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OVERVIEW 

Selenium, which is one of the chalcogen elements in group 16 (or 6A) of the periodic table, is a semiconductor 
that is chemically similar to sulfur for which it substitutes in many minerals and synthetic compounds.  It is a 
byproduct of copper refining and, to a much lesser extent, lead refining.  It is used in many applications, the major 
ones being a decolorizer for glass, a metallurgical additive to free-machining varieties of ferrous and nonferrous 
alloys, a constituent in cadmium sulfoselenide pigments, a photoreceptor in xerographic copiers, and a 
semiconductor in electrical rectifiers and photocells. 

Refined selenium amounting to more than 1,800 metric tons (t) was produced by 14 countries in 2000.  Japan, 
Canada, the United States, and Belgium, which were the four largest producers, accounted for nearly 85 percent of 
world production.  An estimated 250 t of the world total is secondary selenium, which is recovered from scrapped 
xerographic copier drums and selenium rectifiers; the selenium in nearly all other uses is dissipated (not recoverable 
as waste or scrap).  The present selenium reserve bases for the United States and the world (including the United 
States), which are associated with copper deposits, are expected to be able to satisfy demand for selenium for several 
decades without difficulty. 

HISTORICAL BACKGROUND 

Selenium was discovered in 1817 by J.J. Berzelius and J.G. Gahn, who isolated it from a red residue in sulfuric 
acid that had been made from pyrite mined at Fahlun, Sweden (Greenwood and Earnshaw, 1997, p. 747).  It was 
named from the Greek word selene (moon), because of its chemical similarity to tellurium, which had been 
discovered a few years earlier and named from the Latin word tellus (Earth). 

Although Willoughby Smith first demonstrated the photoconductive effect in 1873 in selenium metal and other 
properties that suggested potential uses were recognized, a century passed before a substantial commercial use was 
found for selenium.  It was first used in volume as a glass decolorizer in place of manganese dioxide in 1915 in the 
United States.  Manganese had become difficult to obtain from Russia, which was the largest mine producer, 
because of World War I.  Commercial production of selenium in the United States, however, had begun a few years 
earlier with the extraction of 5t of selenium from copper refinery anode slimes in 1910; apparently most of it was 
used as a pigment for red glass and ceramic glazes (Hess, 1911).  By 1918, annual domestic production had risen to 
50 t to fill the new use as a decolorizer.  Although glass decolorizing remained the principal domestic use of 
selenium in the years that followed the restoration of peace, the glass industry could not absorb all the selenium 
available from copper electrorefining, so part of the selenium-containing anode slimes from the refining cells was 
stockpiled during the interwar years.  When the market for selenium grew larger in the 1940s, the stockpiled anode 
slimes were gradually processed. 

Cadmium sulfoselenide (CdSSe) pigments came onto the market in artists’ paints in the first decade of the 20th 
century.  Because they were costly, expansion into a larger market awaited the development of coprecipitation with 
barium sulfate and zinc sulfide in the late 1920s, to create the more-economical cadmium lithopone pigments (ZnS-
CdSSe-BaSO4).  In the post-World War II years, the burgeoning plastics industry provided the principal market for 
durable, light-fast cadmium sulfoselenide pigments.  In the 1990s, however, these pigments were being phased out 
of some uses in response to the publics’ concern about toxic cadmium in the environment (Herron, 1992, p. 772). 

The selenium rectifier, which was invented in 1933, was used extensively from the 1940s through the 1960s.  
Its use peaked (at least in terms of numbers of units) in the 1950s when it was used extensively in the power supplies 
of radio and television sets, and also came to be used for high-current uses, such as direct current arc welding.  It 
remains in use today in diminished but still substantial numbers. 

The first commercial xerographic document copier, which depended on the photoconductive property of 
selenium for its operation, came onto the market in 1959.   These plain-paper copiers quickly became ubiquitous in 
the work place and became the largest use for selenium.  In the 1990s, selenium photoreceptors were largely phased 
out of new copiers and replaced by organic compounds and amorphous silicon.  Thus, the current xerographic 
market is a replacement market. 

The U.S. Bureau of Mines (USBM) began publishing figures in its Minerals Yearbook on the domestic refinery 
production of selenium in 1940, on world refinery production in 1956, and on the end-use pattern of the domestic 
selenium market in 1970.  Domestic production, which was about 150 t in 1940, rose gradually and peaked at 565 t 
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in 1969.  It fell through the 1970s, then stabilized at an intermediate level in the 1980s and early 1990s before rising 
again in the middle 1990s (fig. 1).  Domestic apparent consumption (calculated as refinery production plus net 
imports plus/minus stock changes) generally paralleled the course of production. 

 

1970

30%

14%37%

19% Glass

Chemicals/pigments

Electronics
Other uses

 

1980

30%

25%

35%

10% Glass
Chemicals/pigments
Electronics
Other uses

 

1990

25%

20%35%

20% Glass
Chemicals/pigments
Electronics
Other uses

 

2000

25%

10%
14%8%

24%

19%
Glass
Electronics
Chemicals
Pigments
Metallurgical
Other uses

 
Figure 1.  Pattern of U.S. selenium use, 1970–2000.  [U.S. Bureau of Mines (1970–1990); U.S. Geological Survey 
(2000)] 

DESCRIPTION 

SALIENT FACTS 

In the periodic table, selenium is element number 34, atomic weight 78.96, and electron configuration 
[Ar]3d104s24p4 and is located in period 4, group 16 (or 6A).  The top two elements in group 16, oxygen and sulfur, 
are nonmetallics and insulators; the next two, selenium and tellurium, are semiconductors (Greenwood and 
Earnshaw, 1997, p. 754).  Selenium’s principal oxidation states are +6, +4, –2, and 0; in addition, +1, +2, +3, and +5 
have been observed in the laboratory.  Terrestrial selenium is a mixture of six isotopes having the following weight 
abundances: 74Se (0.89 percent); 76Se (9.36 percent); 77Se (7.63 percent); 78Se (23.78 percent); 80Se (49.61 percent); 
and 82Se (8.73 percent).  The first five are stable isotopes, but 82Se is actually a radioactive isotope with an 
extraordinarily long half-life of 1.08 x 1020 years.  In addition, 27 radioisotopes with half-lives that range from 
milliseconds to more than a million years have been identified (Resource-World Net, undated). 

