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SECTION I

INTRODUCTION

This report reviews the technical and operational problems of all weather

landing (AWL) with the intent of focusing on those aspects which are amenable

to solution by progress in avionics concepts and equipment. The approach taken

is to analyze the present status of AWL activity and then project the problem

into the era of the supersonic transport (SAT). With a projected view of all

weather landing operations in the 197_-198_ period_ we can appraise the ade-

quacy of the avionics trends we see today and_ in an idealized sense_ we can

define a direction for avionics development. Hopefully_ this analysis can lay

the groundwork for a fruitful research and development plan to ensure that avi-

onics systems will meet the challenge of the anticipated revolutionary strides

in aviation. As a minimum reward_ this quest for future directions could help

avert some of the chaos which many pessimists predict as the outcome of the

rapid expansion of air transportation.

A view of the AWL situation today is one of considerable development and

flight test activity. There is interest and a strong determination on the part

of the aircraft operators_ the government agencies_ the equipment suppliers_

and the technical community to proceed with the objectives of making AWL an

operational reality; but there is uncertainty and controversy on how these ob-

jectives can be achieved. Progress is often difficult to ascertain and the

participant in AWL programs usually has difficulty "distinguishing the forest

from the trees". Many of the individual airline carriers have embarked on

orderly programs to introduce AWL operations on an evolutionary basis ; and from

their vantage point_ progress is readily discernible and often satisfactory.

To the technical observer viewing the AWL situation from the outside_ there is

a considerable amount of confusion concerning the extent of progress which has

been made. The technical literature and the various symposia that have been

held on this subject describe the thousands of successful automatic landings

performed at many airports and with many different aircraft. Indeed_ the var-

ious equipment manufacturers with a vested interest in AWL do not hesitate to

inform the symposia audiences about their history of successful automatic land-

ings dating back to the 1940's and early 19_O's. Every symposium seems to have

at least one commentator who reminisces about his blind landing demonstrations

in the 1930's. It is therefore obvious that the technical feasibility of auto-

matic or blind landing is neither questioned or considered as the pacing factor

in attaining the objectives sought by the aviation industry.

The main impediments to the introduction of all weather landing involve

operational procedures rather than individual technical problems. While tech-

nical difficulties do exist_ the problem is primarily one of resolving a
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diversity of forces and constraints imposed by considerations of economic_

safety and reliability_ psychological factors_ and vaguely defined philosophies.

Economics has always been the primary motivation for AWL as well as the major

constraint on its implementation. Airline economic losses resulting from

weather diversions and flight cancellations justify expenditures on equipment

that could minimize the total number of these diversions. In this scientific

age_ tradeoff studies are therefore performed to define the red_ction in dollar

losses as a function of expenditure on new equipment that will permit the air-

craft to penetrate to lower altitudes during low visibility situations. Hence_

the inevitable meteorological statistics enter the problem. The economic di-

lemma is_ unfortunately_ not this simple because the necessary equipment in-

vestment is beyond the control of any individual aircraft operator or government

agency. Attaining lower minimums often involves major modifications of airport

facilities as well as investments in airborne avionics equipment. Various com-

peting approaches have different ratios of ground facility costs to airborne

equipment costs. Most operators already have sizable investments in some types

of equipment that heavily bias their economic studies in favor of certain tech-

nical approaches. For example_ a carrier that has its fleet equipped with radio

altimeters would obviously prefer that investments in airport improvements con-

centrate on leveling the runway approach profile so that the effectiveness of

landing procedures using these altimeters would be enhanced. He could not be

expected to show enthusiasm for an airport facility investment aimed at intro-

ducing a radar derived precision approach system which would substitute a new

set of airborne equipment for his radio altimeters.

Safety and reliability are the essential guidelines for AWL activities_ but

a clear concept of how to evaluate these factors is lacking. While on the sur-

face these two virtues seem synonymous_ they may actually be mutually incom-

patible. For example_ safety considerations often require monitoring circuits

or even complete monitoring subsystems to warn or provide some action in the

event of a failure in a system component. These monitoring devices must them-

selves be fail-safe so that before lon_ system complexity tends to grow to

unreasonable levels. It is not uncommon to find monitors more complex than the

devices being monitored. Safety is thereby bought at the expense of reliabil-

ity. Similar observations may be made concerning the use of redundant systems.

This pattern toward progressing complexity is not too often viewed with concern

because of the ubiquitous faith that microelectronics will somehow provide the

necessary breakthroughs. Indeed_ one of the objectives of the present study is

to identify areas in which the future avionics_ dominated no doubt by "computer

on a chip" type devices_ can be applied to these problems.

When we mention psychological factors_ reference is made to attitudes_ prej-

udices_ and other nonquantifiable_ emotional aspects of the problem. The role

of the pilot in managing the aircraft is a major source of controversy in this

1-2



area. Howwill pilots accept a role of systems managerwith the "automatics"
flying the aircraft? Howwill pilots develop and maintain flying skills if nor-
mal procedures leave the flying task to the autopilot? These fears have led to
conflicting schools of thought which are often identified as the United Kingdom
and United States philosophies of all weather landing. The UKapproach empha-
sizes the complete landing operation by the automatic equipment. It attempts to
ensure safety through triplicated redundancy and uses the pilot to monitor sys-
tem performance. A commonview of the USapproach is that it emphasizes the
pilot's active role in controlling the aircraft. It seemsto stress those fac-
tors which would help the pilot abort the landing rather than those which would
ensure the continued operation of the automatic equipment in the event of indi-
vidual malfunctions.

Actually_ there are no authoritative directions to the US programs which
challenge or conflict with the technical approach taken by the various UK
efforts to implement AWLoperations. Manyof the US projects seemto emphasize
the sanctity of the "pilot in the loop". For examp!e_ the provision of the so-
called supervisory override_ force -wheel steering modeas an adjunct to the
autopilot is generally well received by pilots. Somehow_giving the pilot the
capability of inserting corrective inputs to the autopilot seemsto make the
automatic control of the landing approach more palatable to the pilot. A prop-
erly functioning autopilot that requires manual corrective inputs is in itself
a contradiction. If the autopilot is not functioning properly_ then why insert
commandsthrough the autopilot. It would be convenient to state that the cor-
rective inputs will bypass the malfunctioned part of the autopilot_ but unfor-
tunately the major reliability hazards of an autopilot system lie in the path of
the force wheel input signals. It is often suggested that the supervisory
override function is offered to the pilot as a psychological placebo.

Wehave dwelled on this point somewhatin order to note how the era of the
SSTshould_m_-$m_y resoive this problem. The primary flight control systems
oft__o_corde_ the Lockheed L-2000_ and the Boeing 2707 all use electronic
commandsystems for manual control. These systems are of the triply redundant_
fail-operational type with the necessary complement of failure monitors and
warning displays. Thus_ the philosophy which we tend to associate with the
United Kingdom approach to AWLwill actually be implemented in the primary
flight controls of the SST. The pilot will always control through the
"automatic" equipment_ except during emergencysituations when a degraded per-
formance_ manual backup capability will be available. (This backup modemay
not provide sufficient control precision to be used in a low visibility
approach.) The autopilot commandsignals will normally flow through the same
electronic servomechanismsas the signals generated by the pilot's application
of control force. In an AWLapproach_ the pilot in the loop will not really be
able to bypass any automatic equipment except possibly to abort the landing.

1-3



His normal role appears more and more to be that of avionics system msnsger,

There appears to be universal agreement that the pilot's performance monitoring

capability and his ability to make judgment in abnormal circumstances cannot be

duplicated by avionics equipment.

This rapid scan of some of all weather landing phenomena takes us back to

the main premise of this report. The trend toward avionics playing an ever in-

creasing role in aircraft operations has been demonstrated. Whether avionics

will be used effectively is a continuous challenge. In order to define its

role in the SST or in second-generation SST's_ we must clearly perceive the

trends in terms of today's activities. The AWL systems in use in 198_ will not

be unique to the SST. Just as our highways are built to handle Volkswagens as

well as Cadillacs_ the airport's ground-based electronic facilities of 198_ will

have to accommodate all types of aircraft including most of those operating

today. Consequently_ the avionics equipment on future SST's will have its ori-

gins in developments underway today. Section II of this report is a brief re-

view of the opcrational problems that a_e defining the directions of AWi3 "

developments today. Sections III to V summarize various approaches to solve the

problems of AWL. It is shown that _many different systems associated with various

equipment and aircraft manufacturers are essentially identical except for de-

tails of mechanization. The problem areas are identified and possible solutions

are defined. Since this report is concerned with avionics_ the various problem

solutions suggested are based on avionics progress. It is noted_ however_ that

in some instances_ competitive but less elegant solutions using cement and as-

phalt are possible. That is_ many of the problems are alleviated by wider and

longer runways.

Sections VI to VIII provide an extrapolation of the AWL problem to the SST.

The unique characteristics of the SST's primary flight controls are described.

The handling qualities of this class of aircraft are reviewed from the stand-

point of the AWL problem. The expanded role of avionics in this type of air-

craft creates new problems of data handling and transmission. Various concepts

of integrated avionics based on central digital computers or small autonomous

but interconnected computers are examined. From this perspective_ the relation-

ship between the AWL subsystems and other subsystems of the large avionics com-

plex is explored. This section therefore provides a prediction of the probable

form of the AWL avionics that will be needed for aircraft in the 198_ era. When

predictions concerning future electronic systems are made_ there is a tendency

to fall into the realm of fantasy. Since the purpose of this report is not to

provide science fiction entertainment but to develop a realistic set of research

and development (R&D) objectives_ the treatment of these long-term trends empha-

sizes the practical steps which must be taken to achieve the desired progress.
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SECTION II

AWL SYSTEM CONCEPTS AND OPERATIONAL PROBLEMS

A. THE GEOMETRY OF AN ALL WEATHER LANDING

The best description of the all weather landing problem is obtained by view-

ing the geometry of the aircraft's trajectory as it progresses through its final

approach to touchdown on the runway. Figure 2-1 shows the vertical profile of

such a trajectory and the various control and maneuvering phases associated with

the sequence of events leading to touchdown. The distances and durations shown

are typical for aircraft operations using present day Instrument Landing System

(ILS) facilities. These dimensions are typical but the fact that they may be

quite variable causes many of the problems involved in achieving automatic or

manual control accuracies. The effect of variable factors are described in the

subsequent section on the control accuracy problem.

A horizontal view of the aircraft's landing trajectory is shown in figure

2-2. The landing approach starts with the intercept and capture of the locali-

zer beam. The fact that the localizer is established by a radiated pattern of

a particular frequency and modulation characteristic is immaterial for this

discussion. The important point is that a reference path representing the ex-

tension of the runway centerline must be used to align the aircraft for its

final approach. It will be shown in the subsequent discussion of control ac-

curacy factors that the approach and turn onto this path must be performed

within certain intercept angle and distance from the runway constraints. As

shown in figure 2-2_ this turn on capture maneuver is performed about 16.7

kilometers (9 nautical miles) out from the runway threshold. The aircraft

should stabilize on this path_ preferably before it has begun its final descent.

As indicated in figure 2-I_ this phase proceeds for about 2 minutes usually at

constant altitude. The airspeed is programmed down from about 160-180 knots to

a 140-i_0 knot range at this time.

_llen the aircraft approaches an intersection with the glide slope descent

path_ the altitude hold function is discontinued and a glide slope capture ma-

neuver program is initiated. At this time_ final flap adjustments may be made

and the throttles reduced for the final lescent speed_ usually about 120 knots

in present day turbojet aircraft. The glide slope capture maneuver is designed

to produce a flight path rotation which should ideally provide a tangential

intersection with the glide slope. At the proper time during this capture ma-

neuver_ closed loop control to the reference glidepath is initiated. As rap-

idly as possible the aircraft is stabilized on this path so that its velocity

vector is directed precisely at the point defined by the intersection of the

glidepath and the runway.

2-1
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_en the aircraft reaches an altitude of about i_.2_ meters (_0 feet)_ the

flareout begins. The rate of descent must now be reduced from about 3.0_ meters

(I0 feet) per second to about 0.30 meter (I.0 foot) per second at the time the

wheels contact the runway. During this flight path rotation the airspeed will

decay because of an aircraft's usual dynamic relationship between flight path

angle and speed. In addition_ throttles are generally cut back to further re-

duce speed at touchdown. Prior to touchdown_ the aerodynamic phenomenon re-

ferred to as ground effect often helps ameliorate a landing that was not

executed with the ideal flare rotation. Ground effect provides increased lift

and some change in drag (usually a reduction) as the ground is approached.

Hence it tends to reduce the rate of descent_ and indeed_ some of the SST de-

signs which have been considered could reduce the descent rate at touchdown by

depending almost entirely on ground effect rather than the flare maneuver.

Near the end of the flareout maneuver the phase often referred to as roll-

out alignment is initiated. The type of alignment maneuver required depends

upon the crosswind conditions prevailing and the technique used to adapt to

this crosswind. Figure 2-2 shows a schematic representation of the aircraft

compensating for the crosswind by assuming a crab angle_ _c_ with respect to

the runway heading. As illustrated in this figure_ the aircraft's velocity

vector is not aligned with the runway heading. The sideslip angle is zero since

the velocity vector is also aligned with the relative wind but the aircraft

heading is displaced from the runway heading by the amount _c" For this type of

approach it is desirable that the aircraft be yawed immediately prior to touch-

down to avoid the side load on the landing gear. This yawing maneuver_ referred

to as the decrab phase_ will tend to produce a sideslip angle equal to _c at

touchdown_ but it must be accomplished rapidly to minimize translation across

the runway. An alternate method of compensating for the crosswind avoids the

need for a crab angle. This method approaches touchdown with the aircraft's

nose aligned to the runway heading and hence it is sideslipping. To maintain

this slip condition_ the wing facing the crosswind is dropped and the rudder is

deflected to prevent turning into the crosswind. No decrab maneuver is needed

and the aircraft rolls to level naturally after ground contact is initially

made with the wheel on the wing down side. Most automatic flight path control

systems are configured to produce the crab angle approach although some systems

have been implemented to provide the wing down_ sideslip landing. The latter

configurations involve more complex computations and are somewhat restricted by

autopilot authority limitations. The best technique to use is often dependent

upon specific aircraft characteristics.

After touchdown_ continued automatic guidance is required for true zero-zero

conditions. The steering information can_ in general_ be obtained from the same

localizer signal which provided lateral guidance during approach. In aircraft

that mechanically couple the nosewheel and rudder and that contain a large

2-2



authority, autooiUnt,.............rndd_r _rvn tn m_,_ *_,_......_- pedals as well as tile rudder_
such a runway steering modeis easy to implement. This combination of features
is unfortunately not found very often in modern aircraft.

B. ALL WEATHERLANDINGCONTROLACCURACYPROBLEMS

If we provide an automatic control system with sufficient information and
authority_ almost any level of performance can be obtained. The only problem
remaining (assuming we had solved the weight and cost problem) would be that of
_mnreliability_ which_ to our regret_ seemsto grow in direct proportion to com-
plexity. The problems which have been encountered thus far in attempts to guide
an aircraft to a blind landing have resulted from the information and control
authority constraints. A system can be optimized to perform an automatically
guided approach and landing if we fix such factors as the following:

• The program of aircraft speed along the reference trajectory

• The ILS beam geometry and signal characteristics

• The sequence of configuration changes (landing gear and flaps)

• Aircraft cg location and dynamic characteristics

• Wind velocities and velocity gradients (shear)

• The final approach path intercept azimuth and altitude

• The control system maneuvering limits

System performance will tend to change with variations in these factors. If

the system received information regarding the status of these factors_ it could

be designed to cope with many of these variations. Consequently_ two approaches

have been followed to improve all weather landing system performance. They are

as follows:

• Standardize on procedures and geometry of approach flight paths

• Provide additional information in<effaces to improve the system's

ability to cope with problem variables

The following discussions review how the above mentioned factors affect all

weather landing system performance and how present trends are attempting to

solve these problems.

i. Lateral Fli_ht Path Control

i.i Localizer Capture

As seen in figure 2-2_ the first phase of the final approach involves a

turn on maneuver or localizer beam capture phase. It would be desirable to ap-

proach the beam center with any intercept angle_ perform a single turn and_ upon

rollout_ end with the aircraft's velocity vector on the beam center and pointing
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to the runway target. As implied by figure 2-2_ a nonid_a7 response such as an

overshoot of the beam center is a usual result. An overshoot_ if it occurs_

does not result from a lack of skill on the part of the system designers. There

are initial conditions for which a successful turn on is physically impossible

within the bank angle and roll rate constraints. Likewise_ there are conditions

where some overshoot_ but with recovery capability is a physical necessity.

