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Abstract. Current approaches for identification and detection of tran-
scription factor binding sites rely on an extensive set of known target
genes. Here we describe a novel structure-based approach applicable to
transcription factors with no prior binding data. Our approach combines
sequence data and structural information to infer context-specific amino
acid-nucleotide recognition preferences. These are used to predict bind-
ing sites for novel transcription factors from the same structural family.
We apply our approach to the Cys2His2 Zinc Finger protein family, and
show that the learned DNA-recognition preferences are compatible with
various experimental results. To demonstrate the potential of our al-
gorithm, we use the learned preferences to predict binding site models
for novel proteins from the same family. These models are then used in
genomic scans to find putative binding sites of the novel proteins.

1 Introduction

Specific binding of transcription factors to cis-regulatory elements is a crucial
component of transcriptional regulation. Previous studies have used both exper-
imental and computational approaches to determine the relationships between
transcription factors and their targets. In particular, probabilistic models were
employed to characterize the binding preferences of transcription factors, and to
identify their putative sites in genomic sequences [24, 27]. This approach is useful
when massive binding data are available, but it cannot be applied to proteins
without extensive experimental binding studies. This difficulty is particularly
emphasized in view of the genome projects, where new proteins are classified as
DNA-binding according to their sequence, yet there is no information about the
genes they regulate.

To address the challenge of profiling the binding sites of novel proteins, we
propose a family-wise approach that builds on structural information and on
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the known binding sites of other proteins from the same family. We use solved
protein-DNA complexes [16, 18] to determine the exact architecture of inter-
actions between nucleotides and amino acids at the DNA-binding domain. Al-
though sharing the same structure, different proteins from a structural family
obtain different binding specificities due to the presence of different residues
at the DNA-binding positions. To predict their binding site motifs, we need to
identify the residues at these key positions and understand their DNA-binding
preferences.

In previous studies, we used the empirical frequencies of amino acid-nucleotide
interactions [17 19] in solved protein-DNA complexes (from various struc-
tural families) to build a set of DNA-recognition preferences. This approach
assumed that an amino acid has common nucleotide-binding preferences for all
structural domains and at all binding positions. However, there are clear exper-
imental indications that this assumption is not always valid: a particular amino
acid may have different binding preferences depending on its positional con-
text [9, 10, 14]. To estimate these context-specific DNA-recognition preferences,
we need to determine the appropriate context of each residue, which may de-
pend on its relative position and orientation with respect to the nucleotide. For
this, we need to collect statistics about the DNA-binding preferences at this con-
text. Naively, this can be achieved from a large ensemble of solved protein-DNA
complexes from the same family. Unfortunately, sufficient data of this type are
currently unavailable.

To overcome this obstacle, we propose to estimate context-specific DNA-
recognition preferences from available sequence data using statistical estimation
procedures. The input of our learning algorithm are pairs of transcription fac-
tors and their target DNA sequences [27]. We then recognize the specific residues
and nucleotides that participate in protein-DNA interaction, and collect statis-
tics about the DNA-binding preferences of residues at different contexts of the
binding domain. These preferences can then be used to predict binding sites of
other transcription factors from the same family, for which no known targets
are available.

2 The Canonical Cys2His2 Zinc Finger DNA-Binding
Family

We apply our approach to the Cys2His2 Zinc Finger DNA-binding family. This
family is the largest known DNA-binding family in multi-cellular organisms [26]
and has been studied extensively [28]. Many members of this family bind DNA
targets according to a stringent binding model [13, 20], which maps the exact
interactions between specific residues in the DNA-binding domain along with
nucleotides at the DNA site (Figure 1). We term this the canonical binding
model. In addition, Zinc Finger proteins whose DNA-binding domains are sim-
ilar to those that bind through this model are termed canonical. According to
the canonical binding model the residues involved in DNA binding are located
at positions 6, 3, 2, and -1 relatively to the beginning of the α-helix in each fin-

−
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Fig. 1. The canonical Cys2His2 Zinc

Finger DNA-binding model, based on

solved protein-DNA complexes [13, 20].

A protein with three fingers is shown.