Several allotropes of selenium exist; five are recognized in this report, but as many as eight have been claimed 
in the literature.  The metallic gray stable form crystallizes in the hexagonal system.  It is brittle and has a Mohs 
hardness of 2, a specific gravity of 4.79, and a melting point of 221° C.  The other forms are metastable and can be 
converted into the stable hexagonal form by heating or chemical reaction.  They include two deep-red crystalline 
monoclinic forms and two amorphous forms, one red, and one black. The several allotropes consist of covalently 
bonded rings and/or helical chains of selenium atoms (Greenwood and Earnshaw, 1997, p. 751; Hoffmann and King, 
1997, p. 686). 

Chemically, selenium is very similar to sulfur.  Many of its compounds are analogs of sulfur compounds, and it 
substitutes for sulfur in minerals and other compounds. 
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Electrically, selenium is a p-type semiconductor.  It exhibits photovoltaic action (the conversion of light to 
electric current) and photoconductivity (the variation of electrical conductivity with the intensity of light incident on 
the semiconductor). 

PRINCIPAL FORMS, ALLOYS, AND COMPOUNDS 

Selenium is a highly reactive element.  It forms “more than 170 solid compounds, three liquid compounds 
(Se2Cl2, SeF4, and CSe2), and two gaseous compounds (H2Se and SeF6)” (Chizhikov and Shchastlivyi, 1968, p. 142).  
Of the inorganic compounds, the most important classes are the selenides (58 formed with metals and 8 with 
nonmetals), halides, oxyhalides, oxides, acids, and salts of the oxyacids.  The organic compounds include a large 
number of selenium analogs of organosulfur compounds.  Biologically important organics include selenocysteine, 
“seloaminocarboxylic acids, selenium peptides, and selenium derivatives of pyrimidines, purines, cholines, steroids, 
coenzyme A, and other compounds” (Hoffman and King, 1997, p. 702).  Some of the more commonly used 
selenium compounds are shown in table 1. 

Table 1.  Selected commonly used selenium compounds. 
[Hoffmann and King, 1997, p. 698] 

Compound Formula Compound Formula 
Barium selenite BaSeO3 Selenium diethyldithiocarbamate[(C2H5)2NCS2]4Se      
Barium selenate BaSeO4 Selenium dioxide SeO2
Cadmium sulfoselenide CdSSe Selenium disulfide SeS2
Calcium selenite CaSeO3 Selenium oxychloride SeOCl2
Ferroselenium FeSe Selenium tetrachloride SeCl4
Nickelselenium NiSe Selenourea (NH2)2CSe 
Potassium selenocyanate K(SeCN) Sodium selenate Na2SeO4
Selenic acid H2SeO4 Sodium selenide Na2Se 
Selenous acid H2SeO3 Sodium selenite Na2SeO3

COMMERCIAL GRADES, SHAPES, AND SPECIFICATIONS 

Selenium is sold in four grades.  Commercial refined selenium is 99.5 weight percent minimum selenium, and is 
marketed mainly as powder, although granules and lump are available.  Pigment grade is 99.7 weight percent 
minimum selenium.  High grade is 99.999 weight percent minimum selenium, with deleterious impurities such as 
arsenic, iron, mercury, and tellurium below 1 to 2 parts per million (ppm).  It is sold as shot or powder.  Ultrahigh 
grade is 99.999 to 99.9999 weight percent selenium (Hoffmann and King, 1997, p. 705).  The industry has no 
specifications for the several grades, but some producers supply their own specifications to customers. 

SOURCES OF SELENIUM 

PRIMARY SELENIUM, GEOCHEMISTRY 

Selenium is extensively associated in nature with sulfur.  Because the radius of the Se2- anion is only a little 
larger (8 percent) than that of the S2- anion, selenium substitutes readily for sulfur in the structures of sulfide 
minerals (McNeal and Balistrieri, 1989, p, 5).  It is introduced to the crust by way of igneous intrusions, in which it 
is a constituent of a wide array of sulfide minerals, and by volcanism when it is vented as gaseous SeO2 and H2Se 
and also trapped in volcanic glasses at concentrations up to several hundred parts per million.  Its mean 
concentration in sulfide minerals, 0.05 ppm, has been taken to be representative of its crustal abundance (Lakin and 
Davidson, 1973).  Other estimates of crustal abundance have ranged from 0.03 to 0.08 ppm (Spectrum Laboratories, 
undated). 

Some representative selenium contents in crustal materials, in parts per million, are as follows: igneous rocks, 
0.05; sandstones, 0 to 0.5; shales, 0 to 0.6; limestones, 0.08; and soils, 0.2 (Spectrum Laboratories, undated).  The 
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selenium content, however, can vary greatly from one rock or soil type to another.  Because sulfur is much more 
soluble than selenium in aqueous environments, the two elements tend to separate during the weathering that is a 
precursor to the formation of sedimentary rocks.  For this reason, selenium is largely absent from deposits of sulfates 
and some types of sulfur deposits.  Although selenium plays no role in plant nutrition, it is taken up by plants and 
thus concentrated where organic matter is concentrated; for example, in coals and black shales where it is often 
associated with iron pyrite.  Black shales may contain as much as 20 ppm selenium regionally and up to 1,500 ppm 
locally.  Domestic coals average 1.5 ppm selenium, and coals generally contain from 0.5 to 12 ppm selenium 
(Hoffmann and King, 1997, p. 689).  Crude oil generally contains less than 0.5 ppm selenium.  Seawater is estimated 
to contain only 0.5 part per billion (ppb) selenium, and drinking water usually contains less than 1 ppb. 