This can be understood by referring again to the sketch of the aircraft inter-

cepting the localizer beam during Phase A in figure 2-2. When the aircraft is

outside the boundary of the beam (defined by the angle X)_ it proceeds at a

constant heading toward the beam center. The maneuver to rotate the aircraft

begins after the lateral guidance system has sensed that the confines of the

beam have been penetrated. Because of the convergent nature of the localizer

beam_ the distance between the outer boundary and the center is variable with

distance from the transmitter. Thus at 12 nautical miles out from the trans-

mitter_ a typical localizer beam width (outer boundary to center) is about

1249.68 meters (41OO feet). However_ at 6 nautical miles out_ the beam width

will be only one-half this distance. The turning radius of an aircraft flying

at 160 knots and banking at 30 degrees is about 914.40 meters (3000 feet).

Thus if the intercept angle is 90 degrees_ and if we assume infinite roll rate

and acceleration capability_ this aircraft could not possibly acquire the local-

izer beam at the 6 nautical mile point. It would have to overshoot nearly the

full width of the beam.

When we consider the roll rate restrictions and reasonable filtering of

the sensed data_ the region of permissible localizer intercepts is quite re-

strictive. Aircraft velocity (and winds)_ intercept angle_ and specific beam

geometry parameters are additional factors which enter into this problem.

Figure 2-3 is a plot of how these parameters define a region of acceptable ap-

proaches to the localizer. These graphs were obtained from Sperry Phoenix

Company simulator studies of performance attainable with various control con-

figurations. Note that for the 160 knot_ I0 nautical mile range case discussed

previously in terms of the kinematic limits only_ the actual capability with

roll rate restrictions and realistic proportional steering laws allows a maximum

beam intercept angle of only _I degrees. The 7_-millivolt overshoot criterion

used in the study corresponds to an overshoot of one-half the full width of the

localizer beam.

The point of this discussion is that a system which can provide excel-

lent response when the proper procedures and restrictions are observed can begin

to produce objectionable and then completely unacceptable performance when devi-

ations from the nominal procedures occur. Unfortunately_ in the case of the

localizer capture maneuver_ some of the procedural deviations have operational

advantages. When the air traffic control problem is considered_ there are ob-

vious advantages to funnelling the aircraft into the localizer as close to the
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runway as possible. The automatic system can cope with a wide range of inter-

cept angles and can give dead beat response if the aircraft intercepts the beam

about IO nautical miles out. It can also give excellent performance for inter-

cepts that are closer in if the intercept angle is reduced proportionately. To

cope with a wider range of intercept angles_ the automatic system must be given

more maneuvering authority. However_ pilots of large turbojet aircraft do not

like to see the autopi!ot command 40- to 60-degree bank angles at any time and

especially not during the landing approach phase of flight. (Most passengers

would prefer that neither the pilot or the autopilot produce large bank angles.)

Autopilots_ especially in the approach modes_ have roll rate restrictions that

the pilots are also anxious to retain. It is difficult to see how this type of

problem can be resolved. To obtain good automatic approach performance and even

good manually controlled ILS approaches_ certain procedural restrictions regard-

ing localizer intersections will have to be observed.

1.2 Localizer Beam Characteristics

There are several other aspects of the present day localizer beam sys-

tem of lateral guidance that prevent ideal or optimm_ lateral control perfor-

mance. We have discussed the beam capture phase because it is important that

the initial turn on be accomplished with a minimum overshoot. The overshoot

must be minimized but not at the expense of overdamping which would consume valu-

able range to go. This initial response is important because of the problems

associated with the final stabilization on a path along the beam center. These

problems will be discussed subsequently. First_ let us examine how the local-

izer guidance concept inherently causes some of the control problems. In the

previous discussion of the capture maneuver it was seen that the beam boundary

occurs at a varying distance from the beam center. Hence_ the start of the cap-

ture maneuver occurs closer to the beam center when the range is short. The

short range situation is conducive to overshoots and overshoots are least toler-

able close to the runway. The information regarding displacement from the beam

center is provided by the localizer receivers as a signal proportional to angu-

lar displacement rather than linear displacement. That is_ a given displacement

from the centerline will produce a variable signal depending upon the distance

from the transmitter. When the aircraft is I0 nautical miles from the trans-

mitter_ a fixed displacement from the centerline will result in a signal equal

to one-half the signal magnitude occurring for that displacement at a _ nautical

mile range. The guidance system attempts to control position on the basis of

such a signal. In effect_ it always has a well-defined null position but it does

not have a consistent measure of the actual deviation. This will obviously re-

sult in a variable response when proportional steering laws are used.

It is possible to compensate for this difficulty if range-to-go infor-

mation were available. The use of this additional data (if it were available)

would result in a more complex control system but one that provides more uniform



response along the entire approach trajectory. However_it would be most un-
desirable if operational requirements necessitated this type of invariant
response. For one thing_ range-to-go information by itself would not be enough
to define the actual beamdisplacement resulting from a given localizer signal.
Localizer beamshave been notoriously variable in their characteristics over the
years. The recent imposition of new standards for lower minima operations and
in anticipation of blind landing operations have improved the situation_ but
iocaiizer geometry remains a variable from airport to airport. The reason for
this is shownin figure 2-4. The localizer transmitter is located at a distance
e behind the runway [usually about 304.80 meters (I000 feet)]. The reference
beamwill be specified in terms of its width at the runway threshold. (See ref-
erence i for a summaryof ILS standards.) The threshold is defined in relation
to the glide slope (which will be discussed later whenthe vertical guidance
problems are reviewed). Consequently_ the runway length will determine the
localizer course sector angle (X/2 in figure 2-4). Note that the full beam-
width signal is defined as i_0 _A (microamperes) from the localizer receiver
when the DDM(difference in depth of modulation) is 0.i_. Different runway
lengths will result in course sector angles which vary as shown in figure 2-_.
If we used range-to-go information and were attempting to compensatefor the
variable localizer sensitivity in microamperes per 0.30 meter (microamperes per
foot)_ that compensation would be applicable to only one specific course angle.
To take into account the variations in that angle_ the system would have to be
programmedseparately for each airport. Figure 2-6 showshow the standardized
localizer sensitivity varies in the vicinity of the runway threshold for var-
ious runway lengths.

Fortunately_ it is possible to obtain excellent lateral control per-
formance during automatic approaches despite these variations in localizer
characteristics. (This is true providing reasonable procedural restrictions are
observed.) Wehave dwelled on the variation in localizer sensitivity from air-
port to airport for an ulterior motive. It is often suggested that the Inertial
Navigation System (INS) of the newer aircraft be used in conjunction with the
ILS system during automatic approaches and landing. The most frequently sug-
gested use of the INS is as a performance monitor in lieu of redundant ILS re-
ceivers and other equipment. Studies performed at Sperry Phoenix Companyhave
verified that projected state-of-the-art INS equipment can approach the desired
accuracy if we assumethat a proper initializing phase is completed at the start
of the landing approach. If the INS were used to monitor performance of the lo-
calizer receiver_ it would have to compute the sameinstantaneous lateral posi-
tion as defined by a properly operating receiver. However_ the accuracy
limitation is in the ILS rather than the INS. It is such factors as the varia-
tion in localizer beamsensitivity defined in figure 2-6 as well as beambends
and other inaccuracies which make the use of the INS as a pseudo localizer
impractical.
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1.3 Lateral Stabilization

There are many lateral flight path control configurations used with

the various autopilot-aircraft combinations operating today. While these sys-

tems appear to have many differences_ if we look at their implementations or

even their functional block diagrams_ they are all essentially identical from

the standpoint of the control laws used. In general_ the problem is to reduce

the aircraft's deviation_ y_ from the reference flight path to zero. (See

figure 2-7.) A steering command to correct for a path deviation must produce a

bank angle. Since a bank angle will produce a proportional side acceleration_

"_ it is immediately apparent that a steering law which attempts to produce a

lateral acceleration proportional to lateral displacement will be unstable. For

stabiiity_ the bank angle steering command_ _c_ must be of the form

_c = kl[Y + k_9] (2-1)

In practice_ it is often necessary to add an integral term. The reasons for

this will be discussed later. Thus the usual linearized representation of the

lateral steering law is

_c = kl[Y + k_ + kljydt] (2-2)

It should be emphasized that this linearized representation of the steering law

is highly simplified and is being shown in this manner only to illustrate the

nature of the stabilization problem. In reality_ the various operations on y

and its time derivative include variable limits (nonlinear elements) and fairly

complex linear filters. Figure 2-7 illustrates how this steering law enters in-

to the overall stability problem which includes the roll stabilization dynamics

and the aircraft's turning kinematics. The aircraft kinematics are represented

by a transfer function which assumes the small perturbation turn rate equation

_ _ _ (2-3)

and the sideslip = 0 and crosswind = 0 representation of the lateral velocity as

: V_ and _ = V_ (2-k-)

so that

,I_ = gV_@= _:" (2-5")g
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The stability of the y control loop can therefore be analyzed by con-

___ _^ HI(S )....... _ _ sequemce of transfer functions for the lateral guidance law_

the aircraft's closed loop roll stabilization dynamics_ H2(S) _ and the trajec-

tory kinematics_ H3(S) _ as shown in figure 2-7. A qualitative view of the sta-

bility problem without and with the steering law integral term is shown in

figures 2-8(a) and 2-8(b)_ respectively. In these root loci_ the roll stabili-

zation dynamics are assumed to be a first-order lag. This is also a simplifi-

cation. The phase lag of the roll response is a critical factor in the flight

path stability problem. Indeed_ the control parameters are generally chosen to

cope with the nonlinear contributions of the roll dynamics such as the roll-rate

limits. Figure 2-8(a) shows that an oscillatory tendency exists even without

integral control. The gain variable in the loci is the forward loop gain_ KI.

Note that when the gain is near zero_ the characteristic response will be that

of a very low frequency_ undamped oscillation. This assumes that the y term and

y term are both at very low gains. A system which obtains its y by differenti-

ating the localizer y signal can be represented by this root locus. The low

gain oscillatory case will be characteristic of the response a great distance

from the transmitter. As the distance to the transmitter decreases_ the damping

will improve and the control frequency will increase; but eventually the damping

will again tend to decrease. If the aircraft is flown on the localizer along a

limited distance such as that associated with a typical approach (as shown in

figures 2-1 and 2-2)_ then the range of damping ratios and frequencies can be

bounded to acceptable levels.

If more uniform response dynamics are desired_ compensation can be pro-

vided for the localizer sensitivity variation_ KI_ with distance from the trans-

mitter. This compensation could be obtained from several sources since a precise

adjustment of KI is not necessary. One source might be a radio altimeter which

could provide information for lowering gains during the final descent phase.

The fact that terrain irregularities would introduce variables is not_ in gem-

eral_ too important because the terrain effect is net significant in relation to

the crude accuracies needed. Also_ marker beacons signifying that the aircraft

has reached a specified distance from the runway can be used to initiate open

loop gain reduction programs. The most satisfactory source of gain reduction

data could be derived from precision DME (distance measuring equipment)_ but DME

has thus far been avoided as a source of data for all weather landing systems.

Figure 2-8(b) shows the root loci of the lateral stabilization system

when the integral term is used in the control law. A new low frequency oscil-

latory tendency is noted. The damping of this new mode will depend upon the

ratio of path integral to displacement gain_ K I. A value of K I as high as 0.0_

is usually excessive from the point of view of stability. Also_ it is interest-

ing to note the frequency (or period) of this new mode. The characteristic fre-

quency of the basic lateral path stabilization mode occurring without the
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.

integrator varies with the sensitivity_ KI. Typical periods range from about 30

to '/O seconds• The integral mode period may be several minutes. Quite often_

the entire length of the localizer flight corresponds to one-half wavelength of

the lateral integration mode. One may therefore ask why such a destabilizing

term is used in the control law. The answer to this question leads to the core

of the localizer tracking accuracy problem. It can readily be shown how the

lateral integrator is theoretically justifiable_ but its proper application is

_le source o± many problems, it is in the technique of programming the lateral

integrator that many automatic approach systems display subtle_ but often im-

portant differences. Indeed_ some designers and manufacturers of automatic

approach systems have concluded that the problems associated with the use of an

integrator outweigh its advantages. They therefore accept certain performance

compromises such as susceptibility to beam noise and perhaps larger errors im

windshear_ but they gain in system simplicity and flexibility.

To appreciate the reasons for using the lateral integrator_ refer again

to figure 2-7. Note that the open loop transfer function

[Y(s)1 = I<l(1+ I<}s+ 7) [ ] (a-6)
Open
Loop

is completely independent of aircraft velocity (except to the extent that the

roll stabilization dynamics are dependent upon aircraft speed). For good per-

formance_ the value of _ is in the range of 20 to 40. If a value of _ = 40 is

used_ it means that a 0.30 meter/second (i.0 foot/second) path deviation rate

will command 40 times the bank angle that would be commanded by a 0.30 meter

(I.0 foot) displacement. If we obtained y by differentiating the y signal_

even an insignificant level of beam noise could saturate the differentiator. To

use beam rate y_ the data must be filtered and consequently the bandwidth of the

data is compromised. The amount of filtering needed depends upon the beam

noise characteristic. Filtering_ which affects the bandwidth of the y signal_

influences the attainable loop gain_ KI_ and hence the tightness of the local-

izer tracking.

There are other methods of measuring y. The most convenient method

and one that has found the most widespread application is the use of aircraft

heading deviation from the runway centerline azimuth. For small angles_ as

shown in figure 2-8

y : v9 (a-y)
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integrator varies with the sensitivity_ KI. Typical periods range from about 30

to 70 seconds. The integral mode period may be several minutes• Quite often_

the entire length of the localizer flight corresponds to one-half wavelength of

the lateral integration mode. One may therefore ask why such a destabilizing

term is used in the control law. The answer to this question leads to the core

of the localizer tracking accuracy problem. It can readily be shown how the

lateral integrator is theoretically justifiable_ but its proper application is

_ source of many problems, it is in the technique of programming the lateral

integrator that many automatic approach systems display subtle_ but often im-

portant differences. Indeed_ some designers and manufacturers of automatic

approach systems have concluded that the problems associated with the use of an

integrator outweigh its advantages. They therefore accept certain performance

compromises such as susceptibility to beam noise and perhaps larger errors in

windshear_ but they gain in system simplicity and flexibility.

To appreciate the reasons for using the lateral integrator_ refer again

to figure 2-7. Note that the open loop transfer function

[Y(s)] = Kz(I . I<_,s. T ) [ ] (2-6)
Open

Loop

is completely independent of aircraft velocity (except to the extent that the

roll stabilization dynamics are dependent upon aircraft speed). For good per-

formance_ the value of _ is in the range of 20 to 40. If a value of _ = 40 is

used_ it means that a 0.30 meter/second (I.0 foot/second) path deviation rate

will command 40 times the bank angle that would be commanded by a 0.30 meter

(I.O foot) displacement. If we obtained y by differentiating the y signal_

even an insignificant level of beam noise could saturate the differentiator. To

use beam rate y_ the data must be filtered and consequently the bandwidth of the

data is compromised. The amount of filtering needed depends upon the beam

noise characteristic. Filtering_ which affects the bandwidth of the y signal_

influences the attainable loop gain_ KI_ and hence the tightness of the local-

izer tracking.

There are other methods of measuring y. The most convenient method

and one that has found the most widespread application is the use of aircraft

heading deviation from the runway centerline azimuth. For small angles_ as

shown in figure 2-8

y = vi, (2-7)
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Thus_ the basic control law may be written as

_c = _l (y + _v_) = Kl(y + _) (2-8)

where

K=K.V
Y

Now_ suppose a crosswind existed such that a lO-degree crab angle is required to

keep the velocity vector aligned with the localizer centerline. If the aircraft

velocity were 160 knots (270 FPS)_ the absolute minimum standoff error obtain-

able can be calculated as follows:

V : 270 FPS

: I0/_7.3 : 0.1745 radian

y : K.V@ : (40)(270)( I0 ) : _7_.07 meters (1890 feet)
Y (_7.3)

Reference to the localizer geometry [for a 3048 meters (i0_000 feet) runway]

described in figures 2-4 through 2-6_ shows that a deviation of _7_.07 meters

(1890 feet) will correspond to the outer boundary of the localizer beam at a

distance from the transmitter of 9174.48 meters (30_i00 feet; 4.9_ nautical

miles). Thus_ this crab angle requirement will cause the aircraft to depart

completely from the localizer boundary when the aircraft is beyond ]+.9_ nautical

miles from the transmitter. All guidance will be lost beyond that point.

In recognition of this problem_ the designers of automatic approach

systems who conclude that there is sufficient advantage to the use of heading

as a lateral damping signal also include some means of compensating for the crab

angle problem. The usual method for autopilot couplers is to use the lateral-

path integrator. For manual approach systems using a flight director_ an inte-

gration in the forward path is never acceptable_ but an equivalent compensation

is obtained by adding a high-pass filter (washout) with a time constant of

about 30 seconds to the heading error signal. The use of a washout in this man-

ner produces a low frequency destabilizing effect that is analogous to that of

the lateral integrator.