In each finger, residues at positions 6, 3,

2, and -1 (relatively to the beginning of

the α-helix) interact with adjacent nu-

cleotides in the DNA molecule. (Figure

adapted from Prof. Aaron Klug, with

permission)

ger (Figure 1). Our goal is to extract position-specific amino acid-base binding
preferences for each of these positions.

2.1 Sequences of Zinc Finger Proteins and Their DNA Binding
Sites

To estimate the recognition preferences, we use the sequences of many Zinc Fin-
ger proteins together with their native DNA targets (extracted from the TRANS-
FAC database [27]). To identify the canonical Cys2His2 Zinc Fingers based on
their sequence, we trained a profile HMM [12] on 31 experimentally determined
canonical domains [28], and used it to classify the remaining Cys2His2 Zinc
Finger domains in TRANSFAC [27]. From the canonical ones, we only selected
proteins with two to four properly spaced fingers. This resulted in 61 canoni-
cal proteins, and 455 protein-DNA pairs. We use these as our training data in
subsequent steps. The total number of fingers in this dataset was 1320, and the
total length of all binding sites was 9761bp (average length of 21bp per site).

2.2 Identification of DNA-Binding Residues

Next, we conceptually “thread” each protein-DNA pair onto the canonical bind-
ing model, to obtain an ensemble of residue-nucleotide interactions, from which
we can estimate the recognition preferences. To do so, we must first identify the
DNA-binding residues. We identify these positions using their relative position-
ing in the Cys2His2 conserved pattern: CX(2-4)CX(11-13)HX(3-5)H. Although
theoretically there can be 204 different combinations of amino-acids at the four
interacting positions, we found only 80 different combinations among the 1320
fingers in our database.

2.3 Identification of DNA Binding Sites

Now that we can identify the interacting residues, we face the problem of iden-
tifying the stretch of nucleotides they interact with. Unfortunately, the exact
binding locations of the transcription factors are not pinpointed in TRANS-
FAC, and thus we must employ statistical tools to infer them. In short, we wish
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to enumerate over all possible alignments of the DNA, and consider the likeli-
hood of each DNA site given the interacting residues. For this we need to use
the position-specific amino acid-base recognition preferences that we aim to esti-
mate. We demonstrate in Section 3 how this is achieved, but first let us describe
the probabilistic model of the DNA binding site, given that such preferences are
available.

2.4 Probabilistic Model for Protein-DNA Interactions

We now consider how to model the DNA binding preferences of a protein given its
amino acid sequence. In a probabilistic framework, we describe a model that
assigns probabilities for any sequence of nucleotides at the binding site, given the
residues they interact with. For a canonical Zinc Finger protein, we denote by
A = {Ai,p : i = {1, . . . , k}, p ∈ {−1, 2, 3, 6}} the set of interacting residues in the
different four positions of the k fingers (ordered from the N- to the C-terminus). Let
N1, . . . , NL beatargetDNAsequence.Theconditionalprobabilityofan interaction
with a DNA subsequence, starting from the j’th position in the DNA, is:

P (Nj , . . . , Nj+3k−1|A) =
k∏

i=1

P6(Nj+3(i−1)|Ak+1−i,6)P3(Nj+3(i−1)+1|Ak+1−i,3)

P−1(Nj+3(i−1)+2|Ak+1−i,−1) (1)

where Pp(N |A) is the conditional probability of nucleotide N given amino acid
A at position p. These probabilities are the parameters of the model. For each
of the four interacting positions, there should be a matrix of the conditional
probabilities of the four nucleotides given all 20 residues. We call these matrices
the DNA-recognition preferences.

We model the non-interacting nucleotides in the sequence using a background
model PBG (e.g. a uniform mononucleotide model), thus the probability of a
sequence of length L that contains a binding site at position j is:

P (N |A, j) = PBG(N1, . . . , Nj−1)P (Nj , . . . , Nj+3k−1|A)PBG(Nj+3k, . . . , NL)
(2)

Since the exact positioning j of the binding site is not known, we enumerate over
all possible values:

P (N |A) =
∑

j

P (j)P (N |A, j) (3)

where P (j) is the prior probability of binding at position j. To handle truncated
sites in the TRANSFAC database, we allow j to range between −3/4∗3k (when
only the last quarter of the binding site is present) and L − 3/4 ∗ 3k + 1 (only
first quarter is present). We use a uniform prior over the j’s, with the exception
of missing nucleotides, which are penalized exponentially.