PRIMARY SELENIUM, GEOLOGY 

Primary selenium is produced entirely as a byproduct of base-metal mining and processing.  More than 90 
percent of it is derived from copper ores, and most of the other 10 percent, from lead ores.  There are no selenium 
ores or ore deposits, but selenium is present as a minor constituent in scores of minerals, most of them sulfides.  
Although selenium is, with respect to commercial exploitation, a dispersed element, it is also capable of forming a 
substantial number of minerals in which it is a main component; thus, geochemically, it has aspects of being both a 
dispersed and a mineral-forming element.  Sindeeva (1964, p. 35-37) provided chemical formulas for 36 minerals 
that can be called selenium minerals; that is, minerals in which selenium is a main component.  A few of the better 
known examples, all selenides, are crookesite, (Cu,Tl,Ag)2Se; clausthalite, PbSe; eucairite, CuAgSe; and 
naumannite, Ag2Se (Stone and Caron, 1961).  The selenium reserve and reserve base figures published by the U.S. 
Geological Survey (USGS) exclude selenium in lead ores and other mineral deposits and are based solely on 
reserves and reserve base estimates for the main source of selenium, copper ores (table 2).  The part of copper 
resources that appears likely to be processed by leaching/electrowinning is discounted because these methods do not 
recover selenium.  The selenium estimates take into account typical recoveries of selenium per metric ton of primary 
electrolytically refined copper; only a part of the selenium content of anode slimes is recovered.  The estimates are 
derived from the copper resource figures by using the recovery factor 0.215 kilogram of selenium per metric ton of 
primary electrolytic copper recoverable from the resources; for Canada, where the selenium contents of copper ores 
are higher, the factor 0.64 kilogram per metric ton is used (Brown, 1995).  No estimate is available for total 
selenium resources, but coal deposits have been estimated to contain from 80 to 90 times more selenium than do 
copper deposits.  Recovery of selenium from coal is considered to be unlikely in the foreseeable future.  (See 
Appendix for definitions of reserves and reserve base.) 

Table 2.  Selenium reserves and reserve base, yearend 2001. 
[In metric tons, recoverable selenium.  All data are rounded 
to two significant digits; because of independent rounding, 
they may not add to totals shown]  

Country Reserves Reserve base 
Chile 16,000 37,000 
Canada 6,400 15,000 
Peru 5,400 9,300 
United States  4,600 9,200 
Zambia 3,500 6,500 
Other countries 48,000 90,000 

World totals  84,000 170,000 

SECONDARY SELENIUM 

About 90 percent of the selenium consumed domestically is dissipated into the environment and, therefore, is 
not recoverable.  The selenium contents of glass and free-machining alloys are not accounted for during recycling of 
those materials and are probably volatilized during melting operations.  Selenium pigments, fertilizers, animal feeds, 
chemicals, and pharmaceuticals are dissipated.  That leaves electronic uses as the possible source of scrap and, in 
fact, a high percentage of the selenium used in document copiers and laser printers and possibly some of that used in 
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rectifiers is recovered and reprocessed into secondary selenium.  At the current rate of consumption, this means that 
no more than about 10 percent of annual domestic consumption, or 50 t, is recovered as secondary selenium. 

PRODUCTION TECHNOLOGIES 

PRIMARY SELENIUM 

Copper refinery anode slimes, which are the source of more than 90 percent of the selenium produced, usually 
contain from 5 to 25 weight percent selenium often as the selenides of silver (Ag2Se); copper (Cu2-xSex), where x is 
less than 1; and copper-silver (CuAgSe).  Lead refinery residues generally contain lesser quantities of selenium and 
are sometimes processed together with copper slimes.  The primary commercial objective in processing the slimes is 
to recover precious metals; the recovery of selenium and tellurium is a secondary goal.  Processing begins with the 
removal of most of the copper by a sulfuric acid leach.  Selenium, tellurium, and the precious metals are then 
extracted from the decopperized slimes. 

The description below covers only the extraction of selenium and tellurium. 
In outline, the processing proceeds as follows: 
Selenium is extracted in compound form from the decopperized slimes and concurrently separated from 

tellurium and from impurities. 
The selenium is reduced to elemental selenium. 
The elemental selenium is purified. 
Step 1 is usually accomplished by one of the following methods:  soda ash roasting, sulfation roasting, 

chlorination, or copper-lead slimes treatment. 

EXTRACTION 

Soda Ash Roasting 
Decopperized slimes are mixed with sodium carbonate, a binder clay, and water to form a paste, which is then 

pelletized, dried, and roasted at a low temperature (530°-650° C) to convert all selenium and tellurium to the soluble 
hexavalent state.  The roasted pellets are ground and leached with water.  Whereas the selenium goes into solution 
(as the selenate Na2SeO4), the tellurium is insoluble in the alkaline solution; thus, the two elements are separated in 
this stage.  The sodium selenate is then precipitated from solution, mixed with charcoal, and heated to convert it to 
the selenide Na2Se.  The selenide is leached with water and then oxidized by blowing air through the solution to 
precipitate elemental selenium (Hoffmann and King, 1997, p. 690-692). 

Sulfation Roasting 
Dried decopperized slimes are roasted with sulfuric acid at 500° to 600° C to convert the selenium and tellurium 

to their dioxides.  Selenium dioxide volatilizes at these temperatures and is collected from the off-gases, whereas 
tellurium dioxide remains in the slimes.  In the off-gas water scrubber where the temperature is lower, the oxidation 
reaction reverses; that is, the selenium dioxide reacts with water and sulfur dioxide to form sulfuric acid and 
elemental selenium. 

Wet Chlorination 
Decopperized slimes are slurried in hydrochloric acid or water heated to about 100° C.  Chlorine and oxidizers, 

such as sodium chlorate or hydrogen peroxide, which liberate chlorine from the acid, are bubbled through the slurry.  
Selenium, tellurium, the precious metals, and several other metallic impurities go into solution as chlorides.  
Selenium and the precious metals are selectively precipitated from solution by sulfur dioxide.  Selenium is recovered 
and simultaneously separated from the precious metals by vacuum distillation (Hoffmann and King, 1997, p. 694-
696). 

Copper-Lead Slimes Treatment 
Copper slimes and lead slimes are sometimes treated together.  They are mixed with lead materials, which 

provide a low melting temperature; selenium is volatilized by blowing air into the molten lead mixture and is then 
recovered from stack gases at the scrubbers. 
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PURIFICATION 

At least three methods have been used to separate selenium from its main impurity (tellurium) and several lesser 
impurities.  The first method is based on the greater volatility of selenium compared with tellurium.  Thus, selenium 
may be vacuum distilled at a temperature range of from 300° to 400° C or distilled at atmospheric pressure at a 
higher temperature.  In the second method, selenium is heated at about 300° C with a flux of mixed sodium and 
potassium nitrates.  The selenium and precious metal impurities do not react with the flux, whereas the tellurium and 
some of the other impurities are absorbed into the flux.  If precious metals impurities are a problem, then a further 
step is required to separate them from the purified selenium.  In the third method, selenium is dissolved in hot 
sodium sulfite solution to form sodium selenosulfite, while tellurium remains undissolved.  The hot solution is 
filtered, and as it cools, the reaction reverses, to yield sodium sulfite and purified elemental selenium (Hoffmann and 
King, 1997, p. 696-697). 