The lateral integration function is used to provide the steady-state

signal that will bias the crab angle heading error. In effect_ the history of

the lateral displacement error provides the corrective signal to yield a zero

bank command when the aircraft's velocity vector is perfectly aligned with the

center of the localizer beam. If the crosswind were variable (windshear)_ the

steady-state solution will require a changing crab angle. This rate of change

2-10



of heading is provided by a proportional bank angle. In an idealized situation_
the lateral integrator can also provide the proper bank angle commandto pro-
duce the yaw rate corresponding to perfect windshear compensation. Idealized
refers to the conditions under which the steady-state solution prevails. Un-
fortunately_ in the case of lateral approach path guidance_ the steady state can
never be attained because of the extremely long periods involved in that par-
ticular dynamic process. The flight path response is dictated largely by dis-
turbance dynamics and initial conditions. The lateral path integrator maybe
viewed as working toward a desired steady-state solution_ but never quite reach-
ing its objective.

There are many things which must be done to help the integrator achieve
its accuracy objectives without introducing destabilizing long period tran-
sients. First_ it should not integrate the path error during the beam capture
sequence. The integration should occur only when the aircraft has nearly ac-
quired its final path. This implies that the steering law must adapt to the
aircraft's instantaneous state. Most automatic approach systems in use today
continuously monitor the status of y and _ signals and adjust the steering law
accordingly. The more sophisticated this adjustment_ the greater is the pos-
sibility of accurate path control under a variety of initial conditions and dis-
turbances. The most recent systems will use many sources of data as inputs to
the steering law. The gains of the different input contributions are continu-
ously programmedas a function of the error parameters and as a function of
additional data regarding proximity to the terminal conditions. A typical
steering law in a modern system designed for lower minima is of the form

_c : KIYGI(S) + K2YG2(s) + K3G3(s) + K4_G4(s) + KS@ (2-9)

where

Gl(S) is a lag filter

G2(s) is a derivative function with high frequency lag filters

G3(s) is an integrator

G4(s) is a dynamic integrator (large lag)

Figure 2-9 illustrates how this information is processed into variable
weighting functions that are controlled by a steering law programmer. This type
of system continuously synthesizes an optimumy signal from the rate of the beam
displacement_ runway heading deviation_ and the dynamic integration of bank
angle. (Note that bank angle_ _ is proportional to _when the aircraft is
aligned with the beam.) The various gains and dynamic shaping functions are
adjusted to minimize the influence of the crosswind susceptible heading signal
at the terminal phase of flight_ and to optimize rapid capture of the desired
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flight path during the initial phases of the approach. Examples of th_ opera-

tion of such a system are illustrated in figures 2-10 and 2-11. These figures

are complete histories of the significant parameters associated with actual

automatic approaches and landing performed during the FAA Category II Certifica-

tion Tests of the DC-8 and the SP-30A autopilot. The two figures shown are re-

produced from reference 2 which documents test results at five airports

(0akland_ Stockton_ San Francisco_ Long Beach_ and Ontario) including automatic

and flight director demonstrations under varying weight; cg_ wind_ engine out_

hardover failure simulations_ and control system tolerance situations. Of in-

terest in these figures are the localizer position errors_ the crosswind and

crab angle conditions as the aircraft approaches the runway. The localizer

trace includes a shaded region which corresponds to the accuracy window required

for certification. Figure 2-10 shows an approach starting with a 90-degree

intercept while figure 2-11 shows an approach starting about 3 nautical miles

closer in but with a 4_-degree intercept. The steering laws used were similar

to those shown on figure 2-9_ except that the roll function K4G4(s) was not

used. The various gains were programmed downward during the final descent with

the radio altimeter used as a source of program data. The steering law para-

meters during beam capture were programmed as a function of the internally

sensed position and rate. The significant point made by these recordings is

that the slight performance differences were determined by the initial condi-

tions and the disturbances. It is extremely difficult to generalize on the

relative merits of even gross changes in the steering laws. If we could create

a realistic analytical model for this problem_ we would probably find a very

broad optimum. The problem_ of course_ is how to define a quantitative cri-

terion of "optimum".

1.4 The Rollout Alignment Maneuver

In the above discussions_ the problem has been to align the aircraft's

ground track with the runway centerline. In the presence of a crosswind_ the

aircraft assumes a crabbed attitude to prevent lateral drift. This is not the

only method of cancelling crosswind drifts. An alternate approach implied by

figure 2-9 uses the so-called forward-slip maneuver. The runway heading devi-

ation signal and the path displacement are gradually phased into a rudder con-

trol channel to cause the aircraft to align its heading with the localizer

centerline. This results in a steady-state solution requiring the dropping of

the upwind wing and the holding of a steady sideslip angle by means of opposite

rudder deflection. With this system_ a decrab maneuver would not be needed

prior to touchdown. The aircraft would contact the runway with the upwind

wheel. The initial contact would produce the corrective rolling moment that re-

stores the wing-level condition.

The decrab maneuver is needed to reduce sideloading on the landing gear

if the approach is made with a crab angle. Some aircraft have been designed
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with steerable landing gear that can be positioned to align with a runway

....... _L_ despite the crab attitude approach. Most aircraft landing gear is

designed to withstand fairly high sideloads which would occur if the aircraft

were not decrabbed in a moderate crosswind. Moreover_ the relationship between

the aircraft cg and the landing gear configuration is such that azimuth align-

ment is automatically produced by the side force on the gear at the time of

runway contact. The double track landing gear configurations of the new larger

class of aircraft including the SST will probably not provide this type of

favorable azimuth alignment when the runway is contacted. Decrab maneuvers_

however_ are quite easily implemented in automatic systems_ but performance is

very sensitive to slight variations in the vertical trajectory. An automatic

system will typically command a decrab yaw rotation when the landing gear alti-

tude is about 2._ meters (8 feet) above the runway. The result is almost

entirely dependent upon the time which will elapse between the initial rudder

kick and touchdown. If the flareout is on the high side with a relatively long

floating flare_ the decrab can result in a high lateral drift velocity and ex-

cessive displacement from the runway centerline. A short flareout may not pro-

vide adequate time to rotate the aircraft heading_ but this error will not cause

any lateral touchdown dispersion problems.

The critical problem for the automatic or manual decrab is therefore

the timing of the maneuver. An automatic system must receive its decrab com-

mand from a radio altimeter. Altitude errors of O.61 meter (2 feet) at this

time can cause significant variations in the touchdown parameters. This is one

of the reasons why a large segment of the participants in the AWL development

programs tends to favor a manual rather than an automatic decrab maneuver.

Another reason for uncertainty in the desired procedure for rollout relates to a

prevailing preference for the forward slip approach in crosswinds. This pref-

erence is largely based on manual operating procedures. For example_ the fol-

lowing paragraph is extracted from Pan American Airways Operating Technique

Manual for the Boeing 707 300/300B. (The same paragraph appears in PAA's

Operating Techniques for the DC-8.)

Cross-wind

Proceed with landing and before starting flareout_

remove the crab angle and dip the wing slightly into the

wind to eliminate drift. Contact is made on one wheel_

align the nosewheel down the center of the runway with the

rudder and control drift with the aileron. Kicking drift

out too rapidly at the last second will induce Dutch Roll.

Caution - Do not scrape pod.
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Another reason often suggested for preferring the forward slip _pproach

relates to its possible advantage when heads-up displays are used. Aligning the

aircraft heading with the rumway provides a more desirable aligr_ent of the

windscreen projections with the real world view of the approaching runway.

There are no clear superiorities of either alignment concept when all

factors are considered. The forward slip approach is often advocated because it

might reduce the rudder authority needed. If such an advantage exists_ it is

very slight since it requires about as much rudder to fly the cross-controlled

sideslipping approach as it does to add the sideslip angle immediately prior to

touchdown. The forward slip is often criticized because of excessive roll angle

requirements and the danger of scraping the pod on landing. The following sim-

plified analysis demonstrates that roll angle requirements are actually not too

severe:

(All symbols used are per the nomenclature of "Dynamics of the

Airframe"_ Bureau of Avionics Report AE-61-_II)(Reference 3)

For side force balance (no cross-course acceleration)

c Cy _R = CL_ (2-I0)
Y_ - _R

For zero yawing acceleration_

Cn_ = C _R
• nSR

(2-11)

Thus

[ c ]n_ Cy

Cy_ - Cn_ R 5R

= CL_ _---_ (2-12)q(W/S)

or

Cy_ - Cn Cy (2-13)

I c= ,_wind n8 Cy

V(W/S) Cy_ -CnsR 5R

(2-13)
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This bank angle_ _ is required to compensate for the side_]ipping

force. It is plotted in figure 2-12 as a function of crosswind for various air-

craft at a final speed of 120 knots. If bank angles greater than _ degrees are

considered objectionable_ only the Boeing 747 at crosswinds in excess of about

2_ knots appears to indicate a problem in this regard.

Most automatic landing systems that are being implemented today use the

decrab _^_ _ _ -•u_lou_ a_±gnm_n_ primarily because of its simplicity advantages. (The

forward slip method is being implemented in the DC-9.) The following is a sum-

mary of advantages and disadvantages of both methods:

DECRAB MANEUVER ROLLOUT ALIGKMENT

Advantages

• Simplest system to implement

• Avoids wing-down hazard at

touchdown

• Permits zero sideslip

approach - hence_ minimum

airspeed required

Disadvantages

• Susceptible to large lateral

position and velocity discrep-

ancies for variable flareout

flight paths

• Compromises heads-up display

computer complexity and

utility of windscreen presen-

tation of data

• Large authority rudder servo

required

• Requires extremely accurate

radio altimeter programmer

FORWARD-SLIP MANEUVER ROLLOUT ALIGNMENT

Advantages

• No yawing maneuver needed

prior to touchdown - roll

to level is automatic on

contact

• Runway view is good - nose

of aircraft is aligned with

flight path

Disadvantages

• Implementation more complex

than decrab technique

• If slip maneuver is implemented

during the final phase of the

approach_ a transient distur-

bance is created that introduces

lateral errors at a critical

part of the flight
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FORWARD-SLIP MANEUVER ROLLOUT ALIGNMENT (cont)

• Enhances utility of heads-up

display

• Higher approach speeds required

to fly a sideslipping

configuration

• Excessive bank angles may be

required for some aircraft at

high crosswinds

2. Vertical Flight Path Control

2.1 Glide Slope Characteristics

The use of the ILS glide slope as a means of directing the aircraft to

a precise position on the landing runway is illustrated in figure 2-1. As in

the case of the localizer beam and lateral guidance_ there is nothing fundamen-

tally unique about the ILS radio technique. Any equivalent method that can de-

fine a precise flight path reference could be used and indeed there are certain

deficiencies in the present ILS glide slope systems that should be eliminated if

we were to configure an alternate system. Major problems associated with the

use of ILS glidepath systems relate to variations in the geometric relation-

ships to the runway_ noise problems (beam bends) and the converging nature of

the beam. As in the case of the localizer_ the convergent beam results in a

variable sensitivity which poses control stability problems. However_ the glide

slope problem is much more severe in this regard because the sensitivity actu-

ally approaches infinity in a region where flight path guidance information is

still needed. For this reason_ gain programming of the glide slope signals is

far more critical than for the localizer lateral steering case. Also_ a tran-

sition to some other reference is required by the time flareout altitudes are

reached. The radio altimeter is the usual final reference when the ILS glide

slope is used_ but there are other guidance systems which can provide a con-

tinuous flight path reference through the flareout phase.

Some of the ILS glide slope geometry variables are being eliminated as

more stringent standards are imposed on airport facilities for lower minima

operations. In addition to improvements in beam accuracy_ the trend is toward

standardizing locations of the glidepath intersectiom with the runway and re-

ducing the range of angles permissible for glide slopes (reference 2). However_

even the more restrictive range of glide angles (2._ to 3.0 degrees) corresponds

to significant variations when very precise and repeatable performance is an

objective. Figures 2-13 and 2-I_ illustrate the geometric properties of the

2._-and 3.0-degree beam respectively. Note the extreme sensitivity in the i_.2_

meter (_0 feet) to 30._8 meters (I00 feet) altitude region. 0n the 3.0-degree
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beam, a 3.66-meter (12 feet) error at an altitude of I_.24 meters ({0 feet) _ro_!d

take an aircraft outside of the beam confines and a hardover signal would re-

sult. While the two glidepaths illustrated in these figures would both meet

the most recent ICA0 standards_ note how different information would be pro-

vided by each of these beams. The standard location of the middle marker beacon

is 1097.28 meters (3600 feet) from the runway end. If a landing system used

this beacon signal to program control functions, the possible altitudes for an

aircraft at the center of the glidepath would be {9.7_ or 71.93 meters (196 or

236 feet). This corresponds to a 20-percent variation in altitude even for a

fixed middle marker beacon location.

Of greater significance_ however, is the variation in descent speeds

that would occur on these two glidepaths. Table 2-1 is a summary of typical

aircraft approach speeds and the corresponding descent rates along 2._, 2.7_,

and 3.0 degree glidepaths. A 20-percent spread of descent speed for a given

aircraft because of glide angle differences will have a significant effect on

flareout precision and repeatability. Fortunately, it appears that this is not

a very severe problem because a fairly broad range of touchdown parameters

should be acceptable. However_ if certain more stringent specifications on

touchdown dispersions now under consideration by the FAA were applied, this

could become a serious system problem. A more detailed discussion of these

touchdown dispersion specifications will be given later in the section on flare-

out systems.

2.2 Vertical Flight Path Stabilization

The capture of the glidepath and the exercise of a tight closed loop

control to minimize the deviations from that path is an accepted accomplishment

of the automatic flight control state of the art. As in the case of most flight

control problems, the difficulties which occasionally do occur are not caused by

negligence in applying the analytical disciplines of control theory_ but rather

by subtle limitations of practical hardware. The theoretical description of the

problem can be demonstrated by simplified third- and fourth-order models of the

dynamic process involved. System designs start by providing excellent perfor-

mance in terms of the linearized model that will now be reviewed. The systems

are subsequently refined to account for the omnipresent nonlinear phenomena and

the practical difficulties associated with measurement and signal processing.
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Figure 2-I_ is a block diagram that defines the flight path control

loop and the various parameters affecting performance. In this representation_

an attitude control inner loop autopilot is assumed. The closed loop dynamics

of this inner loop are identified as H2(s); and for the purposes of this quali-

tative analysis_ we can assume that H2(s ) is a first-order lag. The assumption

of an attitude inner loop is consistent with established aircraft flight con-

trol practices. That is_ the autopilot contains a basic pitch attitude stabi-

lization loop and the steering commands are directed into this inner loop as

pitch attitude commands. There are other types of inner and outer loop guidance

and control relationships such as an attitude rate inner loop that receives nor-

mal acceleration commands. However_ such systems involve considerable control

law complexity to achieve a precise flight path control of the type desired for

an automatic approach system. When this type of system is finally synthesized

so that it provides the required flight path stabilization_ its block diagram

can usually be redrawn so that it is identical to figure 2-I_. This is hardly

surprising since we are attempting to control flight path by pitching the air-

craft; hence_ the basic control mode should be pitch attitude. While it is

theoretically possible to control flight path by varying engine thrust and si-

multaneously maintain airspeed by pitching_ this technique does not yield the

rapid response and precision capability needed for an automatic approach.

It should be noted that figure 2-i_ describes the flight path control

stability parameters for either an automatic approach or a manual approach using

flight director displays. In the manual flight director case_ the closed loop

pitch dynamics_ H2(s) _ are provided by the pilot. If the proper quickening com-

pensations based on pitch attitude and pitch rate feedbacks are added to the

flight director computations_ a first-order response with a time constant_ T@_

can be approximated. There will be higher-order dynamics in H2(s) for both the

manual and automatic cases_ but the basic stability problem can be described

first by assuming the simplified dynamics and then extrapolating to the effects

of the higher-order terms.

The aircraft dynamic and kinematic terms are included as H3(s) and

H_(s). The flight path angle response to a pitch attitude change is

F (s)l

HB(S) : [@_s)] _-.
1

TyS + i.
(2-1_)

where

mV

Ty - Cl qS (2-15)
c_

Equation 2-I_ is an approximation in that the long-term effects of the speed

transient on the lift equation are neglected. The approximation is justified_

2-19



(P

ILl

,-4

I-,

I" I-'

z_

[3
zz
P-4 _-4

z
0

H
(r)
0

0

II II II II

>>_

%

I

PO
I

Od
Z

I

I

4-

_ +

._ (._ I.!.I IIHI.u

l.t., _) If}

,-.I

O"

0

II

I-

c_

,.-Ir.O
I

Od,--I
0

boo
.r-I

.zl
40

D-,

4-_

-rl
H

r--I

O
._1
4_

(2)



however, if a throttle control loop (automatic or mam_!) is used to maintain

airspeed.