The model, as described above, does not account for interactions by the amino
acids in positions 2 in each finger nor reverse complement binding. The latter re-
quires only minimal adjustments, and is handled using an additional orientation



526 T. Kaplan, N. Friedman, and H. Margalit

variable. Handling the residues at position 2 is a bit trickier. According to the
canonical binding model (Figure 1), the amino acid at position 2 interacts with
the nucleotide that is complementary to the nucleotide interacting with position
6 of the previous finger. Thus, when we have a base pair interacting with two
amino acids, we replace the term P6(Nj+3(i−1)|Ak+1−i,6) by a term:

αP6(Nj+3(i−1)|Ak+1−i,6) + (1 − α)P2(Nj+3(i−1)|Ak+2−i,2) (4)

for i > 1, where α is a weighting coefficient that depends on the number of sam-
ples seen while estimating the recognition preferences at each position. Moreover,
we add the term P2(Nj+3(i−1)|Ak+2−i,2), for i = k + 1, to capture the last nu-
cleotide, that is in interaction with position 2 of the first finger.

3 Learning DNA-Recognition Preferences from Sequence
Data

We use the sequences of the proteins and their target DNA sites, and estimate
four sets of position-specific DNA-recognition preferences that maximize the like-
lihood of the DNA given the binding proteins. As stated above, although the
DNA sequences in our database were reported as bound by their corresponding
proteins [27], the exact binding locations are not documented. Thus, we need
to simultaneously identify the exact binding locations and optimize the param-
eters of DNA-recognition. For this, we use the iterative Expectation Maximiza-
tion (EM) algorithm [11]. We start with some initial choice of DNA-recognition
preferences (possible choices are discussed below). The algorithm proceeds iter-
atively, by carrying out these two steps, as illustrated in Figure 2.

E-step: For every protein-DNA pair, we compute the expected posterior prob-
ability that the binding begins in position j, using the current sets of DNA-
recognition preferences θt.

EM algorithm

Optimize DNA-recognition preferences

Identify binding locations

Regulators & binding sites

EM algorithm

Optimize DNA-recognition preferences

Identify binding locations

Optimize DNA-recognition preferences

Identify binding locations

Regulators & binding sitesRegulators & binding sites

Fig. 2. Estimating the DNA-

recognition preferences. The recog-

nition preferences are estimated

from unaligned pairs of transcrip-

tion factors and their DNA targets

from the TRANSFAC database [27]

(shown on top). The EM algorithm
is

used to simultaneously assess

the exact binding positions of

each protein-DNA pair (bottom-

right), and to estimate four sets of
p
osition-specific DNA-recognition

preferences (bottom-left)
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P (j|A,N) =
Pθt

(N |A, j)∑

j′
Pθt

(N |A, j′)
(5)

M-step: Next, we update the sets of DNA-recognition preferences θt+1 to maxi-
mize the likelihood of the current binding positions j’s for all protein-DNA pairs.
This is based on the posterior probabilities that were computed in the E-step.
Specifically, the conditional probability Pp(n|a) of each nucleotide n given amino
acid a at position p of the Zinc finger domain is estimated in θt+1 using the ex-
pected number of interactions between n and a at p over all protein pairs, given
the posterior probabilities j’s.

The EM algorithm is proved to converge, since each of these two steps in-
creases the likelihood of the data [11]. Obviously, this does not ensure that
the final sets of DNA-recognition preferences θT are the optimal ones, due to
sub-optimal local maxima of the likelihood function. This can be overcome by
applying the EM procedure with multiple random starting points or by using
prior knowledge starting points. An additional potential pitfall is over-fitting
the recognition preferences of rare residues. To address this problem and en-
sure that the estimated parameters for rare amino-acids are close to uniform
distribution (i.e., uninformative), we use a standard method of regularization by
pseudo-counts. By applying a uniform Dirichlet prior, we add a constant (0.7
in the results below) to each amino acid-nucleotide count computed at the end
of the E-step. We then perform a maximum a-posteriori estimation rather than
maximum likelihood estimation.