SECONDARY SELENIUM 

Nearly all secondary selenium, which may be as little as 100 metric tons per year (t/yr) worldwide, is recovered 
from xerographic photocopier drums.  The selenium layer is either broken up mechanically, then cleaned and 
remelted; or dissolved in sodium sulfite or other solvents and then precipitated (Roskill Information Services, 1988, 
p. 6). 

USES 

According to circumstance, selenium is a conductor and a nonconductor, an oxidizer and a deoxidizer, a 
colorant and a decolorant, crystalline and amorphous.  These diverse characteristics have led to the development of a 
wide array of uses for the element. 

The usage figures published for selenium have some considerable limitations.  Percentage breakdowns for the 
annual consumption of selenium in its principal end use categories in the United States have been published in 
USBM and USGS commodity statistics since 1970.  They are estimates, obtained not by formal surveys of industry, 
but by contact with persons in the producing industry and a trade association.  In recent years, the categories have 
been increased from four to six to provide more detail.  How faithfully these percentages represent the U.S. 
consumption pattern, as distinct from the world pattern, is not clear.  Further, to estimate tonnages, a calculated 
apparent consumption that is approximate because of the lack of data for exports (before 1972) and for industry 
stocks must be used. 

The four categories described in this section are those that have been in print since 1970.  They are used in 
figure 1, which shows shifts in the use pattern during the past three decades.  The chart for 2000 in the figure shows 
the pattern by use of six categories, chemicals and pigments having been separated, and metallurgical uses extracted 
from the other uses category.  In table 3, the four-category pattern (“U.S. consumption pattern for selenium”) is 
tracked in terms of tonnage. 
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Table 3.  U.S. supply and demand for unfabricated selenium. 
[In metric tons.  NA, Not available.  W, Withheld to avoid disclosing company proprietary data.  -----, Zero.  Data 
include estimates.  All data are rounded to three significant digits; because of independent rounding, they may not 
add to totals shown.  Note change at 1995 from 5- to 1-year intervals] 
  1960 1965 1970 1975 1980 1985 1990 1995 1996 1997 1998 1999 2000 
Components of U.S. supply:              

Refined production:              
Primary1 244  231  456  162  141  W 287  373  379  W W W W 
Secondary ----- 14  14  9  45  W NA NA NA NA NA NA NA 

Imports for consumption2 73  114  206  403  284  401  383  324  428  346  339  326  476  
Sales from U.S. stockpile ----- ----- ----- 3  3 3 3 3 3 3 3 3 3

Net deliveries from 
industrial stocks 30  129  23  ----- 54  W 47  NA NA NA NA NA NA 
Total U.S. supply 347  488  699  577  524  NA 717  697  807  NA NA NA NA 

Distribution of U.S. supply:              
Exports4 ----- 45  171  54  82  154  207  269  322  127  151  231  82  
Purchases for U.S. stockpile ----- 8  ----- ----- 3 3 3 3 3 3 3 3 3

Net additions to industrial 
stocks ----- ----- ----- 33  ----- W NA NA NA NA NA NA NA 

Apparent consumption 324  434  528  490  388  5 477 510  517  564  5 509 5 478 5 383 5 504 
Total distribution of 

supply 324  487  699  577  470  631  717  786  886  636  629  614  586  
U.S. consumption pattern for 

selenium6:              
Glass7 NA 159  173  138  116  143  128  119  141  127  120  96  126  
Chemicals and pigments NA 78  63  92  97  119  102  109  130  112  105  84  111  
Electronics NA 152  232  201  136  167  178  109  90  71  57  42  50  
Other uses8 NA 45  60  59  39  48  102  180  203  199  196  161  217  

Total apparent 
consumption 324  434  528  490  388  477  510  517  564  509  478  383  504  

1Prior to 1981, production and stocks included net production of granular selenium, a semirefined form of selenium. 
2Unwrought metal, waste and scrap, and selenium compounds. 
3The U.S. Government stockpile had been liquidated by 1976. 
4Unwrought metal, waste and scrap. 
5Calculated by using an estimate for shipments to consumers. 
6All end use consumption figures are estimates; those for 1985 and from 1997 to 2000 are by the authors of this 
report and based on estimated apparent consumption. 
7Includes glass frit used for surface pigmentation of ceramic products. 
8Comprises agricultural, metallurgical, and miscellaneous uses. 

GLASS 

Selenium is used to decolor some glasses, to color other glasses, and to color the vitreous glazes that are used to 
coat some ceramic products. 

A few hundredths of a percent of iron in mixed ferrous and ferric oxidation states is present as an impurity even 
in the high-grade sand used for silica glass and imparts a muddy color to the raw glass.  Oxidizers, such as arsenic 
trioxide, are added to the melt to reduce the population of ferrous ions; the product is a glass that has a pale-
yellowish-green color.  Selenium, as elemental selenium, barium selenite (BaSeO3), or sodium selenite (Na2SeO3), is 
then added to the melt to remove the remnant color, thus yielding a clear colorless glass, most of which is used as 



11 

container glass.  Depending on the iron content of the glass, from 10 to 30 grams (g) of selenium per metric ton of 
glass is added.  Only about 20 percent of this is retained in the glass; the remainder volatilizes from the melt.  Used 
along with cobalt oxide, ferric oxide, and cadmium sulfide, selenium, at a concentration of about 1 kg/t, is a 
decolorizer for the neutral gray heat absorbent flat glass used in automobile windows and the windows of modern 
office buildings.  Additions of selenium with cobalt oxide or iron oxide are used to produce black or bronze-colored 
architectural glass.  Glass is colored pink by the addition of from 0.05 to 1 percent selenium to the melt under 
oxidizing conditions.  Various combinations of selenium oxide with the oxides of antimony, arsenic, bismuth, 
cobalt, or iron yield black, purple, or yellow glasses.  Selenium, silicon, and a variable third additive yield other 
colors, such as amber, emerald, and topaz.  Selenium is used with cadmium sulfide to produce glasses that range in 
color from orange-yellow to ruby red.  To make ruby glass, selenium (up to 1 percent) and cadmium sulfide (up to 2 
percent) are added to the melt under reducing conditions.  The glass is cooled quickly then heated and held until tiny 
cadmium sulfoselenide crystals, which act as the color centers, precipitate throughout the glass.  Ruby glass of this 
composition is characterized by good transmission of red light and sharp spectral cut-off.  It is widely used for the 
lenses in traffic signal and navigation lights. 