The control law, Hl(S) _ develops a pitch command as a function of the

path displacement, rate, and integral. These three terms are shown in order to

keep the problem general, but they are not always used or necessary. The rate

term, for example, will usually be obtained by filtering and integrating accel-

erometer signals. It is often difficult to justify its use from the standpoint

of performance improvement; nevertheless, it does find wide application. The

integral term_ on the other hand, does make an important operational contribu-

tion despite the fact that like most integrators, it has a destabilizing in-

fluence. Figure 2-16 shows qualitative root loci of how the various control law

terms influence stability. In figure 2-16, the displacement term only is used.

This root locus therefore corresponds to the variation in closed loop poles as

the aircraft moves closer to the glide slope transmitter. The gain, kl, in ef-

fect, corresponds to the changing sensitivity of the glide slope beam. As shown

in this figure_ a divergent instability will eventually occur even for the sim-

plified approximation in the closed loop pitch dynamics. Figure 2-16(b) indi-

cates that this divergence can be avoided if a rate term is added. The root

locus in this case, however, is deceptive because a more complete representation

of H2(s) would have shown that the addition of the rate term can excite the

short period pitch mode. This pitch mode does not occur when we use a first-

order lag to represent the pitch command response.

Figure 2-16(c) shows the influence of a small amount of the integral

term in the control law. (Typical values of a2 are 0.0_ to 0.10 maximum.) The

stability problem occurs Waen the loop gain is low. Thus, the initial response

to a glidepath capture will be oscillatory at a low frequency if the beam is

acquired at a great distance from the transmitter. Consequently, the higher the

altitude of glide slope beam penetration the more troublesome the integral term

will be. Nevertheless, for a fully automated system which must capture the

glide slope from above or below and then accurately hold the reference descent

path, the integral function is necessary. It is noted that in flight director-

manual approach systems, the integrator in the form shown here is not allowable,

but an alternate method of obtaining integral control is used. Integration is

effectively accomplished by washing out the pitch feedback [within H2(s) ] at a

time constant of about 20 seconds. This is dynamicallY similar to the integral

term (a2/s) in its destabilizing effect. The integral is needed to provide the

steady-state pitch command corresponding to the change in aircraft attitude

associated with the flight path change occurring after the glide slope is ac-

quired. There are open loop techniques which can be used to minimize the depen-

dence upon the integrator for the steady-state pitch command_ but the integrator

is the only closed loop means of eliminating beam standoff error caused by

equilibrium attitude change requirements. It is sometimes suggested that the
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integrator is also useful in minimizing errors resulting from windshear. Un

fortunately_ the stability problem caused by the integrator restricts its

utility in the case of windshear because sufficient integral gain to be effec-

tive is not attainable. This can be demonstrated by the following simplified

analysis:

Windshear = \_h]

For nonaccelerating flight in the vertical plane

L cos y = W _ L = C L qS (2-17)
o

C L = C L + C L A_ (2-18)
o

where C L is the initial equilibrium lift coefficient
o

AL = CLo(Aq)S + CLaaa qS (2-19)

For aL = 0 (to maintain nonaccelerating flight)

C L & qS = -C L a_ qS (2-20)
o

or

CL d__ = CL a dadt - q _- (2-21)
o

L_

(2-22)

1
: _" pV 2 (2-23)q

d_
dt

dt d-h (2-24

2-21



or

For constant y_

(2-26)

= _ (2-27)

Thus_ the pitch rate_ e_ required for a windshear (dV/dh) is given by

equation (2-26). To demonstrate its significance on flight path accuracy con-

sider the effect of a windshear on the Boeing 747 airplane during a glide slope

approach:

(W/S) = 102; CL = 4.81 per radian

Then from (2-26)

Assume Airspeed = 160 knots (q = 88.1 ibs/ft 2)

= 0.291 degree/second

For a typical glidepath control gain_ a 0.05 degree pitch command is generated

per 0.30 meter (foot) of glidepath deviation [6.10 meters (20 feet) per degree].

To maintain nonaccelerating flight in the vertical plane during the specified

windshear condition_ the 0.291 degree per second pitch rate must be commanded by

a 1.77 meter/second (5.82 feet/second) rate of departure from the glidepath.

This rate of departure will continue as long as the windshear persists and the

throttles have not compensated for the speed change. Now the integral term in

the control law could_ in principle_ halt the departure from the reference path

by providing the necessary pitch rate command. Such a pitch rate command would

be provided by a fixed beam standoff. Because of the very low allowable inte-

gral gains (typically 0.05 times the displacement gain)_ a standoff of

1.77 x 20 = 35.40 meters (5.82 x 20 = 116.4 feet) would be required. This ob-

viously could never be the determining factor in a windshear transient since an

unreasonable speed change would have to occur before a beam departure of over

30.48 meters (IOO feet) could develop. Consequently_ the only effective methods

of coping with fore-aft windshear are high displacem@nt gains and tight throttle

controls.

There are three main factors that influence an automatic approach sys-

tem's ability to steer the aircraft through the narrow vertical position window

which aligns the aircraft for the flareout. They are

• Speed Disturbances - Last minute windshear and changes of

aircraft configuration (flaps and gear) can produce flight
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path transients which penetrate the acceptance window
boundary. The effects of these disturbances are countered
by tight throttle controls and high gain flight path
control loops.

• Flight Path Stability - The convergent nature of the glide
slope beammoves the system gain toward infinity as the
runway is approached. As the gain increases_ the damping
of the flight path mode[figures 2-16(a) or (c)] decreases
and moves toward instability. To use the glide slope signal
adequately at low altitudes as well as the higher altitudes_
the gain_ kl_ of figure 2-i_ must be programmeddownward.
Manytechniques have been used or have been proposed for ac-
complishing this reduction. They include completely open
loop_ time gain reductions initiated at glide slope intercept.
This technique will work well when the aircraft always inter-
cepts the glide slope at a fixed altitude and flies at one
airspeed. A semi-open loop timed gain reduction program ini-
tiated by the middle marker offers improvement over the first
system in that the system gain is effectively updated at the
middle marker [nominal altitude about 67.06 meters (220 feet)].
A closed loop corrective capability is added to this latter
arrangement by controlling the gain reduction program as a
function of radio altitude after the middle marker signal is
received. None of these methods is ideal for all operating
conditiens_ but satisfactory results are readily obtained with
the latter two or other approaches involving even more com-
plexity. Table 2-2 is a summaryof various glide slope control
gain reduction programming techniques and their relative ad-
vantages and disadvantages.

• Glide Slope BeamBends - Glide slope noise in the form of beam
bends can produce flight path transients which can force the
aircraft to the boundary of the flareout acceptance windows.
This is a very difficult problem to document adequately. While
improved ILS facility standards for lower minima operations
would appear to alleviate this problem_ questions persist re-
garding the existence of beamanomalies. Many flight record-
ings of ILS approaches testify to the apparent existence of
beambends_ but it is usually difficult to differentiate
between the effects of beamanomalies_ wind disturbances_ and
flight path response dynamics.
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TABLE p-p

ILS GAIN REDUCTION PROGRAMMING TECHNIQUES

Method

Open Loop Timed
Gain Reduction Program -
Initiated at glide slope
intercept

Advantages

• Simplicity

Disadvantages

• Performance is variable
with altitude of inter-

cept and aircraft
velocity. Unstable low
altitude performance
can occur for short

approaches.

2e Open Loop Timed Gain

Reduction Program -
Initiated at middle

marker

• Simplicity • Middle marker location

for various ILS facili-

ties can produce timing
errors. Unstable per-
formance possible for
shallow beam with mid-
dle marker close.

• Performance compromised
for far-out glide slope
intercepts.

e Gain Reduction Program
Initiated at Middle
Marker -

Program is function of
radio altitude

• Good performance

capability for all
ILS facilities and

aircraft speeds

• Performance variations

possible for irregular

ground profiles.

• Performance compromise
for far-out glide slope
intercepts.

Gain Reduction Program
initiated by radio al-
timeter and controlled
as function of radio
altitude

• Good performance
capability is inde-
pendent of ILS
facility or inter-
cept procedure and
aircraft speed.

• Possible problems for
irregular ground
profiles.

_e Gain Reduction Program
as function of distance
from ILS transmitter
(DXE)

• Ideal performance
possible.

• DME equipment not
available.
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2.3 Automatic Throttle Controls

An essential part of the vertical path stabilization problem involves

control of the aircraft's speed. In the simplified description of the flight

path control process as given in figure 2-i_ the effects of aircraft speed

changes were neglected because the most important stability problems were at

frequencies where the speed transients made only minor contributions to the

process dynamics. However_ from the standpoint of long-term control accuracy_

the speed effects are dominant. In figure 2-i_ the simplification was in

H3(s) _ the dynamic relationship between flight path angle and pitch angle. When

the long-term effects are considered_ this transfer function actually has the

following form:

The polarity of the zero (bI) is related to the back side of the power curve

operation. The usual view of the back side of the power curve operation is in

terms of speed stability. That is_ a decrease in speed will require an increase

in thrust. This phenomenon is reflected in equation (2-28) by moving the zero

b I into the right-half plane. Thus_ in terms of flight path control_ a nose-up

pitch command will rotate the flight path angle upward initia]ly_ but eventu-

ally the flight path angle change will reverse polarity. There will be an

ultimate error which will be larger than the initial value. The more rapid the

speed divergence_ the farther the zero bI moves into the right-half plane.

This will correspond to a more rapid reversal of the flight path angle polarity

resulting from a pitch change.

Most commercial jet aircraft operate in a speed-stable region_ but

where the value of k in equation (2-28) is near zero. That is_ the steady-

state flight path angle is not influenced too significantly by a pitch change.

The double delta configuration of the Lockheed L2000 SST design operated on the

back side of the power curve during landing approaches. This was considered to

be a liability in some quarters; but from the point of view of flight path con-

trol precision_ it makes little difference whether the aircraft is slightly di-

vergent or convergent in regard to speed stability. The important fact is that

the pitch loop illustrated in figure 2-i_ cannot maintain an accurate flight

path if significant speed transients are allowed to occur. These speed tran-

sients will occur for both the stable and the unstable power curve operations.

In early automatic approach systems_ when the pressures for lower weather mini-

mum landings were not too great and system performance was not too carefully

scrutinized_ the adjustment of power was a function exclusively reserved for the

pilot. If he coordinated his throttle adjustments with the control activity
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produced by the autopilot and its approach coup!er: performancc was satisfactory.
Whenthis was not done_ the glidepath control accuracy deteriorated rapidly. In
recent years_ this intimate relationship between throttles and the autopilot's
pitching maneuvershas been recognized to the point that almost all automatic
landing systems include automatic throttle controls.

Controlling the aircraft's airspeed by meansof a throttle adjustment
is a very simple task from the theoretical servomechanismpoint of view. We
wish to control the quantity_ V_ and our controller produces an output propor-
tional to V; hence_ we have the classical first-order servo loop. Practical
throttle control systems are more difficult. Stability is not the problem.
The important requirement is to smoothor minimize the control activity and yet
maintain accuracy. This is somewhatof a contradiction for a closed loop pro-
cess since the best way to solve the regulation problem is to make the control-
ler a high gain_ wide bandwidth_ responsive device. In the airspeed control
problem_ we wish to slow downthe movementsof the throttle even for large er-
rors. Moreover_ we want rapid elimination of airspeed errors_ but not neces-
sarily all airspeed errors. If we kept the airspeed at exactly the reference
value_ then compensation for wind gusts will be achieved by accelerating the
aircraft continuously in response to these gusts. It is necessary that the air-
craft maintain its velocity with respect to the air mass_but not to the higher
frequency velocity perturbations of that air mass.

With the many constraints imposed on an automatic throttle control sys-
tem_ the desired results must be obtained with a fairly sophisticated combina-
tion of closed loop feedbacks and a posteriori predictive or open loop
compensations. Figure 2-17 is a general block diagram that illustrates someof
the functions provided by typical throttle control systems in use today. The
upper group of blocks represents the basic airspeed error control path. In its
simplest implementation_ the pilot sets an airspeed reference corresponding to
the aircraft weight. The calibrated airspeed error_ AVc, will commanda pro-
portional throttle increment. The setting of the airspeed reference can be made
automatic by slaving the airspeed reference to an angle-of-attack loop. The
optimum angle of attack for the various approach phases is programmedwithin an
angle-of-attack commandcomputer. The airspeed reference is driven to the value
corresponding to the required angle of attack for any aircraft weight. The con-
trol law for setting the airspeed reference in this manner is of the form

VREF = _ (a - aREF) dt (2-29)

Figure 2-17 shows the airspeed error being blended with a signal de-

rived from a fore-aft accelerometer. As shown in this figure_ a complementary

filter can be used to synthesize a wide bandwidth airspeed error signal. This

is accomplished while simultaneously providing considerable filtering on the
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component of that signal which is susceptible to gust and turbulence noise. If

the complementary filter is a lag network of time constant T and the inputs are

forward acceleration_ _ and airspeed change derived from a pitot source_ _xp_
isthen the output_ A V c

, alxp + a2_
Vc = Ts + i (2-30)

or_ for the no wind case_

aI
' = alx (2-31)A Vc _s+ I

and_ if

a2/a I = ale= T_ then A V c

regardless of how large T is made. However_ in turbulent conditions_ the signal

derived from the pitot source is heavily filtered so that the throttles are not

required to respond to gusts. The advantages of this technique have been de-

scribed in reference 4_ and it is being used in the automatic throttle controls

for the Boeing 727_ 737_ and Douglas DC-8 series and DC-9.

Figure 2-17 shows that all throttle command signals are transmitted

through a Throttle Command Processor. This function provides the throttle rate

and position limits that are so essential to acceptable operation. The rate

limit_ for example_ acts as a heavy low pass filter for large errors. Since the

system is effectively saturated and hence operating at low gain for large errors_

it is important that such errors be avoided. A method of holding system accu-

racy despite the low effective gains is to apply predictive correction commands

in anticipation of the speed transient which will ensue. These commands may be

interpreted as feedforward compensators in some cases. (For example_ if the

_REF is changed with flap deflection_ then a feedforward throttle command pro-

portional to flap extension_ SF_ may be used to minimize the speed transient.)

A commonly used predictive compensation signal is derived from pitch angle. In

this case_ a nose-up pitch attitude change will command a throttle advance to

compensate for the deceleration which would normally accompany the pitch change.

As seen in figure 2-17_ therefore_ a throttle control system for auto-

matic landing operations can be fairly sophisticated despite the rather simple

nature of the control task. The control parameters used in such systems are

intimately related to the specific aircraft characteristics. In the area of

throttle controls_ there are not considered to be any technological problems for
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which solutions are not now known. Thesesolution_ _1_lly _.... 7.... _ .....
system complexity. Economic considerations and uncertainties regarding the
degree of automaticity required have kept most operational systems relatively
simple.

2.4 Flareout

2.4.1 Flareout Control Laws

Flareout control laws must be compatible with the flight path aiming

phase which occurs prior to the flare. The glide slope control, desc_ibed pre-

viously, is accomplished with a pitch command steering loop. For compatibility_

the flareout phase should be an extension of the pitch command steering. This

pitch steering loop must bring the aircraft to the runway and meet four main

terminal condition (touchdown) constraints. They are as follows:

• Terminal Vertical Speed_ _TD _ _MAX

• Touchdown Position, XTD < XMA X

• Forward Speed, VMI N < VTD > VMA X

• Pitch Attitude, @TD _ @MAX

Before describing flareout control laws_ a discussion of the general

problem of flight path controllability would be appropriate. Any closed loop

dynamic process, including those which attempt to control the aircraft's verti-

cal position, can be characterized by such frequency domain parameters as closed

loop frequency and damping ratio. The s plane representation of the simplified

vertical flight path dynamics was shown in figure 2-16. Even nonlinear closed

loop processes have their piecewise linear equivalents or instantaneous repre-

sentation on the s plane. The importance of this s plane or frequency domain

representation is that it can be related to response times. Thus_ a mode having

critically damped characteristics with a time constant T can be thought of as

requiring 4T seconds to settle from a disturbance. Likewise, a 0._ damped,

second-order characteristic mode can be considered to have a one-cycle settling

time. In order to interpret these basic dynamic properties of a closed loop

system in terms of the flight path control problem, a transformation from time

to distance should be made. With such a transformation, a closed loop frequency

can be interpreted as a wavelength. In terms of a frequency, _ (or its

period T), the wavelength, X, will be

X : VT : 2;T V (2-32)

2-28



The closed loop frequency of a flight path control system is depen-

dent upon the factors identified in figure 2-I_. Larger aircraft will tend to

have larger lags in H2(s) and H3(s ) of that figure_ and hence lower closed loop

natural frequencies. Eor jet transports_ a closed loop path control frequency_

_ of 1.0 radian per second is representative of an extremely high gain system.