We evaluate the robustness and convergence rate of the EM algorithm using
a 10-fold cross validation procedure. In each round, we remove part of the data,
train on the remaining pairs, and test the likelihood of the held-out protein-DNA
pairs. We use this procedure to test various initialization options, including ran-
dom starting points, and the general protein-DNA recognition preferences that
were learned from all protein-DNA families [17]. Figure 3 shows the average likeli-
hood per interaction on held-out test data, for various starting points. As shown,
the EM algorithm performs best when initialized with the general recognition
preferences, converging within few iterations. Similar likelihood results were ob-

Fig. 3. 10-fold cross-validation tests show the

average likelihood per interaction (in bits) of

held-out test data. We show the likelihood

along 14 EM iterations using various start-

ing points. The thick red line marks the like-

lihood obtained when starting from the gen-

eral set of DNA-recognition preferences [18].

Random starting points are plotted using thin

blue lines. The likelihood of the data according

to the general set of DNA-recognition prefer-

ences [17] is shown with the horizontal dashed

line
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Fig. 4. Four sets of position-specific

DNA-recognition preferences for

canonical Cys2His2 Zinc Fingers. The

estimated sets of DNA-recognition

preferences for the DNA-binding

residues at positions 6, 3, 2, and

-1 of the Zinc Finger domain are

displayed as sequence logos. At each

position, the associated distribution

of nucleotides is displayed for each

amino acid. The total height of letters

represents the information content

(in bits) of the position, and the

relative height of each letter repre-

sents its probability. Color intensity

indicates the level of confidence for

the preferences of a given amino

acid at a certain position (where

pale colors indicate low confidence

positions due to a small number of

occurrences of the residue at the

specific position within the training

data). Some of the DNA-binding

preferences are general, regardless of

the residue’s position within the Zinc

Finger domain (e.g. the tendency of

lysine to bind guanine (G)), while

others are position-dependent (e.g.

the tendency of phenylalanine to bind

cytosine only when in position 2)

Interacting amino acid

D
N
A
-r
e
c
o
g
n
it
io
n
 p
r
e
fe
re
n
c
e
s

10010 50255

No. of interactions

10010 50255 10010 50255

Interacting amino acid

D
N
A
-r
e
c
o
g
n
it
io
n
 p
r
e
fe
re
n
c
e
s

10010 50255

No. of interactions

10010 50255 10010 50255 10010 50255

No. of interactions

10010 50255 10010 50255 10010 50255 10010 50255

tained using random starting points, although the convergence rate is somewhat
slower. Figure 3 also shows that the algorithm does not over-fit the training data,
as this would have led to deteriorated performances over the held-out test data.
The optimized sets of position-specific DNA-recognition preferences (estimated
from full training data) are shown in Figure 4.

3.1 Recognition Preferences Are Consistent with Experimental
Results

We evaluated the four sets of DNA-recognition preferences by comparing them
with experimental data. First, we compared the derived preferences with qual-
itative preferences based on phage-display experiments [28] and found the two
to be consistent. Second, we predicted binding site models for various variants
of the Egr-1 protein, for which experimental binding data were available using
DNA-microarrays [6]. We then used the predicted binding models to score each
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Table 1. Correlation with experimentally

measured binding affinities. We compare

the ranking of the predicted binding sites

to the experimental binding results of Bu-

lyk et al. [6, 7], using Spearman rank cor-

relation. Oligonucleotides with low binding

affinities (baseline noise value) were con-

sidered as non-viable and not taken into

account

Variant
of Egr-1

Spearman
correlation
coefficient

number
of viable
oligos

p-value

wt 0.73 15 <0.0025

LRHN 0.60 12 <0.025

REDV 0.83 15 <0.0005

RGPD 0.67 17 <0.0025

of the possible DNA binding sites that were tested in the experimental study. We
found that our predictions were significantly correlated with the experimentally
measured binding affinities (Table 1).

3.2 Predicting Binding Sites of Novel Proteins Within Genomic
Sequences

We now turn to evaluate the ability of the estimated DNA-recognition prefer-
ences to identify the binding sites of novel proteins within genomic sequences.

