)(6%) + (.77)(.65)(13ns) + (.227537)500ns]]] = 18

These numbers are very close to what our initial estimates indicated. They imply
that to achieve petaflop performance we would ne&tb 18 million threads running on a
system o250, 000 chips with1 GHz processors. For some very large simulations this may
be reasonable as we would haVg;,,,s threads computing forces and may have additional
threads for other computations such as cutoffs, non-bonded force calculations, and other
aspects of protein folding not included here. These results will be used as a part of the
hybrid simulator as parameters to further examine the simulations on a system of PIMs.
This hybrid simulation is discussed in more detail in the next section.

7.3 Hybrid PIM System Simulation

The Hybrid PIM System Simulator is a an object-oriented simulator developed in C++ with
an integrated event-based simulation package. It models a system of multithreaded PIM
chips with a user-defined interconnection scheme and allows a number of system configu-
ration and timing parameters to be varied such as the number of processors, interconnection
scheme, parcel transmission times, and memory access times. This allows the system to
efficiently determine design parameters, analyze performance, and simulate applications.
The timing parameters for the simulation are determined in a number of ways including
modeling and other lower level simulations. For this work, the results from the SHADE
simulation were used to specify the distribution of memory references and associated times
as well as the average execution times between memory references.

The simulation was set up as illustrated in Figure 2. In this simulation the actual
molecular dynamics computations are not executed but the associated timings and move-
ments are accounted for. It is assumed that the data is distributed spatially with a cell on
each processor and we focussed on the force computations. One thread is created for each
atom in the space to compute the forces with every other atom. The data from the SHADE
simulation is used to probabilistically create the average number of each type of memory
reference and the average number of instructions between memory references for a thread.
Then, based on the type of memory reference or instruction, the associated simulation time

2000/12/-
page 12

e

12

is applied. In addition the overhead of thread and parcel management are included. The
interconnection scheme used is a crossbar as it logically represents the Data Vortex which
can send a message from any chip to any other simultaneously.

7.4 Hybrid Simulation Results and Analysis

Simulation was initially focused on one thread executing on a system of 1000 PIM pro-
cessors. We assume that one time step in the simulatibm$s The percentage of each
type of instruction matched what was set in the parameters from the SHADE simulator,
illustrating the accuracy of the program with respect to the SHADE parameters. However,
it also provided information regarding additional overhead not taken into account by the
model. The important initial thread results include:

Total thread lifetime =8780 ns
Execution =3600 ns =7.3%

Row Access 19 ns =0.24%
Random Access 980 ns =4.1%
Remote Access 21583 ns =85%
Overhead 498 ns =3.1%

These numbers reflect the importance of multithreading in masking memory access
time, especially the remote access time. As we incorporate more accurate parameters for
the parcel communication scheme, such as the bandwidth, parcel handling overhead, and
parcel sizes we can more accurately gauge this aspect of the application, which is extremely
important for performance. The results also allowed us to examine the effect additional
overhead of thread and parcel management have in comparison to memory accesses and
computation. In this case the interconnection was a crossbar, so congestion on the network
was not a factor. However, this could be a factor in cases with a different interconnection
or simulations with thousands of threads running simultaneously on thousands of proces-
sors. The simulator allows access to various types of metadata including queue depths for
interconnection networks, and time spent in thread scheduling and parcel handling. Now
that the basic simulation structure is in place we plan to extend the simulation to use such
metadata for an increasingly detailed model of parcel communication, instruction mix and
associated execution times.

8 Future Work

In addition to the incorporation of a more detailed model parameters, we will work to de-
velop and simulate different decomposition methods. For example, a force decomposition
could be implemented with one thread per atom, or even one thread per block, illustrating
the tradeoff between number of threads for amount of computation. Also, load balanc-
ing in the spatial decomposition would be an issue to consider for simulations where large
changes in position occur. The hybrid simulation will also be extended to examine thread
movement and communications issues in more detail and incorporate the results into the
computational model. Finally, a larger and more detailed simulation of the PIM system
configuration with up to millions of processors and threads will be developed to examine
the configurations and parameters necessary for petaflop performance.

Bibliography

[1] Agarwal A., “Performance Tradeoffs in Multithreaded Processors,” Private Commu-
nication, 1989.

[2] Bergman K., "Ultra-High Speed Optical LANsConference on Optical Fiber Com-
municationsWorkshop on LANs and WANs, San Jose, CA, February, 1998.

[3] Kogge, Peter M. and et al., "Final Report: PIM Architecture Design and Supporting
Trade Studies for the HTMT Project”, September, 1999.

[4] IBM: ASIC SA-27E Standard Cell/Gate Array.
http://www.chips.ibm.com:80/products/asics/products/sa-27e.html (7 Apr. 2000)

[5] IBM: IBM Unveils $100 Million Research Initiative to Build World's Fastest Super-
computer. http://www.ibm.com/news/1999/12/06.phhtml (10 Apr. 2000)

[6] Murphy, R., Design Parameters for Distributed PIM Memory SysteM$ Thesis,
CSE Department, University of Notre Dame, May 2000

[7] Narumi, T., R. Susukita, T. Ebisuzaki, G. McNivern, and B. Elmegreen, “Molecu-
lar Dynamics Machine: Special-Purpose Computer for Molecular Dynamics Simula-
tions” in Molecular Simulation. Vol. 21, 1999, pp. 401-415.

[8] Silicon Graphics, Inc.: The Great Leap Forward in Molecular Structure Simulation
and Modeling. http://www.sgi.com/features/1999/mar/chemistry/index.html (10 Apr.
2000)

[9] Stanford, "High Speed Signaling”,http://pasta.stanford.edu:80/hssp/, (April 2000).
[10] Sun Microsystemdntroduction to ShadgJune, 1997.

[11] Thornley, J., M. Hui, H. Li, T. Cagin, and W. Goddard, “Molecular Dynamics Simula-
tion on Commodity Shared-memory Multiprocessor Systems with Lightweight Mul-
tithreading” inProceedings of High Performance Computi§99.

[12] von Eicken, T., D. Culler, S. Goldstein, and K. Schauser, "Active Messages: a Mech-
anism for Integrated Communication and Computatiéhtyceedings of the 19th In-
ternational Symposium on Computer Architect&€M Press, 1992.

[13] Willcock, J., “SAMD2: A Molecular Dynamics Simulator Using Blitz++roceed-
ings of CSE598E, University of Notre Daphay 2000

13

2000/12/:
page 13

e