A period of i0 seconds (_ = 0.628 radian/second) is more representative of a

realizable high gain system (providing wide bandwidth position and rate data are

available). For a final approach speed of 120 knots (203 feet/second_ 61.87

meters/second)_ the values of k for a lO-second period system will be

k : 618.74 meters (2030 feet)

A reasonably damped system will require one wavelength to settle to its final

value _ but one wavelength is about the entire downrange distance of the

flareout.

Approach and landing guidance concepts that use only a curved path

extension of the glide slope for flareout have been postulated. Such a system

would always be on closed loop control to the glide slope reference except that

the reference would curve near the ground. If there is no other recognition

that the reference path is changing other than the sensing of glidepath error

signals_ then such a scheme is doomed to failure. The closed loop process re-

quires about one wavelength to eliminate errors and the total path is about one

wavelength. Path deviations sensed near the ground could never be fully cor-

rected. It is the recognition of this basic weakness of the closed loop error

sensing systems which motivated study and development of terminal control tech-

niques for flareout. Terminal control systems as well as the applicability of

other explicit guidance concepts will be reviewed later. It is noted_ however_

that terminal controllers are also limited when viewed in terms of the wave-

length principle.

The point of this discussion is that closed loop control of a flight

path is by itself inadequate for a flareout system. The solution lies in ap-

plying a predictive command in the same manner as a pilot when he lands an air-

craft manually. The pilot does not wait to see flight path errors develop

before he pulls back the control column. At the proper time_ he initiates a

rotation command and then adjusts his control in a partial closed loop response

to the resulting aircraft motion. Most automatic flareout systems now operat-

ing or under development use a similar approach. Figure 2-18 is a functional

block diagram that is sufficiently general to be representative of most of

these systems. This figure shows the flow of information leading to the gener-

ation of the pitch steering command that is applied to the autopilot. Note

that the glide slope control signal_ 8cI_ is summed at the same point as the
flare command signals. As the ground ms approached and the glide slope signal
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moves toward infinite sensitivity as well as doubtful accuracy_ the gain is re-

duced toward zero by data obtained from the radio altimeter. By the time an

altitude of 15.24 meters (_0 feet) above the runway is reached, the glide slope

loop is effectively driven to zero gain. The only information remaining in 8

will be steady-state pitch command derived from the path control integrator, cl

Prior to flareout initiation_ the aircraft may be flying a straight attitude

hold function. This can exist for the duration between the zero gain glide

slope control and flareout initiation. Some systems will exercise closed loop

control over the existing vertical speed at the time the glide slope gain goes

to zero. If this interval is only I or 2 seconds_ pitch attitude hold appears

to be adequate.

The flareout control law_ initiated at a critical altitude that is

sensed by the radio altimeter is of the form

aI
@c = KI(I + T )[h + a2(_ - hF )] + @ (t)

P
(2-33 )

This control law defines a reference flight path having an exponential decay of

altitude with respect to time. This path reference_ hREF_ is

hRE F = (h° - a2h F) -t/a 2
e + a2_F

(2-34)

The term hF represents a vertical speed bias that calls for a finite sink rate

at touchdown. It may also be viewed as an altitude bias that shifts the expo-

nential altitude path to a steady-state value below the ground level. For a

value of a2 = 5.0 and a vertical rate bias of-0.46 meter/second (-1.5 feet/

second)_ and if the flareout starts at 12.19 meters (40 feet)_ then equation

(2-32) would yield the following typical path reference:

hRE F = 47.5 e-0"2t -7.5

The steering law which attempts to exercise closed loop control to

this reference path is the loop gain, kl, and a displacement plus integral (aI)

term. However_ the term which in many systems is the most essential contribu-

tion to a successful flareout is the feedforward function or predictive pitch

program_ 8p(t). In its ideal application, this open loop pitch command will

cause the aircraft to follow a path such that

h + a2(_ - fiF) : 0 (2-35)

If this were to occur_ the control signal, @c _ of figure 2-18 would be zero

throughout the flareout. The operation of th_ system can then be viewed from

the standpoint of the conditional feedback concepts (reference 5). That is_ a
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corrective feedback control signal (e of figure p-78) will occur only when42
the actual response departs from the desired response. The h + h control loop
may therefore be interpreted as a vernier control on the basic feedforward (or
predictive) command_@p(t). The optimumpredictive commandis dependent upon
vehicle aerodynamics_ initial velocity_ initial sink rate_ and flare initiating
altitude. Whenany of these items vary_ the predictive commandshould be ad-
justed to minimize dependenceupon the h + h closed loop vernier. Such an ad-
justment capability is implied by the inputs shownto the stored predictive
pitch program block on figure 2-1@.

The significant point of this discussion of flareout control laws is
that performance is largely dependent upon open loop rather than closed loop
controls. Accuracy depends upon maintaining an adequate bound on initial con-
ditions. If these initial conditions are variable_ good performance can still
be achieved if we compensatewith the open loop control commands.

2.4.2 Ground Effect

An aerodynamic phenomenonthat often provides a similar effect as
the predictive pitch program of equation (2-32) is the so-called ground effect.
The ground effect will produce a net lift increase to cause an inherent flare-
out even when the pitch attitude is held constant. Foss_ Magruder_ and others
in reference 6 point out that the Lockheed double delta SSTdesign obtains a
significant ground cushion effect which almost eliminates the need for a flare-
out maneuver. Figure 2-19_ derived from reference 6_ shows how a delta wing
fighter aircraft which was modified to reflect the Lockheed SSTplatform pro-
vided a significant ground effect improvement over the current jet transport.
The jet transport in this illustration is somewhatrepresentative of the DC-8.
Other transports now operating have a more significant ground effect cushion.
For example_ automatic landing studies for the Boeing 727 (reference 7) indi-
cated that the ground effect contribution was sufficiently effective to elimi-
nate the need for the predictive pitch commandin the flareout control law.
This is illustrated by figure 2-20 which shows simulation results of the flare-
out maneuverwith and without ground effects included in the aerodynamic simu-
lation. It is noted that these results were obtained with early estimates of
the 727 aerodynamic characteristics. Subsequentflight measurementsto derive
the Boeing 727 ground effect coefficients have indicated that this preliminary
data gave a somewhatoptimistic result. The primary difference was in the ef-
fect on the drag coefficient. However_the basic characteristic indicated by
figure 2-20 is still valid. Note that without ground effect_ the closed loop
h + _ control law reduces the sink rate from 2.59 meters/second (8.5 feet/
second) to only 1.83 meters/second (6.0 feet/second). With ground effect_ the
touchdown sink rate is 0.46 meter/second (1.5 feet/second); a very ccmfortable
landing.
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Figure 2-21 is a detailed breakdown of how the groum,] effect comtri-

butions to the pitching moment_ drag_ and lift coefficients influence the touch-

down characteristic on the Boeing 727. If attitude is held con_tant_ the

flareout characteristic would be similar to curve A in figure 2-21. That is_

the touchdown velocity will be about 1.07 meters/second (3._ feet/second).

This certainly makes the problem look quite easy. Indeed_ even if there were

no ground effect and the aircraft were crash landed from its glidepath trajec-

tory_ the landing would be hard but not catastrophic. The point emphasized

here is that maintaining the initial conditions within satisfactory bounds is

the key to a successful landing. The difficult part of the flight path control

problem had been solved when the aircraft was brought to the precise flareout

point at the correct velocity. Other problems relating to the effect of wind-

shear and other variables on touchdown dispersion will be discussed later.

2.4.3 Measurement Problems

2.4.3.1 Terrain Profiles

The proper operation of the flareout system illustrated in figure

2-18 depends upon the accurate measurement of altitude and altitude rate. The

radio altimeter is identified in figure 2-18 as the source of this information.

It would have been desirable to use a data source that was not as dependent

upon the terrain profile as is the radio altimeter. A precision radar system

such as Flarescan or AILS (references 8 and 9) may provide this information

without the terrain profile problem but the direction of landing system develop-

ment for commercial transports has avoided any commitment to ground radar gui-

dance concepts. The radio altimeter is becoming the standard position

reference. However_ altitude above the terrain can produce some erroneous in-

formation. Figure 2-22 is a representation of terrain profiles for several US

airports (reference I0). It is seen that the Pittsburgh and Dallas glide slope

approaches are particularly unsuited to radio altimeter guidance. It is im-

portant to note the possibility that vertical rate information derived from th<:

radio altimeter can cause unsatisfactory results even when the profile is per-

fectly flat in the flareout region.

Consider the Pittsburgh profile shown in figure 2-22_ for example.

If flareout were to be initiated at about 12.19 meters (40 feet)_ we can easily

demonstrate that a system such as the one illustrated in figure 2-18 can get us

into serious troubles. The problem can be clarified by filling in some of the

details of the flare control law generation as illustrated in figure 2-23.

From this figure it is seen that the h + h error signal is synchronized prior

= -a2h at the flare initiate altitude so thatto flare initiation. Ideally_ h

the error signal is zero at that time. This corresponds to a reference landing

trajectory that is tangent to the aircraft flight path at flare initiation. If

the aircraft velocity and hence the sink rate differs from the nominal value_

the synchronizing loop will automatically provide the signal e which restores
O
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+_= _l_n_= _ e_j=_tnrv t_n_ncv re]ation_hio when flare is initiated Now

let us consider the Pittsburgh terrain profile• For several seconds prior to

the flare initiate point an erroneous radar altitude rate is experienced• If

this erroneous rate is _T_ the synchronizing signal_ ¢o_ will be a2hT for the

ideal sink rate case. The signal co will be of a nose-down command polarity

since it is balancing what appears to be an excessive sink rate which called

for a nose-up command. Soon after the f!areout program begins_ the terrain

becomes level and the measured h signal begins to assume the correct value.

The control law error signal will now begin to command a nose-down maneuver•

Since all properly designed flareout computers include an asymmetric pitch com-

mand limiter that blocks nose-down commands_ a catastrophic landing might be

avoided_ but nothing resembling the desired flareout path will be obtained.

Suppose we did not employ the synchronizing function and accepted

a flareout system that could produce transient commands at the time of flare

initiation• Would that eliminate the problem? Unfortunately_ the problem would

still exist except now the spurious command and polarity would be nose-up. The

erroneously high sink rate existed immediately prior to the start of flareout.

During the flare phase the aircraft is over level terrain; but in an inertially

augmented _ measurement_ the long-term measurement of vertical speed is the

heavily filtered radio altitude derived signal• The control signal is wide

bandwidth _ synthesized as shown on figure 2-23 in accordance with the follow-

ing relationship•

= accel +
Ts + i Ts + i (2-3_)

where "hacce I is an inertially derived vertical acceleration signal and hR is

the derivative of the radio altitude signal• The value of T is usually greater

than 1.0 second. Thus the abrupt change in h R that occurs when the Pittsburgh

terrain flattens does not eliminate the erroneous signal caused by the previous

hill• The error will be held in the lag network and will decay with a T-second

time constant. The effect of this error will be to produce a proportional

nose-up command as long as it persists in the lag memory.

It is apparent therefore that pronounced terrain irregularities

such as large hills and valleys will be remembered by inertially augmented ver-

tical speed computers• Short or abrupt irregularities will be filtered• For

example_ the sharp rectangular protuberance in the New York La Guardia_ Runway

4 terrain (figure 2-22) and the abrupt rise of the runway threshold from the

water level at New York Kennedy_ Runway _R_ will not be a source of difficulty

because these irregularities are easily filtered• Because of these terrain

problems_ many systems have been designed to use barometric altitude rate rather

than radio altitude data• Guidance problems associated with these systems will
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be discussed later. Another alternative is to attempt to extract wider band-
width h data from the radio altimeter. This involves shortening the time con-
stant of equation (2-35) to about 0.2 second. The ability to achieve good
performance with this type of filtering depends upon radio altimeter quality and
terrain roughness. Even if barometric altitude rate were used in the control
law_ the programmingof the transition from glide slope to barometric control
and the initiation of flareout must be based on an absolute position me_sure-
merit. Because precision DMEhas not been available and ground-based precision
radar landing system facilities have not been deployed for commercial transport
operations, the radio altimeter has been the only device used for this absolute
position measurement. Reference to figure 2-22 shows that none of the airports
shownwould give good data if we wished to initiate flareout at 15.24 meters
(_0 feet). This problem has been cause for muchconcern in recent years and
the ICA0 7th COMMand the 7th AGADivisions have recommendednew landing facil-
ity criteria that are intended to alleviate the difficulty. Specifically, the
7th AGADivision madethe following recommendationsseveral years ago.

"In order to accommodateaircraft that will be using all weather
landing facilities that incorporate a radio altimeter for final height and
flareout guidance at the approach end of precision approach runways, it is de-
sirable that slope change be avoided or kept to a minimumfrom a point where an
aircraft, when on the nominal ILS glidepath_ would be at an altitude of 22.86
meters (75 feet), until the point of touchdown. This is desirable because at
an altitude of 22.86 meters (75 feet) the radio altimeter would begin to pro-
vide information to the automatic pilot for auto-flare."

Litchford (reference lO) has documentedthe vast extent of the
glide slope-approach terrain-runway threshold variations and inadequacies.
Several years have elapsed since this analysis pointed out the operational prob-
lems associated with the use of existing airport approach configurations and
while someprogress has been madetoward improvement and standardization_ most
of the inadequacies described in reference l0 are still existent. As noted in
reference lO, the cost of runways was estimated at $3200 per meter ($1000 per
foot) and muchof the required changesnecessitated additional runway length.

2.4.3.2 Barometric Data for Glide Slope Extension and Flareout

While nobody suggests the use of absolute barometric altitude mea-
surements as the source of altitude information for a flareout_ barometric data
can be used for a flareout control law. Oneoften encounters statements which
dismiss barometric measurementsas inadequate for precision flight path control.
While there are problems associated with such techniques_ they cannot be ex-
cluded from consideration on the basis of arbitrary judgments regarding
accuracy. Indeed_ there are several successful implementations of flareout sys-
tems based on barometric altitude rate (references ii and 12). In such systems
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the basic control law is rate of descent. At the flareout point_ the rate of

descent reference may be changed from the value maintained on the glide slope to

a final value desired for touchdown. The predictive pitch program may still be

used as described previously but now the vernier closed loop control is on ver-

tical speed• Wide bandwidth vertical speed information can be obtained by

using the same accelerometer blending technique used in computing vertical speed

with the radio altimeter• That is_ barometric rate would be applied to the

complementary filter in the same manner as radio altimeter rate in figure 2-23.

That the barometric pressure measurement is a potential good source of vertical

speed is apparent by noting the quality of the pressure altitude flight record-

ings for the landings illustrated in figures 2-10 and 2-11.

Another way to use barometric rate is for the h part of the control

law in the exponentail h + h flareout system discussed previously. The baro-

metric h could avoid the terrain problem which tends to deteriorate the radio

altitude rate data. However_ there is an omnipresent problem associated with

barometric signals in closed loop path control cor_igurations. It is often re-

ferred to as the K problem. This notation refers to a coupling of angle-of-

attack to the static pressure source. The units of K are equivalent meters

(feet) of altitude error per degree of angle of attack. The polarity of K may

be positive or negative depending upon location of the static source in each

aircraft. Ideally the static source should be located at a point on the air-

craft that is not susceptible to this error. Static source calibration checks

are difficult and time consuming so that compromise locations are usually used.

Figure 2-24 shows simulated flareouts (reference 7) that demonstrate the sta-

bility problem brought on by K effects. The aircraft is the Boeing 727 and

the control law is similar to the one used in figure 2-21 except that a 3/4-

second lag filter has been added to the pitch command_and barometric rate data

is used. Because of the 3/4-second lag_ the basic system performance without

K_ errors is somewhat oscillatory. Note however that when the oscillations are

viewed in terms of the wavelength interpretation_ the fact that the flareout is

essentially an open loop process is again apparent. As mentioned previously_ a

wavelength covers more than 609.60 meters (2000 feet) which is greater than the

normal flareout downrange distance. The oscillatory tendency becomes much

worse when the K_ effects are included. While none of the touchdowns were very

hard_ note that landing B missed the ground on the first pass and then touched

down again about 609.60 meters (2000 feet) downrange. The point made by this

recording is not that barometric rate causes insurmountable problems but that

the system performance becomes very sensitive to another variable which is dif-

ficult to bound. Not only are the static source erros with angle of attack

considered difficult to define but the possible variations of measured static

pressure as a result of ground effects may also be subject to uncertainties.
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2.4.4 Touchdown Dispersion

One of the most difficult problems associated with automatic landings

or lower minima manual landings is the fact that they involve a significant dif-

ference in procedure than used in the normal manual landings. This difference

is that the lower minima flareout trajectories start tangent to the glide slope

and always remain above the glide slope. Landings from higher altitudes may

start tangent to the glide slope, but they depart by going under the glide slope.