>sp|P08047|SP1_HUMAN Transcription factor Sp1

MSDQDHSMDEMTAVVKIEKGVGGNNGGNGNGGGAFSQARSSSTGSSSSTGGGGQESQPSP 

LALLAATCSRIESPNENSNNSQGPSQSGGTGELDLTATQLSQGANGWQIISSSSGATPTS 

KEQSGSSTNGSNGSESSKNRTVSGGQYVVAAAPNLQNQQVLTGLPGVMPNIQYQVIPQFQ 

TVDGQQLQFAATGAQVQQDGSGQIQIIPGANQQIITNRGSGGNIIAAMPNLLQQAVPLQG 

LANNVLSGQTQYVTNVPVALNGNITLLPVNSVSAATLTPSSQAVTISSSGSQESGSQPVT 

SGTTISSASLVSSQASSSSFFTNANSYSTTTTTSNMGIMNFTTSGSSGTNSQGQTPQRVS 

GLQGSDALNIQQNQTSGGSLQAGQQKEGEQNQQTQQQQILIQPQLVQGGQALQALQAAPL 

SGQTFTTQAISQETLQNLQLQAVPNSGPIIIRTPTVGPNGQVSWQTLQLQNLQVQNPQAQ 

TITLAPMQGVSLGQTSSSNTTLTPIASAASIPAGTVTVNAAQLSSMPGLQTINLSALGTS 

GIQVHPIQGLPLAIANAPGDHGAQLGLHGAGGDGIHDDTAGGEEGENSPDAQPQAGRRTR 

REACTCPYCKDSEGRGSGDPGKKKQHICHIQGCGKVYGKTSHLRAHLRWHTGERPFMCTW 

SYCGKRFTRSDELQRHKRTHTGEKKFACPECPKRFMRSDHLSKHIKTHQNKKGGPGVALS 

VGTLPLDSGAGSEGSGTATPSALITTNMVAMEAICPEGIARLANSGINVMQVADLQSINI

SGNGF 

Protein sequence

Position: -1123456    

Finger 1  CHIQGCGKVYGKTSHLRAHLRWH

Finger 2  CTWSYCGKRFTRSDELQRHKRTH

Finger 3    CPECPKRFMRSDHLSKHIKTH

Identify DNA-binding residues
Position: -1123456    

Finger 1  CHIQGCGKVYGKTSHLRAHLRWH

Finger 2  CTWSYCGKRFTRSDELQRHKRTH

Finger 3    CPECPKRFMRSDHLSKHIKTH

Identify DNA-binding residues

DNA-recognition preferencesDNA-recognition preferences Predict binding site using

DNA-recognition preferences

Finger 3 Finger 2 Finger 1Finger 3 Finger 2 Finger 1

Lysine at pos. 6

Fig. 5. Predicting the DNA binding site motifs of novel transcription factors. Given

the sequence of a novel protein (shown on left), its DNA-binding domains (in blue)

are identified using the Cys2His2 conserved pattern. The residues at the key positions

(6, 3, 2 and -1) of each finger (marked in red in the middle-bottom panel) are then

assigned onto the canonical binding model (on right), and the sets of position-specific

DNA-recognition preferences (middle-top panel) are used to construct a probabilistic

model of the DNA binding site (right). For example, position 1 in the binding site is

determined by the binding preferences of the lysine (K) at the sixth position of the

third finger (dotted red and black lines). We predict the nucleotide probabilities at this

position using the appropriate recognition preferences (dotted black line). A web-server

for predicting the binding sites of Cys2His2 Zinc Finger proteins can be accessed at

http://compbio.cs.huji.ac.il/predictBS
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Fig. 6. Validation of the DNA-recognition preferences. (a) The predicted binding site

model of human Sp1 protein is compared to its known site (matrix V$SP1 Q6 from

TRANSFAC [27], based on 108 aligned binding sites). To prevent bias by known Sp1

sites in our training data, we applied a “leave-protein-out” cross-validation approach,

and predicted the DNA-binding model of Sp1 using DNA-recognition preferences that

were learned from a subset of the training data, after removing all Sp1 sites. (b) We

then scanned the 300bp-long promoter of human dihydrofolate reductase (DHFR) using

the predicted Sp1 binding site model using the CIS program [2]. The p-value of each

potential binding site is shown (y-axis). Four positions achieved a significant p-value

(≤ 0.05) after a Bonferroni correction for multiple hypotheses (red horizontal line).