Powdered or granulated glass, which is called frit, is commonly fused onto the surfaces of ceramic products to 
seal and color them.  Frit that contains cadmium sulfoselenide is used to impart brilliant surface colors that range 
from yellow through red and maroon to certain ceramic products.  The color produced is a function of the ratio of 
sulfur to selenium in the compound; the more selenium, the redder the color (Hoffmann and King, 1997, p. 711-712; 
Roskill Information Services Ltd., 1988, p. 56-59). 

Zinc and cadmium selenide glasses, which readily transmit infrared radiation, are used in lenses for industrial 
carbon dioxide lasers. 

CHEMICALS 

Selenium, selenium dioxide, and other selenium compounds are used as catalysts or oxidizing agents in many 
organic chemical processes, such as oxidation, hydrogenation, dehydrogenation, isomerization, and polymerization.  
Some examples of common applications are noted below (Roskill Information Services Ltd., 1983, p. 63): 

Oxidation of olefins to olefin oxides and unsaturated aldehydes; oxidation of alkyl aromatics to aromatic acids; 
oxidation of ketones to branched or cyclic ketones; and oxidation of acetaldehyde to acetic acid. 

Use of selenium as a promoter in the reformation of naphtha. 
These and the many other specific process applications together account for about two-thirds of the selenium 

used in the chemicals and pigments category. 

PIGMENTS 

Nearly all the pigments in which selenium is used are cadmium sulfoselenide pigments.  These range from 
yellow to maroon in color according to the relative proportions of contained sulfur and selenium.  They are brilliant, 
highly resistant to light and chemical attack, stable to high temperatures, and highly opaque (Hoffmann and King, 
1997, p. 712).  By far their largest use is in the coloring of plastics, especially the types that are processed and used 
at relatively high temperatures, such as high density polyethylene, acrylonitrile-butadiene-styrene, and 
polypropylene (Roskill Information Services Ltd., 1988, p. 61).  Because they are expensive pigments, they are 
reserved for use in plastics processed at temperatures of up to 400° C and for plastic products used in high-
temperature environments (up to 500° C) when it is important to avoid deterioration of the color, especially if the 
color is part of a visual safety code, such as might be used for cable coverings, steam line coverings, and other 
products. 

Relatively small amounts (less than 10 percent of the total market) of cadmium sulfoselenide pigments are used 
in specialized paints and coatings and in the manufacture of ceramic goods.  The application of selenium-containing 
pigments to ceramics by use of glass frit was mentioned in the discussion of glass manufacture.  Another way of 
applying cadmium sulfoselenide pigments to ceramics is to encapsulate the pigment grains in zirconia (ZrO2).  The 
zirconia protects the pigment, which allows it to survive high firing temperatures. 

Cadmium sulfoselenide pigments contain a highly toxic element, cadmium, whose use has been discouraged in 
the past two decades or more.  Primarily for this reason, use of these pigments fell rapidly in the first half of the 
1990s as manufacturers developed reasonably satisfactory substitutes (Novotny, Solc, and Trojan, 1995, p. 31).  In 
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the United States, the rapid decline in consumption of selenium in cadmium sulfoselenide pigments appears to have 
been slowed in the latter half of the 1990s. 

Other important selenium-containing pigments include the zinc-chromium-selenate pigments that are used to 
protect metal surfaces against corrosion. 

ELECTRONICS 

The consumption of selenium for use in rectifiers, xerographic photoreceptors, photovoltaic cells and 
photoconductive cells has been reported in a single category (“electronics”) in USBM and USGS publications.  
Through the 1940s, 1950s, and at least part of the 1960s, the use in selenium rectifiers dominated the category.  
With the appearance in 1959 of the first commercially successful xerographic photocopier, the predominance of the 
selenium rectifier in the electronics category began to wane, and from sometime in the 1960s until today, the 
photoreceptor use has dominated the category.  The advent in 1984 of the laser printer, which operates in a way 
similar to that of a xerographic copier, helped insure that dominance. 

RECTIFIERS 

The basic component of the selenium rectifier is a steel or aluminum plate coated with a 1-micrometer (µm) 
film of nickel or bismuth, which is used as one electrical contact upon which a 50 to 60 µm layer of halogen-doped 
selenium is deposited; this, in turn, is covered with a film of cadmium alloy, which is used as the other electrical 
contact.  The selenium layer is converted into polycrystalline gray (hexagonal) selenium by annealing. 

The metal plate configuration lends itself to stacking, which makes these rectifiers suitable for high-voltage, as 
well as low-voltage power supplies.  They have a high (85-percent) working efficiency and are more durable and 
reliable than competitor rectifiers.  This reliability is a factor that, in some end uses, is of more importance than the 
lower cost of some competitors, such as silicon rectifiers.  Although they have been largely supplanted by the lower 
cost silicon diode, they still have niche markets in such devices as arc welders, electrostatic air cleaners, and some 
kinds of transformers. 

XEROGRAPHIC COPIERS 

The xerographic process was demonstrated in the late 1930s, using sulfur as the photoreceptor.  The 
photoreceptor material must be an insulator in the dark and a conductor where exposed to light.  In xerographic 
plain-paper copiers, the photoreceptor material is present as a 50- to 60-µm layer on a drum or belt.  It is 
electrostatically charged and then exposed to the image.  Where the image is light, the photoreceptor becomes a 
conductor, thus allowing the charge to dissipate; where the image is dark, the charge remains.  Oppositely charged 
toner powder is then introduced to the photoreceptor surface but clings only to the dark areas of the latent image.  
The adhering toner is then transferred to charged plain paper and fixed in place by heating to form a permanent copy 
of the original document.  Amorphous (glassy) selenium, which was found to be a photoconductor in the late 1940s, 
was the photoreceptor in the first commercial photocopiers.  It was largely satisfactory, but it tended to crystallize 
and was easily scratched; consequently, it had to be replaced frequently.  More-durable and photosensitive coatings 
were then developed, which used arsenic-stabilized selenium, selenium-tellurium alloys (4 to 13 percent tellurium), 
or arsenic triselenide (As2Se3).  Very large numbers of copiers and laser printers that use selenium-based 
photoreceptors are still in use, but in copiers produced during the past few years, selenium has been displaced by 
several competitor materials.  Amorphous silicon has displaced selenium to some extent in high-speed heavy-duty 
copiers, and organic photoreceptors have largely replaced selenium in low-speed and personal copiers, as well as in 
color copiers (Hoffman and King, 1997, p. 708-709; Roskill Information Services Ltd., 1988, p. 46-53). 