Thus_ the touchdown regions for both types of landings will be considerably dif-

ferent. Runway lighting standards have been designed for the forward area

touchdown that would result from ducking under the glide slope prior to exe-

cuting the flareout. Pilots, concerned with stopping distance, prefer a for-

ward area touchdown. In automatic approaches where the pilot takes over the

aircraft at about 60.96 meters (200 feet), the duck under maneuver is still

used to recover valuable runway distance. Figure 2-25 illustrates a normal

landing procedure performed by KLM airlines in a DC-8 (reference 13). The de-

parture from the glide slope occurs at about 42.67 meters (140 feet) and the

immediate response is an increase in the sink rate. If this technique were

attempted at a glide slope separation altitude of 30.48 meters (1OO feet) or

lower, we would be setting the stage for an accident situation; for now, small

errors in power setting or human response delays could easily result in a fail-

ure to reduce the aircraft's sink rate.

It is therefore fairly well accepted that lower minima touchdowns

will have to cover a considerable region downrange of the glide slope in_er-

section with the runway. This causes consternation on the part of pilots who

would like to see some additional stopping distance in front of them. Also,

the touchdown lighting arrangement does not adequately cope with landings which

flare from above the glide slope. In attempts to standardize or establish cri-

teria for autoland touchdown dispersion characteristics_ various committees

representing the Air Transport Association_ Airline Pilots Association, and

Aerospace Industries Association have been working with the FAA for some time.

An indication that the problem discussed here is difficult to appreciate can be

surmised from the ATA's proposed Advisory Circular to the FAA on Automatic Land-

ing System Standards, dated 12/14/66. Aircraft touchdown specifications in this

document are:

Longitudinal Dispersion: -91.44 meters and +304.8 meters

(-300 feet and +i000 feet) (95 percent of occasions) from a

line on the runway which is the intersection of the linear

extension of the glide slope with the runway.

2-36



200-

-10

,_eel helght
(ft)

15o

t00 ¸

0 •
)0 1¢

_ot_ I

_" = _ o_ol ool. _-_

__ :2_2.2 Ii
_ODtotanoe to thresh2. 000

(feet )

g

]!:i Yertical

I

1
I

MLM Res. Dept. Feb.'63

Figure 2-25
The Basic Landing Procedure for a DC-8 Airplane

(Curves Based on Flight Recording)



Under reasonable combinations of the following:

a. Headwind - 25 knots or tailwind of IO knots maximum

b. Crosswind - 15 knots maximum

c. Moderate Turbulence

d. Windshear - 4 knots/lOO feet down to i00 feet

(not exceeded 95 percent wvc_a__o..__e_ _ _ _)

8 knots/IO0 feet from IOO feet to ground

(not exceeded on 95 percent of occasions).

This touchdown specification is indciated as the shaded region ad-

jacent to a 2.5-degree glide slope on figure 2-26. Also included in this figure

is a path that would be followed by an aircraft beginning its flare at about

15.24 meters (50 feet) and gently shallowing its flight path for a 0.30 meter/

second (1.O foot/second) touchdown sink rate. It is apparent that such a land-

ing trajectory not only exceeds the above longitudinal dispersion specification_

but actually lands outside of the touchdown zone light region. To minimize run-

way length consumed during flareout, the flare maneuver must be started at a

lower altitude_ and higher values of normal acceleration must be used. All of

this can be accomplished_ but with obvious disadvantages. First_ a shorter

flareout path means that the maneuver becomes more of an open loop process with

less opportunity for the closed loop vernier to effect corrections. Second_

and equally important_ is the psychological problem of the pilot waiting for the

automatic system to initiate the flareout. Pilots do not enjoy waiting for the

automatic system to commit itself. They prefer automatic flareouts at the maxi-

mum possible altitudes. High altitude flares will consume runway length_ as

shown in figure 2-26.

The proposed dispersion specification is somewhat unreasonable from

the disturbance conditions that are imposed. For example_ consider the Boeing

727 simulated landing illustrated in figure 2-20. The nominal touchdown oc-

curred at about 60.96 meters (200 feet) from the glide slope point_ well within

all requirements. We must recall that these flareout systems are primarily open

loop processes and nonpredictable disturbances can cause significant errors.

Since an open loop compensation for windshear is not possible_ we can expect

that type of disturbance to cause significant deviations from the nominal tra-

jectory. This is illustrated in figure 2-27 for a 4 knot/30.48 meters (4 knot/

IOO feet) windshear_ only one-half the value called out in the proposed disper-

sion specification. Note that when the windshear is in the tailwind direction_

the touchdown occurs over 457.20 meters (1500 feet) from the glide slope point.

That touchdown was quite soft [0.15 meter/second (0.5 foot/second)] and should

be considered satisfactory; yet_ the runway consumed is considered excessive.

Corrections for this type of problem would most certainly bias the nominal

touchdown conditions in the direction of higher sink rates. This is a dilemma
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that does not appear to be amenable to electronic breakthroughs. It can pro-

bably be solved only by runway extensions and many years of operational exper-

ience and familiarization with automatic landing system characteristics.

C. THE DECISION-ATTITUDE PROBLEM

I. The Category I_ II_ and III Standards

The certification of aircraft systems to operate under lower minima con-

ditions has involved an evolutionary pursuit of the IATA categories illustrated

in figure 2-28. These categories define decision altitudes as a function of

runway visibility range (RVR). Thus_ if an aircraft and the related crew and

equipment are certified for Category I operations_ a descent to 200 feet is per-

mitted before the pilot need make a commitment to abort the approach with a go-

around or to take over controls of the aircraft for a manual landing using the

airport's visual references. RVR is measured quantitatively on the ground al-

though its accuracy and actual significance at the touchdown area are often ques-

tioned. If the airport facility had determined that the RVR is greater than

792.48 meters (2600 feet)_ then the Category I aircraft will have been given

approval to continue its ILS approach to 200 feet| otherwise that aircraft would

have been diverted. Little difficulty has been experienced in updating onboard

avionics to meet Category I requirements. Airborne equipment requirements are:

• Normal mandatory radio and instrument equipment

• Flight Director or Automatic Approach Coupler

(of demonstrated acceptable level of reliability)

• Improved instrument failure warning system or

equivalent cockpit procedure ensuring immediate

detection of instrument failure

Most of the effort involved in the introduction of Category I operations related

to airport equipment. This involved installation of all components required for

operational RVR at US airports (high intensity runway lights_ standard approach

lighting system with flashers, transmissometers_ and all weather runway markings

or runway centerline lighting.

Category II requirements are similar to those of Category I except that

the accuracy problems become much more intense. If the aircraft is allowed to

penetrate to an altitude of lO0 feet before a visual takeover or a go-around de-

cision is made_ the first question to be answered is what will be the source of

information that tells the pilot he is at lO0 feet. Radio altimeters may be an

essential instrument for this function although the terrain peculiarities must

be taken into account. Category II certification has been obtained by airlines
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without using radio altimeters as the basic height measurement_ This has been

done by demonstrating accuracy and reliability of dual barometric altimeters.

It also becomes necessary to demonstrate the abort maneuvers from altitudes of

i00 feet. The capability of the individual aircraft under engine out conditions

and the initial descent rate determine the safety margins of go-around maneuvers.

Perhaps most important is the training and proficiency of the pilot and crew.

The available time to recover from errors is greatly reduced in Category !! sit-

uations and coordinated crew responses are essential. The ILS and airport fa-

cility standards and the performance of the automatic approach systems have been

the major hurdles in achieving Category II certification for various aircraft.

(FAA criteria for approval to operate Category II are defined in reference 14.)

Figures 2-10 and 2-II_ the DC-8 Category II certification flight test records_

show the localizer and glide slope accuracy windows that must be attained. To

achieve this type of performance_ automatic approach computers and flight di-

rector computers were improved to include more precise gain programming of the

beam signals. Autothrottle systems were added when not already in use. Also_

equipment tolerances and accuracies were refined so that they could provide the

desired performance and were also compatible with monitoring and failure detec-

tion devices. Category II operation has been certified for many aircraft by

various carriers so that it would be safe to state that Category II is state of

the art in 1967.

The economic advantage of penetrating to lower altitudes than Category

II decision altitude is debatable. For example_ it has been shown that the in-

troduction of Category I and II operations can take a major cut out of the di-

version losses. Figure 2-29 (derived from reference 15) shows the relative

incidence of various minima at four airports. These airports are fairly repre-

sentative although Los Angeles and Seattle_ which have a higher incidence of low

minima conditions_ are not included. It is interesting to note that statistics

based on number of hours below specified minima do not provide a direct measure

of flight diversions. Some airports_ for example_ tend to have their fog pro-

blems from late evening to early morning hours when the scheduled arrival and

departures are not near their maximum density. Other airports that have a more

frequent encounter with fog at the peak traffic period will be more vulnerable

to economic losses. A summary of the statistics in figure 2-29 yields the fol-

lowing improvements with lower minima equipment:

Yearly Hours
Minima Hours Below _(percent)

300-3/4 270.4 3.1

200-1/2 182.2 2.08
Cat. I

Improvement
Over 300-3/4

Minima

(percent)

33
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Minima

lOO-i/4
Cat. II

Cat. Ilia
(Autoland)
Excludes

Zero-Zero
Conditions

Hours Below
Yearly Hours
(percent)

Improvement
Over 300-3/4

Minima

(percent)

108.8 1.24 60

i0.0 O.1i 96

For many aircraft_ the investment required to improve capability from

60 to 90 percent may not be warranted. However_ when one projects to the SST

era and considers how a single diversion can disrupt schedules and earning ca-

pacity for several flights_ the economic necessity of Category III operation is

difficult to question.

The demarcation between Category II and Category III in terms of weather

conditions is not very significant_ but in terms of system requirements it has

been a formidable task to identify the various factors and criteria which should

be considered. At this time (February 1967)_ there are proposed requirements

for Category IliA but as yet no definitive specifications or even definitive

interpretations of the proposed requirements. For example_ the FAA (Federal

Aviation Authority and ARB (Air Registration Board - UK) positions may be sum-

marized as follows:

• FAA

Advisory Circular to be Issued

Safety Standards Maintained

(Altitude Loss Factors following equipment malfunction

have been specified in FAA Advisory Circular (reference 16).

These standards allowed flight path deviations from ILS

approach paths in accordance with figure 2-30. For auto-

matic landings the deviation during flare cannot be defined

except in qualitative terms such as "excessive" or "unsafe".)

• ARB

System Design Goal I x I0 -7
SystemAutoland
Failures/

Landing Accident Rate Shall not Increase I x 10-6J Landing

The requirements as summarized above do not dictate any specific direc-

tion for system implementations. For example_ they have been interpreted in the

Douglas-Sperry DC-9 Category IliA Development Program as follows:

• Automatic landing is primary mode of operation

• Flight director is available as a monitor and backup system
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• Landing system failure above I00 feet ..... ABORT

• Automatic landing system failure does not cause

appreciable or unsafe flight path deviation

• Manual takeover at touchdown with visual guidance

This particular interpretation was taken because of the relative ease

with which the Category II equipment could be updated. The major change between

the Category II and III configurations involves the extensive monitoring. Fail-

safe operation will be obtained for all failures_ but because complete triplica-

tion is not used_ the configuration is fail-operational for only about 8_

percent of possible failures. Thus this interpretation of Category II require-

ments may necessitate a manual takeover with flight director for the i_ percent

failure group if such failures occur below I00 feet. Other approaches do not

consider the possibility of a flight director as a backup below i00 feet. In

these approaches_ the commitment to continue landing after the aircraft has de-

scended below iO0 feet depends upon a triplicated_ fail-operational automatic

landing system (the Smiths system in the Trident_ for example).

An interesting observation on the ARB objective of no increase in acci-

dent rate with the introduction of all weather landing may be made if we refer

to aircraft accident statistics. For example_ reference 17 shows the distribu-

tion of fatal accidents and major incidents for jet_ turboprop_ and piston air-

craft in recent years. This information is reproduced as figure 2-31. It is

apparent that approach and landing represents the major safety hazard in modern

aviation. The breakdown of circumstances regarding the approach and landing

accidents is given in table 2-3. Note that inaccurate approaches appear to be

the largest single contributor. One might conclude that the use of all weather

landing guidance and control techniques could have prevented most of these in-

cidents. Thus it is quite reasonable to expect that the introduction of AWL

techniques should significantly improve rather than degrade the present record.

Indeed_ N. E. Rowe_ in reference 17_ when outlining steps to greater flight

safety_ lists "Introducing means for automatic landing as a matter of urgency".

We therefore see flight safety planners call for automatic landing as an urgent

safety requirement and all weather landing planners cautious and hesitant in the

introduction of these techniques for fear of degrading flight safety.

Regardless of the system implementation there is always a critical de-

pendence upon the pilot and crew procedures. The tasks of monitoring perfor-

mance by means of instrument displays and visual real world references and the

precise definition of crew procedures in the event of failures or performance

anomalies are the critical unresolved problems of Category III operations.

These problem areas will be reviewed briefly.
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2. The Information-Decision Altitude Dilemma_

2.1 The Decision Process

The essence of a Category III landing can be described by following the

multidimensional decision process along its altitude coordinates. Figure 2-32

shows this viewpoint of the problem at each altitude or instant of time a deci-

sion equation must be solved. Figure 2-32 shows the elements of this equation

at a time_ tl_ and altitude_ hl. The decision_ identified as hl_ is seen to

comprise three possible outputs. They are as follows:

• Proceed with automatically guided landing

• Manually override system and proceed with landing

• Abort the landing

Each output_ in turn_ may involve a choice. For example_ several abort proce-

dures may be chosen. It is apparent that if we cascade too many alternatives

along a given decision output path we would rapidly saturate the decision maker's

faculties. A well organized system is one that always operates with a minimum of

alternatives. Thus_ for example_ it may be unwise to offer a choice of abort

techniques.

There are six information groupings that may be considered as being the

main inputs to the decision making process. As shown in figure 2-32 they are as

follows:

• Visual Contact with the Approach Markings and Lights

Upon receiving adequate visual definition of the landing

area_ the manual overridedecision may be made and a

manual landing executed.

• Meteorological Status

These include voice communications of RVR_ downwind status_

UW_ and crosswind status_ VW_ and the onboard interpretation

of windshear_ _Uw/Sh and 8Vw/Sh _ turbulence and visibility.

• Motion Cues and Controls Response

These involve sensing of accelerations and observing the

autopilot commanded motions of the control column.

Evaluation of these cues is usually based on experience and

knowledge of what constitutes normal automatic control

behavior.

2-k-3
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• Automatic Flight Control Failure Warning Tndicators

These are specific cues provided by the automatic flight control

monitors. Depending upon which phase of the automatic approach

has been reached, a specific crew response to each specific

failure warning can be defined.

• Sensor Situation and Command Displays

These are the primary means used by the pilot to monitor the

progress of the approach. Displays inform him of his position

with respect to the approach paths, attitude_ heading_ baro-

metric and radio altitude_ speed_ descent rate, and command

errors. Associated with these are progress and mode annunci-

ators which indicate that the proper sequence of automatically

switched modes and events are occurring. There is a consider-

able amount of information redundancy inherent in these

instruments. In addition to the built-in failure monitors_

the experienced pilot can sense deviations from the norm by

incompatibilities between various displays. This is one of

the intangible benefits of the pilot's judgment faculties which

cannot be mechanized. However, no system will ever be con-

sidered for this application if it merely depends upon anything

as intangible as pilot's insight which often can be fallible.

Specific procedures must be established to define crew action

required in response to anomalous situations revealed by the

flight control displays.

• Sensor Status Displays and Failure Warning Indicators

As the use of the flight instruments becomes more critical_

the requirement that they be adequately monitored becomes

more important. Most flight instruments have always carried

warning flags and other status indicators to caution against

their usage for certain obvious failures such as loss of

power. For AWL operations these are being augmented by more

elaborate central instrument monitoring subsystems. Instru-

ment monitors warn against failures of the critical displays

and the crew response_ again_ should be specific for each

type of failure warning.

The information obtained from these six groups must be continuously

digested in the decision process so that_ in effect there is a continuum of de-

cisions...h I ...h n as the aircraft approaches the ground. Some of these h's

correspond to major decision altitudes such as the 200-foot Category I and the

lO0-foot Category II regions. In order to keep this from becoming an over-

whelming burden on the pilot's information handling capability: there are obvious

2-4k-



methods of weighting the information in terms of prioritie_ and digesting m_ch

of the data to assist in making obvious decisions such as those in which an

abort is mandatory. For example, the Category II ILS windows are the obvious

primary priorities between 200 and lO0 feet. If the aircraft has not consis-

tently converged its position to within this window and visual contact with the

ground has not been made, an abort would be needed. Likewise, an abort would

also be called for if one of the dual pitch autopilot channels displayed a fail-

ure above 100 feet and visual contact had not been made.