Out of these four, three are known Sp1 binding sites [15] (marked by arrows). (c)

A summary of the in silico binding experiments for natural 43 known binding sites.

Shown is the tradeoff between False Positive rate (x-axis) and True Positive rate (y-

axis) as the threshold for putative binding sites is changed, using an ROC curve. For

every threshold point, our sets of recognition preferences (marked EM) achieve higher

accuracy than the preferences of Mandel-Gutfreund et al. [17] (marked M-G) and

Benos et al. [4] (marked SAMIE). Interestingly, when the DNA-recognition preferences

were estimated from training data that were expanded to include artificial sequences,

from TRANSFAC we obtained inferior results (dotted red line). (d) Comparison of

cumulative distributions of Sp1 logodd scores within genomic sequences of Sp1 targets

and non-targets determined by unbiased chromatin immunoprecipitation (ChIP ) scans

of human Chromosomes 21 and 22 [8]. The predicted Sp1 motif appears in a significant

manner (p ≤ 0.05) in 45% of the target sequences but only in 5% of the control

sequences



Predicting Transcription Factor Binding Sites 531

3.3 Predicting the Binding Site Models of Novel Proteins

Given a novel Cys2His2 Zinc Finger protein, we first need to analyze its sequence
and predict a binding site model. We first identify the four key residues at each
DNA-binding domain, and then we utilize the learned sets of DNA-recognition
preferences by assigning the appropriate probabilities and constructing a prob-
abilistic model of the binding site. This is illustrated in Figure 5.

For example, Figure 6a compares the known binding site model of Sp1, to
the one predicted using our approach. To prevent bias by known Sp1 sites in
our training data, we apply a “leave-protein-out” cross-validation analysis, and
predict the DNA-binding model of Sp1 using DNA-recognition preferences that
were learned from a reduced dataset without Sp1 binding sequences.

3.4 In Silico Binding Experiments

We now use the predicted binding site models to scan genomic sequences for pu-
tative binding sites. Using the CIS algorithm [2], we score each possible binding
position on the two DNA strands using a log-odds score (the log of the ratio
between the probability of the binding site given the predicted model, and its
probability given a 3rd-order Markov model trained on genomic sequences). We
then estimate the p-value of these scores and apply a Bonferroni correction to
account for multiple tests within the same promoter region. Sites with a sig-
nificant p-value (≤ 0.05 after Bonferroni correction) were marked as putative
binding sites. For example, Figure 6b demonstrates such an in silico binding
experiment for the human dihydrofolate reductase (DHFR) promoter, using the
predicted binding site model of Sp1.

3.5 Quantitative Validation of Binding Site Predictions for Novel
Proteins

To further evaluate the sets of recognition preferences, we mined the litera-
ture for experimentally verified binding sites of canonical Cys2His2 Zinc finger
proteins. These include 43 binding sites, from 21 pairs of transcription factors
and the natural genomic promoter regions of their target genes (some proteins
have multiple binding sites per promoter). As described above, we utilized the
learned DNA-recognition preferences to predict binding site models for the in-
volved transcription factors, and used them to scan the respective promoter
regions for putative binding sites. To ensure the validity of the test, we applied
a “leave-protein-out” cross-validation test as specified above. Figure 6c summa-
rizes these 21 in silico binding experiments using an ROC curve. Using p = 0.05
(with Bonferroni correction), our method marked 30 locations as putative bind-
ing sites, out of which 21 match experimental knowledge (sensitivity of 49% and
specificity of 70%, hyper-geometric p-value < 10−48).
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3.6 Comparison with Other Computational Approaches

In a similar manner, we generated probabilistic binding site models for these
transcription factors using the recognition preferences of Mandel-Gutfreund et
al. [17] (that were used as a starting point in our learning algorithm), and re-
peated the quantitative analysis. As we show in Figure 6c, predictions based on
these preferences have inferior accuracy.