PHOTOCELLS 

Selenium has been used in some kinds of photovoltaic cells—devices that convert light energy into electrical 
energy.  The selenium photovoltaic cell is similar in construction to a rectifier plate except that the cadmium 
electrode layer is replaced by a transparent layer of cadmium oxide for the admission of light.  It has a spectral 
response similar to that of the human eye, making it useful as a photographic photometer.  It has, however, been 
largely displaced from this use by the cadmium sulfide photoconductive cell.  Copper indium diselenide (CuInSe2) is 
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one of three semiconductor materials that have been used for thin film solar photovoltaic cells.  Most solar 
photovoltaics in use, however, use crystalline silicon and are not of the thin film type (U.S. Department of Energy, 
2002). 

The selenium photoconductive (or photoelectric) cell typically consists of a thin layer of selenium on a metal 
substrate, covered by a thin translucent film of gold.  Light incident on the cell increases its conductance by as much 
as 1,000-fold, making it useful in a variety of light-sensing devices, such as electric eyes and photometers.  Most 
photoconductive cells, however, use silicon or cadmium sulfide as the photoconductive material (Roskill 
Information Services Ltd., 1988, p. 56). 

METALLURGICAL USES 

Selenium is often added in small amounts to ferrous and copper-based metals.  The principal reason for adding 
selenium is to enhance machinability, which enables faster production with better surface finish.  The addition of 
from 0.04 to 0.08 percent selenium with somewhat larger quantities of lead to low-carbon steels more than doubles 
the machinability.  The addition of at least 0.15 percent selenium to series 302 and 430 stainless steels improves 
machinability markedly, as does the addition of from 0.025 to 1 percent selenium to copper and its alloys.  Selenium 
is the only additive that is suitable for improving the machinability of cobalt-iron and nickel-iron alloys used in 
electrical equipment.  The use of selenium in copper alloys has become potentially important in the past decade 
because it has been demonstrated to work well with bismuth in improving the machinability of the new 
environmentally friendly lead-free brasses that are being introduced into plumbing hardware. 

Selenium also serves in steel as a deoxidizer and grain refiner, and in stainless steels acts to prevent porosity.  
Additions of less than 0.1 percent selenium to the silicon steel used in transformer cores alters the microstructure in 
a way that improves the steel’s magnetic properties.  Selenium acts as a grain refiner in the antimonial lead used the 
grids and cell connectors of some types of lead-acid batteries. 

Selenium compounds added to chromium-plating electrolytes impart a more-uniform protection against 
corrosion by inhibiting localized corrosion of the plated steel article.  The trade-off is a less reflective plated surface, 
which may or may not be considered less desirable than a mirror finish.  In friction brake linings, the presence of 
selenium in copper particles substantially improves their adherence to nonmetal particles in the pressed and sintered 
lining material (Hoffmann and King, 1997, p. 710-711). 

Sulfur competes with selenium as an additive to steel to improve machinability but tends to have a more-
deleterious effect on certain properties of the steel, such as corrosion resistance, cold working characteristics, and 
strength.  Tellurium is generally used to improve machinability in copper alloys in preference to selenium on the 
basis of cost. 

OTHER USES 

MEDICAL USES 

The principal use of selenium in medicine is associated with its role in animal and human nutrition.  Selenium is 
an essential micronutrient for animals and humans.  Food plants grown on most soils contain sufficient selenium to 
satisfy nutritional requirements.  In some parts of the world, such as in regions of China, Denmark, Finland, New 
Zealand, and parts of the Eastern and Northwestern United States, however, the soils are deficient in selenium 
(Mikkelsen, Page, and Bingham, 1989, p. 83; Mayland, 1994, p. 33).  To prevent white muscle disease and other 
selenium-deficiency disorders in domestic animals in these regions, selenium is added to fertilizers and/or added to 
animal feed as a supplementary nutrient.  In the United States, about 50 t/yr of selenium is used for direct animal 
feed supplementation (Oldfield, 1998, p. 136). 

For humans, the minimum dietary requirement is about 55 micrograms per day (µg/d), and the normal intake in 
the United States from food is believed to be in the range of 70 to 150 µg/d (ATSDR, 1997).  Selenium, however, 
becomes toxic at levels not far above the usual intake.  About 400 µg/d is considered to be the maximum safe intake, 
and the maximum to be derived from separate selenium supplements is put at 200 µg/d.  Because food for a largely 
urban population, such as in the United States, comes from a wide assortment of places around the country and the 
world, each with its own distinct soils, calculating one’s daily selenium intake from food is difficult to impossible.  
For this reason and the narrow therapeutic window, some medical professionals do not recommend separate 
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selenium supplements for the general populace (UC Berkeley Wellness Letter, 2000).  Others, not always medical 
professionals, feel that the claimed benefits of selenium in combating diseases, such as arthritis, heart disease, 
cancer, and HIV/AIDS, warrant the supplementation of diet with up to 100 to 200 µg/d of selenium.  In any case, 
some people with severe gastrointestinal disorders and those completely dependent on intravenous feeding (total 
parenteral nutrition) require supplementation of dietary selenium (NIH Clinical Center, 2001). 

Selenium disulfide in a stabilized buffered suspension is the active ingredient in a well-known antidandruff 
shampoo. 

The least abundant of the six naturally occurring isotopes of selenium, 74Se, has been used to track the 
movement of selenium through body tissues. 