The decision problem becomes most acute at the Category II altitude.

Between the Category II decision altitude and the flare altitude % to 7 seconds

will elapse. (Refer to table 2-1.) During this period the aircraft has been

committed to a landing. This landing will either be automatic (or automanual

through the flight director) or will be a manual override in which the pilot

intervenes to take over controls from the automatic guidance. The latter action

should occur only for the rarest of system failures. In some methods of calcu-

lating probabilities of failure, the latter action is considered a catastrophic

failure so that a pilot's ability to correct a bad landing at this time will

improve the probability of success above the already high value that is generally

specified for the automatic landing (one failure per l07 landings).

During these final seconds prior to landing, the decision element is

secondary for a definite commitment has already been made. In the event of an

emergency situation occurring during this period, the emphasis should be less on

the decision aspects of the problem and more on crew training and the allocation

of crew duties.

Let us examine the nature of the critical decision at the Category II

altitude. If visual contact is made at this decision altitude and all Category

II performance criteria have been met, then a transition to manual control and

an ensuing successful landing should be accomplished with relative ease. What

constitutes meeting Category II performance criteria is therefore the crucial

essence of the entire AWL problem. If the aircraft is adequately aligned in

terms of its position and kinetic energy at this time, it implies a simple pilot

procedure to terminate the landing. In terms of the longitudinal problem it has

been shown that it is this initial alignment that determines the character of

the automatic flareout. That is, if the alignment is achieved within specified

bounds, a successful landing can be executed by the automatic flareout system

as well as by manual means.

2.2 Lateral Alignment Accuracy Problems

The lateral problem, however, is somewhat more complicated by the basic

accuracy of the guidance information. The allowable relative fore-aft touchdown

dispersion is greater than the lateral touchdown dispersion. Runways are
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4_.72 meters (i{0 feet) wide and there i_ littTe inclination to widen them be-

cause aircraft are getting larger. Reaching the 100-foot Category II decision

altitude within the specified lateral window still means that lateral correc-

tions may have to be made. (In the longitudinal case_ the flight path can pro-

ceed to flareout without requiring adjustment.) K. Fearnside and A. P. W. Cane

of Smiths Aviation presented an interesting analysis of this problem in refer-

ence 18. The problem is essentially one of tolerance accumulations and how they

affect the lateral dispersion at touchdown. The pilot's view (derived from ref-

erence 18) in Category I weather limits for a 20-percent localizer deflection

(30 _a) is shown in figure 2-33. This view of the runway approach lights is

seen from the center of a 3-degree glide slope at 200 feet with zero crab angle

but with the localizer centerline offset within specification limits. Note that

the 20-percent localizer offset is considered to be just outside the acceptable

window for Category II. The change in the pilot's view of the runway from the

same localizer offset conditions but now at the Category II decision altitude is

shown in figure 2-34. Under these conditions_ if the landing were committed

without a lateral realignment_ the aircraft could miss the runway completely.

This fact is illustrated by figure 2-3_ which is a vertical projection of the

glide slope plane intersecting the runway. It shows the position of the lO-

and 20-percent localizer deviations from the runway centerline if the present

Category II quality localizer is used. Note that the localizer beam tolerances

include not only a centerline offset but a fairly significant error in the cor-

relation of position with a given offset indication in microamperes. It is

seen from this figure that the 20-percent deviation can miss the runway while

the lO-percent deviation can result in a touchdown that is dangerously close to

the edge of the runway.

In the Category II situation_ the pilot makes a manual landing after

establishing visual contact that tells him he is offset from the runway center-

line. The question of the pilot's ability to make this lateral correction_

referred to as the sidestep maneuver in the United Kingdom work_ is the key one

for establishing Category II criteria. The results of some of the United

Kingdom flight evaluations of this problem (references 18 and 19) are shown in

figure 2-36. This figure shows a shaded region of localizer deviations from

which pilots made acceptable manual alignments for proper landings. The fact

that the recovery limits is a band rather than a line is partially due to the

range of bank angles used. Note the more limited ability of a typical autopilot

to correct offsets. This is caused by the usual practice of restricting auto-

pilot bank angle commands to about _.O degrees during the final phases of an

automatic approach. It is this specific autopilot restriction that results in

favorable pilot reaction to the so-called supervisory override mode. In this

mode_ pilot-inserted control wheel force commands add to the autopilot's normal

combination of control signals. If the autopilot's flight path corrective

capability is slowed by the bank limit restrictions_ the supervisory override
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capability allows the pilot to provide a manual compensation for this limita-

_±u_1. If the autopiiot's bank limit is raised to that which would be used by

the pilot_ the supervisory override function would lose its utility.

Figure 2-36 indicates how Category I and Category II acceptance windows

relate to localizer guidance accuracy. They are primarily based on the ability

of the pilot to recover from errors after visual contact is established. It is

seen that the Category II lateral window is not adequate for automatic control

to touchdown_ especially when the tolerances shown in figure 2-3_ are con-

sidered. The problem reduces to the accuracy of the localizer. A lO-percent

offset would probably be an attainable control accuracy but the variation in the

actual location of a lO-percent localizer offset on the runway is a problem.

While localizer accuracies can be improved in some specific sites_ the funda-

mental limitations of the localizer radiation techniques have probably been

reached. One solution is to widen the runway in the touchdown area. This how-

ever is not an avionics solution. There is a strong consensus that the ultimate

source of lateral guidance for Category III automatic landings will have to come

from techniques other than the existing type of localizer. Meanwhile_ the lat-

eral guidance situation for Category III can be considered marginal at best.

Some approaches to the problem make use of the split axis autopilot concept in

which the longitudinal controls are fully automatic while the pilot controls the

lateral flight path manually or with an automanual mode. (The automanual mode

is control wheel steering through the autopilot. It can provide the advantage

of improved aircraft stabilization and hence better aircraft handling qualities.)

The key to this type of operation is the flight control display and how it is

utilized in relation to visual cues.

2.3 The Heads-Up and Heads-Down Display Problem

As long as the pilot performs the landing manually as in Category II

operations_ the pilot is faced with the problem of transition from instrument to

visual real world references. The time delays_ transient disorientations_ and

other hazards associated with this critical phase of the landing have been

studied_ quantified_ and evaluated in the extensive human factors research that

has been performed on this problem. A strong case has been made for presenting

the flight control displays on the windscreen so that the onset of visual con-

tact involves a smooth and natural transition. Thus_ if a symbolic runway is

projected to align with the pilot's view of the real runway_ it is claimed that

the ideal integration of automatic guidance and manual control can be accom-

plished. Windscreen displays have been developed and_ in some military appli-

cations_ are relatively well advanced toward operational use. There are

problems with the windscreen concept and some of the solutions are not too

easily applied to commercial aircraft (helmet projectors_ for example). Evalu-

ation of heads-up displays has been hampered by space restrictions in the air-

craft cockpit. It appears that space will always be a difficult problem but one
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that could be solved if provision for the projection method is m_d_ d1_r_mg the

cockpit design period. Other problems in the heads-up display technology are in

the area of symbology and human factors regarding allowable movements of the

symb ol s.
o

The question of heads-up amd heads-down displays raises the larger

question of cockpit operating procedures. The various airlines establish their

own cockpit practices in regard to the allocation and division of crew duties.

Moreover_ the cockpit layout of each aircraft type varies from one airline to

another. Much to the aircraft manufacturer's distress_ each airline customer

has his own ideas about cockpit layouts and flight instruments so that stan-

dardized cockpits do not now exist. Whether the present division of crew duties

is adequate for the environment of more sophisticated automation when the pilot

acts as flight manager has been questioned. The lack of well defined assign-

ments for Category II and III operations has been a major concern of many

groups_ especially pilots (reference 20). In some approaches to the problem

there is a heads-up pilot (usually the captain) who takes over control manually

when visual contact is made. Prior to this_ the copilot monitors the heads-

down flight instruments while the aircraft is being flown by the autopilot.

When the flight director mode is the primary means of approach flight control_

the pilot may control the aircraft heads-down. The procedures for manual take-

over in the event of failure warnings must then be carefully defined. Many

pilots have indicated that a heads-up display could minimize the procedural

problems. However_ we are now approaching an era in aviation development when

a more fumdamental question may be asked. This question could invalidate the

arguments for heads-up displays. For aircraft such as the SST and even the

jumbo jets of the Boeing 747 category_ the advantage of landing an aircraft

using the visual references obtained from the windscreen is in doubt. Any other

approach would be a revolutionary challenge to aviation tradition: but it is

being suggested that the task of positioning the landing gear on the runway is

becoming too difficult a procedure for a pilot observing the runway from the

windscreen but located so remotely from the landing gear.

It is perhaps sacrilegious to suggest that a solution to the problem

could be obtained by an aircraft design concept such as that shown in figure

2-37. Here the primary cockpit location is near the tail of the aircraft with

a direct view of the landing gear and runway for approach and takeoff. A sec-

ondary crew location is at the nose. This second station: if desired_ can serve

for navigation monitoring and possibly as a primary location for a cruise pilot.

The advantages from the viewpoint of mechanical flight control designs will also

be enormous but it is doubtful that such a shattering of aircraft tradition

could be introduced before avionics will find a way to cope with the problem for

the presemtly envisioned aircraft configurations. Thus_ in lieu of locating the

pilot behind the landing gear_ the Boeing Company SST project is experimenting
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with operational concepts based on mounting a television camera in that rear

location. The aircraft would then be flown heads-down with reference to the

television display. Combined with this television display would be an elec-

tronic attitude director for automatic guidance in low visibility situations.

'Such a concept represents the most severe challenge to avionics reliability. If

an aircraft is normally landed with reference to this remote camera view_ can an

electronic failure be tolerated? If it can_ the pilot must land the aircraft by

conventional means_ obtaining his visual references through the windscreen. How

does he obtain proficiency at this task wh&ch is admittedly too difficult for

use as a primary operating technique (otherwise the television technique would

not have been used)? It is ironic that the more we depend upon avionics_ the

greater is the demand on pilot's flying skill_ and the more difficult it becomes

to ensure that skill.

D. AN APPRAISAL OF LESS CONVENTIONAL TECHNIQUES FOR LANDING GUIDANCE

The preceding discussions of the landing problems have stressed guidance

and control concepts that would be considered conventional because they are in

operational use. Also_ the analytical design techniques used to synthesize and

evaluate these systems are based on the automatic control theory that reached

its maturity in the 19_O's. Control theory and guidance concepts have spread

out in many directions since that time. It would be appropriate to inquire

whether any of the newer techniques are applicable or offer any advantages in

the AWL problem.

An extensive technology in the area of explicit guidance has been developed

for the missile steering problem. Explicit guidance makes use of the knowledge

of the vehicle's desired final state and its instantaneous state to continuously

compute a steering vector that will satisfy the terminal requirement. This pro-

vides an infinity of permissible flight paths always depending upon the instan-

taneous conditions. The applicability of this type of guidance to an aircraft's

automatic approach phase of flight can be rejected for philosophical reasons.

With explicit guidance_ the aircraft could be following any path toward the run-

way. Not only are there practical problems (such as throttle control difficul-

ties)_ but the very concept of an automatic approach involves the accuracy of

the aircraft's adherence to a fixed path in space. The preceding discussions

have emphasized the fact that the precision of the approach or landing alignment

phase is the essential criterion for the ensuing landing maneuver. The concept

of a decision altitude is based on the pilot being able to judge whether he has

achieved an adequate alignment ; hence the concept of the Category II glide slope

and localizer windows. With explicit guidance_ there is no absolute standard by

which the future success can be appraised other than the judgments of the on-

board computer. One consequence of this is that a ground-based radar monitoring

system could not determine whether the aircraft's approach trajectory is
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adequate for landing. Using the ILS fixed path in soace conr_pt_. _ g_....
monitor can report misalignments from the localizer and glide slope. Likewise,
the pilot can determine whether he has achieved his desired path and whether he
is holding it adequately. Thus, it would be very difficult to argue for an ap-
Proach guidance concept that does not use the fixed path in space approach. It
has been shownthat the control problems associated with this concept are of a
secondary effects nature. The major source of error was related to the accuracy
deficiency and other peculiarities of the beamposition data.

The flareout problem_ on the other hand_ does not have a fixed path in space
requirement. Explicit guidance techniques could be applied to this phase of the
problem without incurring any philosophical rejections. Twoapproaches to the
flareout other than the conventional concepts described previously will be ex-
amined here. The first is an application of optimization theory. The second is
the terminal controller concept.

i. The Application of Optimization Theory to Flareout

Most of the literature on optimum control theory is more concerned with

the mathematical elegance of the technique than with the problem being solved.

For this reason_ the rather trivial second-order system is usually studied and

the problem situations are contrived to demonstrate the theory. In essence, an

optimum control system as defined by modern control theory, has very little to

do with an optimum in terms of practical requirements. It is optimum because

the control activity is always based on a closed form performance index. The

index is arbitrary_ generally based on an integral a quadratic error criterion.

The interpretation of error when the problem is of the multiloop nature is also

arbitrary since there is no way in which an optimum weighting of the various

factors can be defined. A good summary of different techniques found in modern

control theory is given in reference 21.

Since we are concerned with flareout_ it is fortunate that one of the

best expositions of the application of optimization techniques used the aircraft

flareout as an example problem. In this work by Ellert and Merriam (reference

22), the Merriam Parametric Expansion method is applied to the closed loop con-

trol of a flareout trajectory. In this particular approach, the authors defined

a reference altitude trajectory or desired altitude as a function of time. This

desired altitude_ hd(t) , is shown in figure 2-38. It is initially an exponential

hd = lO0 e -t/{ for 0 _ t _ 15 (2-36)
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and after the nominal path reaches the runway, the final path is a straight line

(constant rate of descent) equal to

h d = 20 - t for 15 <_ t <_ 20 (2-37)

A flight path normally exists in space_ not time. However_ optimization tech-

niques are based on linear differential equations in the time domain so that only

time parameters have theoretical use. The time space relationship is easily

solved if velocity were constant. Ellert and Merriam recognized that one re-

striction on the validity of their results was the assumption of constant veloc-

ity. They assumed that a throttle control could minimize the speed perturbations

and thus speed variations would cause only secondary effects. (Refer to pre-

vious discussion under Throttle Controls regarding throttle authority restric-

tions and their use for long-term speed adjustments only.) However_ they did

not recognize that aircraft land at speeds that are selected to correspond to

their weight at the time of landing. To cope with this problem_ equations (2-36)

and (2-37) would have to be shifted for each velocity. This would only add

minor complications to the digital program which is probably near the capability

limit of the most powerful machines if a real time solution is attempted. More

significant_ however_ is the fact that most aircraft flareouts deliberately ex-

ploit the speed decrease associated with the flare path change and in some pro-

cedures_ throttles are actually cut back during the flareout.

In the formulation of the problem_ the equation of state

x'(t) = Bx(t) + CM(t) (2-38)

is based on four measurable state variables that define the x(t) state signal

vector:

 l(ti

x2(t)

x(t) = (2-39)

x3(t)

x)+(t)

where xl(t) = pitch rate_ @ or 8'

x2(t) = pitch angle_ @

x3(t) = vertical speed h or h'

x4(t) = vertical position_ h
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The control _T=_or, M(t)_ ........................................

ideal characteristics as a rigid body_ moment producing control only). The B

B

matrix and C matrix

"blz bl2 bl 3

I 0 0 0

0 b32 b33 0

0 0 I 0

(2-_o)

Cll

o
c = (2-_l)

0

0

are defined in terms of coefficients that are based on the simplified second-

order representation of the pitch rate response to an elevator deflection

@(s) = Ks(T_S + i)

I/$2 2CS_ + i] be(s) (2-42)_,_s2 + _s /

and the relationships used in the simplified flight path control analysis given

previously as equations (2-14) and (2-i_). In terms of these simplifications_

the coefficients of the B and C matrices are given in the following table

V

: I__ _ 2[_s b32 = T7bll Ty

2_s 2 _l_ _ i

bl2 : Ty _s ....T 2 b33 T
Y

•

i 2(_s _Sv __ = _s2KsTy: -- + c11
b13 VT 2 VT¥

¥

Note that the term K s in equation (2-42) is a function of the pitching

moment coefficient_ Cm _ which is usually very nonlinear for large excursions_

especially those that _ere encountered in the reference 22 study. K s is also a

function of dynamic pressure and will therefore change because of the speed

changes that must occur.
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The optimization process consists of minimizing an instantaneous measure
of errors in the various state variables. For the landing problem the appropri-
ate error measure is of the form

era(t) = _n(t)[hd(t) - h(t)] 2 + _(t)[hd,(t) - h,(t)] 2

+ _@(t)[ed (t) - n(t)]2 + _@ Ct_r@' t*_ - @'(t)]2 co_k_)

+ [Se(t)]2

where _h(t), _h'(t), _@(t), and _@,(t) are the time varying weighting factors

which indicate the relative importance of the various terms in the error mea-

sure. Various rationalizations were used to select a proper relationship be-

tween weighting factors. Of three sets of weighting factors chosen for study in

reference 22_ two consistently performed badly while one gave generally good

results• The one that worked used a constant value for _h with all other _'s

zero• That is_ the only criterion was conformity to the reference path of

figure (2-38). The error index used was

2O

e(t) = S [_hEhd (c) - h(_)]2 + [_e (c)]2]dc

t

(2-44)

where c is a dummy time variable. The mathematical optimization process is a

closed form solution which provides a control_ _e(t)_ that minimizes the inte-

gral in equation (2-44). The use of Merriam's Parametric Expansion method to

solve this problem yielded an optimum elevator deflection as a function of time:

5e(t) = _s2KsTyEkl(t) -kll(t)@'(t) - kl2(t)e(t)

- kl3(t)h'(t) - kl4(t)h(t) ]

(2-_+{)

In this expression the various k's are feedback gains of the state variables

while kl(t) is equivalent to the combination of the desired reference values.