In a recent study, Benos et al. [4] used in vitro specialized experimental data
(such as SELEX and phage display) to assign position-specific DNA-recognition
preferences for the Cys2His2 Zinc Finger family (see detailed comparison of the
two approaches in the Discussion section). As before, we used their preferences
to generate probabilistic binding site models for these transcription factors, and
then used them to scan the corresponding promoter regions. Once again, Fig-
ure 6c shows that predictions based on our sets of DNA-recognition preferences
are more accurate.

3.7 Predictions Based on Genomic Data

To further evaluate our predictions on long genomics sequences, we used the
binding locations of Sp1 along human Chromosomes 21 and 22, as mapped by
an unbiased genome-wide chromatin immunoprecipitation (ChIP ) assay [8]. We
compiled two datasets of 1Kb-long sequences: one dataset included sequences
that exhibited highly significant binding in the ChIP assay, while the other
dataset included sequences that showed no binding at all (to be used as a con-
trol). We then performed in silico binding experiments using CIS [2], searching
the sequences by the predicted binding site model of Sp1. Figure 6d compares
the abundance of putative hits in both datasets. As can be seen, using a Bonfer-
roni corrected threshold of 0.05, putative Sp1 binding sites were found in 45% of
the experimentally-bound sequences, while only in 5% of the control sequences.

4 Discussion

In this paper we propose a general framework for predicting the DNA binding
site models of novel transcription factors from known families. Our framework
combines structural information about a DNA-binding family, with sequence
data about binding sites for other proteins in the same family. We apply our
approach to the canonical Cys2His2 Zinc Finger DNA-binding family, and use a
statistical estimation algorithm to derive a set of amino acid-nucleotide recogni-
tion preferences for each key position in the Zinc Finger DNA-binding domain.
These recognition preferences can then be used to predict the binding site mod-
els of novel proteins from the same family. Finally, we use the predicted models
to scan regulatory genomic regions of target genes, and identify their putative
binding sites.



Predicting Transcription Factor Binding Sites 533

5 Prediction of Binding Sites Using Structure-Based
Approaches

Structure-based approaches for prediction of transcription factor binding sites
have recently gained much interest [4, 14, 17, 23, 25]. Most of the structural ap-
proaches define a protein-DNA binding model based on solved protein-DNA
complexes, and attempt to identify DNA subsequences that fit best the amino
acids that are determined as interacting with the DNA. While some of these
studies [14, 19] used ensembles of solved protein-DNA complexes from all DNA-
binding domains to extract general preferences for amino acid-base recognition,
we and others focus on a single DNA-binding domain. Although less general,
we hope that such an approach will lead to more fine-grained definitions of the
binding preferences.

In a recent study, Benos et al. [4] assigned position-specific DNA-recognition
potentials for the Cys2His2 Zinc Finger family. Although the model they used
is quite similar to ours, there are significant differences between the two. First,
they relied only on aligned binding sites from in vitro specialized experiments,
such as SELEX and phage display, to train their recognition preferences. Sec-
ond, their assays screened artificial sequences of both artificial proteins and ar-
tificial DNA targets. In contrast, we rely on longer, unaligned natural binding
data. Previous studies showed that there are discrepancies between SELEX-
derived motifs and those derived from natural binding sites [21, 22]. As we
showed, our sets of estimated DNA-recognition preferences are more consistent
with independent experimental results [6, 9, 10, 28] and are superior to similar
preferences derived by the other computational methods [4, 17]. To further il-
lustrate this point, we returned the artificial binding sequences from TRANS-
FAC back into our training data, and obtained inferior predictions. Figure 6c
summarizes a quantitative comparison between all models in identifying bind-
ing sites of novel proteins within genomic sequences. It should be stressed out
that in order to prevent unfair bias, we use a “leave-protein-out” cross vali-
dation, hence removing all binding sites of a protein from the training data
before testing it.