MISCELLANEOUS USES 

Selenium has a wide variety of miscellaneous uses, a few of which are cited below. 
Dialkylselenides are used as oxidation inhibitors in petroleum lubricants. 
The barium, calcium, and zinc salts of selenic acid augment the detergency of lubricating oils. 
Powdered selenium and selenium diethyl dithiocarbamate are used as accelerators of vulcanization of low-

sulfur natural and synthetic rubbers. 
Selenium compounds are used as antioxidants, bonding agents, and polymerization agents in rubber. 
Sodium selenite is used in photography to produce sepia tones. 
Sodium selenite has been used to reduce the amount of mercury in lake water.  Released slowly into the lake, it 

reacts with mercury compounds in the water to form an insoluble precipitate of mercury selenide that falls to the 
bottom.  The mercury is thus removed from the aquatic food chain. 

TRENDS IN USE 

Data on total world consumption are not available.  However, inspection of a plot of world refinery production, 
considered as a proxy for world consumption, shows slow, but steady growth over the 44 years from 1956 through 
2000 for which data are available (fig. 2).  The compound rate of growth during the period averaged about 2.5 
percent per year. 
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Figure 2.  World refinery production of selenium, 1956-2000.  [Data from U.S. Bureau of Mines (1940–1994); U.S. 
Geological Survey (1995-2000)] 
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U.S. apparent consumption from 1940 through 2000 rose more slowly, at an average rate of only 0.7 percent per 
year (fig. 3).  It peaked at 896 t in 1969 probably owing to demands for military equipment for the Vietnam War.  In 
general, U.S. apparent consumption has been characterized by large year-to-year fluctuations during the entire 60-
year period. 
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Figure 3.  Selenium in the United States, 1940-2000.  [U.S. Bureau of Mines (1940–1994); U.S. Geological Survey 
(1995–2000); refined production for 1997 to 2000 is estimated] 

Glass manufacture has been a consistently important market segment for selenium for many years.  Since 1965, 
domestic consumption of selenium in glass manufacture has ranged from about 100 to 175 t/yr; in 2000, at 126 t/yr, 
it was about 25 percent of total selenium consumption and appears to be stable at that level. 

Electronics was the largest use for selenium in the peak consumption years of the 1970s.  From 1965 until the 
1990s, domestic consumption ranged from about 140 to 230 t/yr, but in the past decade, it has declined steadily as 
organic photoreceptors have replaced selenium in new copiers, thus leaving only the replacement photoreceptor 
market for selenium.  At 50 t in 2000, it accounted for only 10 percent of total domestic selenium consumption and 
is expected to decline slowly as older copiers are gradually replaced, thus leaving only the consumption for rectifiers 
and photocells. 

Consumption for chemicals and pigments has ranged from about 60 to 120 t/yr; it was 111 t in 2000, or 22 
percent of total domestic selenium consumption.  Consumption is split about 65 to 35, chemicals to pigments, or 70 t 
for chemicals and 40 t for pigments. 

With the advent of lead-free plumbing brasses in the past decade, consumption for metallurgical uses has grown 
to 120 t in 2000, from about 75 t in 1995 or to 24 percent of total domestic consumption from 15 percent.  The rate 
of growth appears to have leveled off somewhat in the past 3 years. 

SUBSTITUTES FOR SELENIUM 

High-purity silicon has replaced selenium in high-voltage rectifiers and is the major substitute for selenium in 
low- and medium-voltage rectifiers.  Silicon is also a major substitute in solar photovoltaic cells.  Amorphous silicon 
and organic photoreceptors are substitutes in xerographic document copiers.  Organic pigments have been developed 
as substitutes for cadmium sulfoselenide pigments.  Other substitutes include cerium oxide as either a colorant or 
decolorant in glass; tellurium in pigments and rubber compounding; bismuth, lead, and tellurium in free-machining 
alloys; and bismuth and tellurium in lead-free brasses. 
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INDUSTRY AND MARKET 

Refinery production of selenium is reported by 14 countries.  Nearly all the producers are electrolytic copper 
refineries.  Not all copper refineries, however, process their own slimes to recover selenium; some prefer to ship 
them to the 30 or so refineries that do produce selenium.  Secondary selenium is processed at a few of the same 
refineries that produce primary selenium.  In the United States in 2000, only ASARCO Incorporated, Amarillo, 
Texas, produced commercial-grade selenium; another refiner shipped semirefined selenium to Asia for toll refining.  
No secondary selenium was processed domestically. 

Selenium is traded by 12 companies in the United States and more than 130 worldwide.  No count of consumers 
is available, but most selenium clearly is consumed in the industrialized countries. 

The value of selenium consumed in the United States in 2000 is estimated to have been on the order of $4 
million.  World production/consumption is estimated to have been on the order of $15 million. 

SELENIUM AND THE ENVIRONMENT 

Elemental selenium is relatively nontoxic, as are some of the nearly sixty metallic selenides.  However, most 
selenium compounds, such as the acid-reactive selenides, the oxides, halides, oxyhalides, and organics are highly 
toxic.  Selenium oxyhalides burn and blister skin upon contact.  Hydrogen selenide, which is a toxic gas, attacks the 
mucous membranes of the eyes and upper respiratory tract (Hoffmann and King, 1997, p. 707).  Most selenium 
compounds are believed not to cause cancer.  The one compound that has been determined to be a probable 
carcinogen when ingested is selenium disulfide.  The disulfide has not been carcinogenic when placed in contact 
with skin; its use in antidandruff shampoos is considered to be safe (U.S. Agency for Toxic Substances and Disease 
Registry, 1997). 

Selenium dioxide, which forms when metallic selenium is heated, is the compound of most concern in the 
workplace; it reacts with perspiration or water to form selenious acid, which is an irritant.  It is also the principal 
selenium species in urban air where most of it is attached to fly ash and aerosol particulates.  It forms during the 
combustion of fossil fuels, which is the source of as much as 90 percent of the selenium in urban air.  The selenium 
level in most urban regions lies in the range from 0.1 to 10 nanograms per cubic meter of air (Spectrum 
Laboratories, undated). 

In the United States, the Environmental Protection Agency has set the maximum level of selenium in drinking 
water at 50 ppb.  The Occupational Safety and Health Administration’s exposure limit for selenium compounds in 
the workplace is 0.2 milligram per cubic meter of air for an 8-hour workday in a 40-hour workweek (U.S. Agency 
for Toxic Substances and Disease Registry, 1997).  Standard procedures for landfilling have not yet been settled 
(Spectrum Laboratories, undated). 