An extraordinary observation can now be made. The feedback terms are identical

to those used in the conventional state-of-the-art systems discussed previously;

namely h_ h_ e_ and @. Moreover_ of the various weighting function strategies

tried_ the only one that did not result in aircraft crashes was the one that

yielded constant gains for these feedbacks. That is_ the gains were constant

except during the last 2 seconds when they all decayed to zero. At that time

the errors in the zero disturbance environment were zero so the problem solu-

tion called for gains of zero. This is_ of course_ completely unacceptable

since the aircraft is now totally uncontrolled and unable to correct for any

disturbances (gusts and ground effects).
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An important question must now be resolved. Are the results of this

system synthesis procedure to be used as the basis for a landing system design

or does the landing system design include the synthesis process as a sort of

adaptive mechanization. If this is intended only as a design tool_ then there

_an be little argument except to note that it is philosophically wrong to

attempt the design of a system using such unreasonable simplifications. The de-

sign of an aircraft landing system can only be accomplished by including all of

the so-called secondary effects_ disturbances and initial condition variations

since it is these factors that determine success or failure of a system. If the

synthesis procedure is to be part of the onboard mechanization_ then the ques-

tion of what is being bought for the enormous complexity must be raised. The

remainder of this discussion assumes that sufficiently powerful onboard com-

puters are available for the in-flight synthesis task and that this is the de-

sired method of implementation.

The authors of this work recognized many of the limitations of their

simplifications. They proposed additional study of system sensitivity to wind

gusts and measurement noise but the results of any such studies_ if they were

performed_ have not been found in the literature. This work obviously contained

many invalid assumptions. However_ it contains two major philosophical defects

(as does most of the work in recent control theory). First_ the problem solu-

tion involves a knowledge of the coefficient and driving matrices of the pro-

cess [equations (2-40) and (2-41)]. This implies that the onboard computer

knows all of the aircraft coefficients. (We often do not know them after ex-

tensive flight tests.) Moreover_ it implies that these coefficients are linear.

They usually are not in the landing problem. Second_ and of even greater sig-

nificance_ is the implicit assumption that the measurement of the state vari-

able and the action of the controller (_e) is accomplished with infinite

bandwidth. This is almost a necessary assumption for practical time domain

approaches to control system synthesis. For example_ in the application of

Merriam's method in reference 22_ a set of i_ independent_ first-order differen-

tial equations had to be solved continuously to determine the k parameters. The

number of equations is determined by the order of the process under considera-

tion. In reference 22_ the simplification of the landing problem reduced it to

a fourth-order system. When measurement and control dynamics and speed dynamics

are considered_ the landing problem reaches tenth order even without inclusion

of the nonrigid dynamics in the aircraft representation. The number of simul-

taneous equations requiring solution in Merriam's method is I + N + (N/2)(N + i)_

where N is the order of the system. Thus_ a tenth-order system would involve

the continuous solution of 66 simultaneous equations.

A final comment on the significance of ignoring the higher order dy-

namics of a problem can be made with regard to the conventional closed loop

flight path control system discussed previously. The root locus of figure 2-16b
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can be moved into a region of excellent damping as the gains become infinite if

we add an additional lead compensator on the h term. We need not go to very

high gain levels before we appear to have a stable 1.0 Hz flight path control

loop. Such a system would hold the aircraft on a reference path for any reason-

_ble level of disturbance. It would rapidly and smoothly acquire the reference

path when initial errors are imposed. By making no more assumptions than those

made in reference 22_ this linear system could out-perform any of the optimum

systems investigated in that work. Unfortunately_ bandwidth limitations (and

velocity saturations) prevent the practical attainment of this level of perfor-

mance. Also_ elastic effect dynamics are encompassed by the wide bandwidth_

high gain systems_ and even if tight performance in terms of the rigid body

representation of the problem can be attained_ the actual result is usually an

awesome spectacle of elastic mode instabilities.

2. Terminal Controllers

The terminal control concept appears attractive for the flareout appli-

cation because in principle it offers a means of overcoming one of the diffi-

culties of exponential flare controllers. That difficulty is the inability to

maintain a tight constraint on touchdown dispersion in the presence of gusts_

windshear_ or other nonpredictable disturbances to the nominal problem. In

principle_ a terminal controller will always adjust the control law to meet the

terminal requirements. The exponential flare controller also attempts to meet

a terminal requirement but it does not adjust its control law to achieve this

end. The exponential flare system attempts to meet only the h terminal con-

straint_ "terminal" interpreted here as h : O. The terminal controller can

exercise some additional constraint on touchdown point because it includes

time-to-go as one of its variables• To the extent thag time-to-go will corres-

pond to position_ the touchdown position is included in the control law.

The theoretical basis of the terminal control concepts have been de-

veloped in references 23 and 24. The application of these concepts to the auto-

matic landing problem was studied by Bendix (reference 2_) and systems employing

the terminal control principles have been built and flight evaluated by

Autonetics (reference 26). Terminal controllers are actually very little dif-

ferent from other closed loop control systems when viewed in terms of the actual

control law implementation• The difference lies primarily in the interpretation

of the control laws. Terminal controllers (or final value systems) are synthe-

sized from the viewpoint of a predictive process• If we ignore the effects of

wind disturbances_ the aircraft-autopilot combination is a deterministic system.

In the conventional closed loop control system such functions as lead compen-

sators could therefore be interpreted as predictive controls although the

rationalization for their use will generally be related to a system phase char-

acteristic or other property relating to system stability. In the design of a
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terminal controller the predictive aspect is paramount while stability factors

are considered as a secondary problem.

A terminal control flareout system can be derived from simple geometric

_onsiderations. For example_ assume that the aircraft is on the reference tra-

jectory shown in figure 2-38. Forgetting the interpretation of that curve as a

reference path_ let us describe the trajectory (as a function of time-to-go)

that the aircraft m_o_ follow to reach the gro-_d at the terminal time and with

a terminal constraint in h. If we change the coordinates in figure 2-38 from

time t to time-to-go where T = (T - t) or (20 - t) for figure 2-38_ then h as a

function of • can be described by the power series

+ + az2 + a 73 +h = a° alT 3 "'" (2-4-6)

d__hdT= al + 2a2T + 3aJ

d2h

= 2a 2 + 6a 3 +dT2 "'"

2
+ ... (2-2+7)

(2-LFS)

= dh _ d2h (2-49)and =
dr

The coefficients of the power series expansion in h [equation (2-46)]

can be determined by inserting the terminal constraints at T = 0. Thus

aO = h T (altitude at t = T or T = O) (2-{o)

al = hT (altitude rate at t = T) (2-5"1)

By substituting these values of a0 and aI into equations (2-46) and (2-47)7 the

coefficients for a2 and a3 are determined. We then have an expression for

that can be interpreted as the instantaneous value of vertical acceleration re-

quired to follow the trajectory that will satisfy the terminal constraints.

(Note that two terminal constraints exist; they are time-to-go_ T_ which im-

poses an approximate position constraint_ and vertical speed_ _.) Substituting

the values of a2 and a3 into the equation for h_ we get an effective accelera-

tion control law given by

6(hm - h - T_) 2(_m - _)
hc ommand = 2 - T (2-52)

T
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It is noted that if the Dower series expansion for h ware to _nc!ude higher

order terms than T3 the _ command would involve higher derivatives of h in the

control law. For example_ if a _ term were included in the power series_ an

term and an _ terminal constraint would appear in the control law. Experience

_with terminal controllers (references 2_ and 26) indicates that the higher order

terms are not desirable from a complexity and noise point of view. Also_ they

do not appear to make any significant contribution to system accuracy. Hence

the control law form given in equation (2-_2) is the type that has received the

most consideration.

Two important observations are made concerning equation (2-_2). First_

the feedback quantities are h and h as in the exponential flareout systems. The

relative weighting of the h and _ however is variable. Second_ the gains ap-

proach infinity as time-to-go approaches zero. These gains must be programmed

as a function of time-to-go. This implies the computation of time-to-go. Such

a computation can be made if we had precision DME to tell us the distance to go

and a precision measurement of aircraft ground velocity. An alternate is to

program the gains in an open loop manner. This timing function could be chosen

on the basis of a nominal velocity and nominal flareout trajectory. Other com-

promises have to be made to achieve a practical mechanization. The gains must

be restricted to realistic values. The first part of the control law should be

eliminated at the final phase of the flareout so that a straightforward h con-

trol (with a touchdown bias) remains. The terminal control system_ therefore_

in its practical implementation looks even more like certain modified exponen-

tial flare law controllers. The study and flight results have not indicated

any clear improvements over exponential flare law systems. It can therefore be

concluded that terminal controllers represent a reasonable approach to practi-

cal flareout systems but whether or not they are the most desirable approach

will depend upon the specific aircraft flight characteristics and its related

avionics equipment.

E. SUMMARY OF CONCLUSIONS

i. Low visibility automatically controlled approach and landings are techni-

cally feasible and are being demonstrated continuously in modern jet aircraft.

The main impediments to the full operational deployment of automatic landing

systems involve questions of assuring equipment reliability and defining oper-

ating procedures for normal and emergency situations.

2. Approach guidance provided by the present ILS system is satisfactory for

most automatic landing requirements. However_ there are cases where the lateral

guidance provided by localizer beams is marginal at best. The marginal accuracy

is related to the accumulation of tolerance errors in the localizer alignment_

receiver !inearity and spurious radiation phenomena that produce beam bending

effects. These tolerance factors combined with aircraft flight path control
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errors in the presence of windshears and other disturbances can produce marginal

lateral positioning accuracy for automatic touchdowns.

3. Guidance schemes that can be considered as alternates to the present iLS

_hould provide the ILS equivalent of a fixed "highway in the sky". Concepts

that allow any approach flight path provided that terminal conditions are met

must be considered objectionable because there is no way to monitor performance

of such systems with raw position measurement data. in generai_ a ground-based

Precision Approach Radar (PAR) should have the capability of monitoring an auto-

matic approach by comparing the measured aircraft position with an allowable

window.

_. Performance deficiencies in 1967 state-of-the-art automatic approach and

landing systems are not_ in general_ caused by inadequacies in the control con-

cepts being used. They result from inadequacies in the primary guidance infor-

mation available to define the desired flight path. Adapting systems to operate

with deficient information results in performance compromise.

_. A major source of these compromises relates to the lack of an integrated

DME or distance-to-touchdown information. The need for this type of data is es-

pecially important when the guidance information is derived from angular or con-

verging beam flight path references such as those provided by the standard ILS

localizers and glide slopes. To overcome the lack of distance information_

present day systems make approximate determinations of this parameter by means

of timing programs_ crude altitude measurements_ or discrete position approxima-

tions provided by marker beacons.

6. Another source of performance compromise relates to the lack of precise

cross course velocity information for lateral control. Methods of synthesizing

the necessary cross course velocity data from radio and inertial references lead

to minor difficulties that appear as tendencies to hold small position offsets

or as excessively active control wheel commands.

7. The lateral velocity problem and the lack of usable DME combine to make

lateral performance dependent upon the initial localizer beam intercept angle

and distance from the runway when the localizer flight path reference is cap-

tured. Significant variations in localizer capture performance can result from

small changes in the initial conditions of beam intercept.

8. The lateral alignment or rollout alignment maneuver immediately prior to

touchdown looms as a more difficult problem for the jumbo jets and SST. Present

day jets can touchdown without prior removal of fairly large crab angles that

result from the approach flight in the presence of crosswinds. An automatic

decrab yawing maneuver or a sideslip approach will probably be needed to land

the SST in a crosswind. An automatic decrab system imposes some additional
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accuracy requirements on the vertical guidance refer_nc_ and some tighter con-

straints on the vertical flareout path. A sideslipping approach technique can

eliminate the crab angle problem but may compromise runway alignment accuracy.

9. Vertical path control performance on automatically guided approaches to

a flareout window are dependent upon procedures that are often beyond the con-

trol of the automatic system. Thrust setting_ flap extension_ and landing gear

deployment i_iuence flight path control accuracy. Automatic throttle controls

have been introduced to remove non-uniform speed variations as one of these un-

certainties. An ideal automatic system would also automate flap and gear de-

ployment but system complexity penalties seem to dictate against considering

such techniques.

I0. For vertical flight path control as well as lateral control_ the preci-

sion of the aircraft's position and velocity alignment at the flareout altitude

determines the success of the landing maneuver. The closed loop flareout con-

trol laws have a limited ability to make corrections from off-nominal a!ig__ments

prior to flare initiation.

ii. Under proper conditions of alignment_ excellent flareout performance can

easily be obtained for even severe conditions of windshear disturbances if the

criterion of success is touchdown velocity. If a tight constraint in touchdown

position is also applied_ then two undesirable penalties result. First_ the

nominal touchdown velocity will increase and there will be a statistical shift

toward hard landings. Second_ flareout initiation must be delayed to occur at

lower altitudes. Pilots consider automatic flareout initiation at low altitudes

objectionable.

12. The state-of-the-art radio altimeter is an adequate source of flareout

guidance but its utility is often limited by the terrain profile along the ap-

proach to the runway. If the radio altitude signal characteristics are such

that wide bandwidth vertical velocity cannot be derived without excessive noise

penalties_ then inertial measurements can be used to augment the radio altimeter

derived rate data. However_ this method of synthesizing wide bandwidth vertical

speed can cause difficulties if the approach terrain is irregular.

13. Category II low visibility operations which define a decision altitude

of I00 feet when runway visibility range is 396.24 meters (1200 feet) can be

considered to be the state of the art in 1967. In order to achieve Category

llla operations_ automatic guidance to touchdown is an essential requirement.

The major problems which must be solved before Category llla can become opera-

tional relate to system failure characteristics and failure procedures. Auto-

matic systems employ redundancy and sophisticated monitoring equipment to

achieve the fail-operational capability that would be compatible with the safety

requirements.
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14. The methods of using the crew to monitor performance of the automatic

equipment and a definition of crew procedures for various failure situations are

critical problems which remain to be worked out for Category IIIa. The solu-

tions are intimately related to the types of displays that are used to present

eflight situation and equipment status information.

15. All weather landing flight control displays used on present day jet

transports are evolutionary improvements over the instruments that have been

used for less critical flight control tasks. Questions exist regarding the com-

patibility of these heads-down instruments with such tasks as manual takeovers

from the automatics immediately prior to touchdown or immediately after

touchdown.

16. Heads-up displays that project a pictorial presentation of the flight

control situation on the windscreen are usually suggested as the solution to the

manual-automatic monitoring and takeover problem at Category llla altitude.

Such displays have been developed but they have made little progress in being

applied to operational aircraft. In addition to some technical problems and

some controversy regarding symbology and limitations in viewing area_ the heads-

up displays have been impeded primarily by cost and space restrictions in exist-

ing cockpits.

17. In aircraft such as the SST a fundamental question regarding the de-

sirability of a heads-up display for landing relates to the limitations of the

windscreen itself as a means of obtaining an adequate real world view. It has

been suggested that the SST can be landed and taxied by obtaining visual cues

from remote television presentations of the landing gear and runway.

18. Very little progress has been made on automatic guidance techniques for

Category lllb_ c conditions when the runway visibility range approaches zero.

The incidence of true zero-zero conditions may be sufficiently low that the

economic investment required for additional facilities to guide the aircraft

along the runway cannot be justified.

19. A fundamental dilemma arises in regard to the increasing use of auto-

matic guidance and control to land aircraft and the use of the pilot as a sys-

tems manager. We are still dependent upon the pilot to assume control under

abnormal and adverse conditions but we may no longer afford him the opportunity

to acquire the manual control proficiency that comes with flight experience.

It appears that new concepts in pilot training will be needed for the era when

automatic equipment will be allowed to exercise a dominant role in aircraft

flight control.
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