5.1 Analysis of the Estimated DNA-Recognition Preferences

A close examination of the learned sets of DNA-recognition preferences suggests
that the protein-DNA recognition code is not deterministic, but rather spans
a range of preferences. Moreover, our analyses show that a residue may have
different nucleotide preferences depending on its context. For some amino acids,
the qualitative preferences remain the same across various positions, while the
quantitative preferences vary (e.g. arginine, see Figure 4). The DNA-binding
preferences of other residues change across various positions. For example, his-
tidine at position 3 tends to interact with guanine, while it shows no preference
to any nucleotide at all other positions. Another example is the tendency of
alanine at position 6 to face guanine. This preference, which was revealed au-
tomatically by our analysis, does not comply with both the chemical nature
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of alanine’s side chain, nor with general examinations of amino acid-nucleotide
interactions [14, 17]. We suspect that it is affected by the large fraction of Sp1
targets in our dataset. This potential interaction was implied before in Sp1 bind-
ing sites [5] and may reflect an interaction between the residue at position 2 with
the complementary cytosine.

5.2 Inter-position Dependencies in the Binding Site

The Cys2His2 binding model inherently assumes that all positions within the
binding site are independent of each other. This assumption is used in most
computational approaches that model binding sites. Two papers [3, 7] discuss
this issue in the context of the Cys2His2 Zinc Finger domain. Their analyses
of binding affinity measurements suggest that some weak dependencies do exist
among some positions of the binding sites of Egr-1. Nonetheless, a reasonable
approximation of the binding specificities is obtained even when ignoring these
dependencies. In another recent study [1], we evaluated probabilistic models
that are capable of capturing such inter-position dependencies within binding
sites. Our results showed that dependencies can be found in the binding sites
of many proteins from various DNA-binding domains (especially from the helix-
turn-helix and the homeo domains). However, our results also implied that using
such models of dependencies in modeling the binding sites of Zinc Finger pro-
teins does not lead to significant improvements [1]. Thus, we believe that the
Cys2His2 binding model we use here is indeed a reasonable approximation of the
actual binding.

5.3 Genome-wide Predictions of Binding Sites and Target Genes

In the current era, there is a growing gap between the number of known pro-
tein sequences and the number of experimentally verified binding sites. To better
understand regulatory mechanisms in newly solved genomes, it is crucial to iden-
tify the direct target genes of novel DNA-binding proteins. Our method opens
the way for such genome-wide assays. By predicting the binding site models of
regulatory proteins, one might attempt to also classify the genes to those that
contain significant binding sites at their regulatory promoter regions (hence, pu-
tative target genes) and those that do not. As we showed, our approach can scale
up to such genome-wide scans.

5.4 Applications to Other DNA-Binding Domains

Theoretically, our approach can be extended to handle other structural families.
In Figure 7, we analyze the number of binding sites needed for estimating the
DNA-recognition preferences. We show that ∼200 sites are sufficient for achiev-
ing similar likelihood values. Other possible families of DNA-binding domains,
such as the leucine zipper, the homeodomain and the helix-turn-helix domain,
have enough sites in TRANSFAC to allow similar analyses (1191, 505 and 201
sites, respectively). Unfortunately, this move requires that the various proteins
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Fig. 7. Likelihood of held-out test

data given different sizes of training

datasets. The original data (455 canon-

ical Cys2His2 zinc finger sites from

TRANSFAC 7.3) were split into 10

equally-sized sets. We used each set as

held-out test data, while applying the

following procedure 10 times: various

portions of different sizes (from 10 to

400 binding sites) were sampled from

the remaining 90% of the data, and

were used as training data for the EM

algorithm. We then calculated the av-

erage likelihood of the held-out 10%

of the target DNA-binding domain will follow a common simple DNA-binding
model. This is not the case for some families, where the binding models are far
more flexible and complex. To handle these cases, more advanced models and
learning techniques will be needed. Furthermore, for some families there is no
simple way of inferring the interacting residues, based on the sequence of the
protein (unlike the conserved Cys2His2 pattern in the Zinc Finger domain), and
so the possible search space grows even further.

In spite of these drawbacks, we believe that structural approaches, as the
one we show here, will lead to successful predictions of binding site models, and
following that, to accurate identification of the target genes of novel proteins,
even on genome-wide scales. Eventually, such approaches will be utilized to re-
construct larger and larger portions of the transcriptional regulatory networks
that control the living cell.
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