Humans are exposed to selenium in various forms through inhalation, absorption through the skin, and, much 
more commonly, ingestion with food (where it is associated with proteins).  Just as some geographic regions have 
soils that are deficient in selenium content, other areas, typically characterized by the presence of volcanic rocks, 
have soils that are rich in selenium.  Some of the vegetation in these areas may carry enough selenium to be toxic to 
animals and humans. 

SUPPLY AND DEMAND 

SUPPLY AND DISTRIBUTION 

Refined selenium was produced in 14 countries in 2000; the four largest producing countries (Belgium, Canada, 
Japan and the United States) accounted for more than 1,500 t, or an estimated 83 percent of the world total (fig. 4).  
Although Australia also produced refined selenium, production figures were not available.  World refined 
production has grown at an average rate of about 2.5 percent per year from 1956 (the first year for which data are 
available for individual countries) through 2000(fig 2).  U.S. refined production over the same period has exhibited 
large year-to-year fluctuations that have ranged between 150 and 550 t/yr, and has, on average, declined 0.7 percent 
per year (fig. 3).  Production has not kept pace with the growth of domestic copper refining, of which selenium is a 
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byproduct, but this may be attributed largely to the practice by several domestic refiners of exporting their anode 
slimes for extraction of precious metals, selenium, and tellurium. 
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Figure 4.  Principal producers of refined selenium, 2000.  [U.S. share is  
estimated.  Other data by Brown, 2002] 

World consumption figures are not available.  U.S. apparent consumption in 2000, however, was equivalent to 
more than one-fourth of the 1,800-t world refinery output, and Japanese demand was equivalent to nearly one-tenth 
of world output. 

U.S. supply-distribution relationships since 1960 are shown in table 3.  From the table and from figure 3, 
apparent consumption has exceeded supply in nearly every year.  The shortfall has been made up by net imports and 
deliveries from producers’ stocks.  Secondary selenium has not been recovered domestically for the past two 
decades, and little was recovered in earlier years.  Most end uses are dissipative; the only scrap generated has been 
worn out or obsolete rectifiers and xerographic photoreceptor drums, and these have routinely been exported for 
recovery of the selenium. 

POTENTIAL SUPPLY 

The world selenium reserve base at yearend 2001 was estimated to be about 170,000 t of selenium, and the U.S. 
reserve base was estimated to be 9,200 t.  Both estimates were confined to selenium contained in the deposits that 
make up the copper reserve bases and further restricted to electrolytically refined primary copper.  
Leaching/electrowinning technology does not capture byproducts, such as selenium.  At the 2001 rates of production 
and consumption and with a static set of the other market and technological factors operating in 2001, the present 
world reserve base would last several decades aided by contributions from the recycling of waste and scrap.  No 
attempt will be made, however, to produce numerical estimates of resource lifetimes because the quality of the 
resource estimates does not warrant it.  Moreover, the various market and technological factors that govern 
production and consumption will likely not remain static. 

The U.S. Government has not stockpiled selenium since 1976, and a Government stockpile will not likely be 
part of the domestic supply in the future. 

SUSTAINABILITY OF PRODUCTION AND USE 

The production of selenium should easily be sustainable.  The resources are adequate and the production 
process appears to incur no environmental issues that cannot be resolved.  The use of selenium appears unlikely to 
outgrow the supply.  Selenium-containing products do not ordinarily pose a threat to human health or the 
environment; the exception might be cadmium sulfoselenide pigments, but these are being replaced by more-benign 
rare earth oxide and organic pigments.  Toxic selenium chemicals can be used safely in the work place.  Thus, the 
future use of selenium appears likely to be unimpeded. 
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ECONOMIC FACTORS 

The costs of exploration, mining, and metallurgical extraction associated with selenium are grouped with those 
for the precious metals, tellurium, and other byproduct metals and embedded in the costs of the primary metals, 
copper and lead.  Consequently, they are not readily available. 

U.S. selenium prices have been relatively low in recent years; the average price in 1999, $2.50 per pound, was 
the lowest annual average in the past half century.  The demand for selenium, however, is more influenced by the 
technological requirements of its end uses and by costs associated with its use as compared with substitute materials 
than with its initial cost.  When selenium prices are low, producers respond by stockpiling anode slimes. 

U.S. mine producers are granted a 14-percent depletion allowance on their domestic and foreign production of 
selenium.  The depletion allowance is a business tax deduction analogous to depreciation but is applied to an ore 
reserve rather than equipment or production facilities.  With this deduction, Federal tax law recognizes that an ore 
deposit is a depletable asset. 

Imports into the United States of unwrought selenium metal and selenium dioxide are duty-free. 

OUTLOOK 

Total selenium consumption in the United States is likely to remain in the range of from 400 to 550 t/yr during 
the next few years; this will be the result of a combination of stable and countervailing trends among the end uses.  
Consumption in the glass/ceramics and chemicals/pigments categories has been stable for many years and will 
probably continue to be so, although the pigments sector could shrink a little.  Consumption in the electronics 
category will continue to trend downward as the older selenium-using xerographic copiers are retired, whereas the 
metallurgical use of selenium, especially in lead-free plumbing brasses and in steels, should continue to grow. 

The present reserve base of selenium in the United States and the world is adequate for at least three to four 
decades, assuming growth rates for consumption that are in line with past trends. 
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Mining Journal, weekly 
Mining Record, weekly 
Platts Metals Week, weekly 
Ryan’s Notes, weekly 
Selenium, in U.S. Bureau of Mines Mineral Facts and Problems, 1985 
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APPENDIX 

Definitions of Reserves, Reserve Base, and Resources 
The term “resources,” as applied to metals, refers to those concentrations of metal-bearing minerals in the 

Earth’s crust that are currently or potentially amenable to the economic extraction of one or more metals from them.  
“Reserves” and “reserve base” are subcategories of resources.  “Reserves” refers to the in-place metal content of 
ores that can be mined and processed at a profit given the metal prices, available technology, and economic 
conditions that prevail at the time the reserves estimate is made.  “Reserve base” is a more-inclusive term that 
encompasses not only reserves proper, but marginally economic reserves and a discretionary part of subeconomic 
resources—“those parts of the resources that have a reasonable potential for becoming economically available 
within planning horizons beyond those that assume proven technology and current economics (U.S. Bureau of 
Mines and U.S. Geological Survey, 1980). 
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