IS IT FOOD? II WORKSHOP

Preliminary Report

May 30-31, 2001

Presented by:

Doug DeMaster, Ph.D.
NOAA/National Marine Fisheries Service
7600 Sandpoint Way NE
Seattle, WA 98115-6349

Shannon Atkinson, Ph.D. Alaska SeaLife Center 301 Railway Avenue Seward AK 99664-1329

Ron Dearborn University of Alaska Sea Grant P.O. Box 755040 Fairbanks, AK 99775-5040

Summary Statement from "Is It Food II?" Workshop Participants

"Is It Food II?" Workshop 30 - 31 May 2001 Alaska SeaLife Center Seward, Alaska

(Convened by the Alaska SeaLife Center, the National Marine Fisheries Service, and the Alaska SeaGrant Office)

Twenty -four scientists participated in a two-day workshop at the Alaska SeaLife Center on 30-31 May 2001 (Appendix 1). The workshop was convened by the Alaska SeaLife Center, the National Marine Fisheries Service, and the Alaska SeaGrant Office and co-chaired by Drs. Shannon Atkinson and Douglas DeMaster. A series of 14 talks were presented by workshop participants, followed by a discussion regarding the existing evidence for and against various hypotheses concerning factors that could be contributing to the current decline of the western population of Steller sea lion. The agenda for the workshop is presented in Appendix 2 of this report. In addition, Appendix 3 provides an abstract from each of the presentations.

There was general agreement among workshop participants with the following conclusions:

- 1. The suite of causes of the steep decline in the 1980s in sea lion abundance are very likely to be different from the suite of causes of the moderate decline in abundance in the 1990s.
- 2. There is considerable evidence from studies conducted in the 1970s and 1980s that support the hypothesis that sea lions from the western population were nutritionally stressed and that nutritional stress likely resulted in reductions in the rate of recruitment and the reproductive rate.
- 3. If the current population of western Steller sea lions of approximately 30,000 to 35,000 animals were stable, it would lose approximately 4700 animals per year from the population due to natural mortality, which would be offset by recruitment of 1 year olds into the population. At the observed 5% decline per year in the current population size, an additional 1700 animals are being lost. Fifty to seventy-five percent of this additional mortality is currently unexplained.
- 4. While few data from behavioral and physiological research in the 1990s directly support the hypothesis that nutritional stress is a significant factor in contributing to the current decline in the western population of sea lions, it cannot be ruled out as a cause of the continued decline. Most of the available data are from adult females and young of the year from the breeding season or young of the year from the later winter. The results to date indicate that animals in the declining population (i.e., the western population) are in better condition on average than animals from the eastern population, which is increasing in size. While these results are inconsistent with the nutritional stress hypothesis, important information from weaned pups and juveniles from other seasons and other areas is needed to resolve uncertainties regarding the importance of nutritional stress. At present there are inadequate data to evaluate the importance of the nutritional stress hypothesis as an important factor in understanding the

current decline of the western population of Steller sea lions.

- 5. Additional research is needed to identify condition indices for individual sea lions that are predictive regarding the likelihood that a young of the year animal would survive to maturity and reproduce. At a minimum, condition indices should be correlated with one or more measures of an animal's fitness.
- 6. Captive feeding studies to date by the North Pacific Universities Marine Mammal Research Consortium and the Alaska SeaLife Center indicate that: 1) developmental and gender related factors cause marked differences in the way the animals respond to changes in their diets, 2) there are strong seasonal effects in the way animals respond to changes in their diet, 3) animals appear healthy after a series of 4 month feeding trials on diets similar to what animals in the western population and eastern population are thought to utilize, 4) fasting animals have been observed to reduce their metabolic rate, and 5) both the caloric density and quality of the prey seem to be important factors in predicting the response of animals to a specific dietary regime.
- 7. In the wild there are strong differences in the diets of animals from different areas and at different times of the year. These differences in the diet by region are also highly correlated with differences in the regional dynamics of subpopulations of sea lions. In addition, there are strong seasonal differences in the nutritional value of a given prey item. Areal differences occur at a scale of 10-100 km. Seasonal differences in the utilization of migratory species like salmon have been observed. In the Gulf of Alaska and Eastern Bering Sea, pollock is a primary component of the diet throughout the year. In the Aleutian Islands, Atka mackerel and cephalopods are primary components of the diet year round. Around Kodiak Island, sand lance are an important prey item for Steller sea lions.
- 8. In the North Pacific (eastern Bering Sea, Aleutian Islands, and Gulf of Alaska), the biomass of all species of groundfish generally increased throughout the 1980s and remained relatively stable in the 1990s. Annual harvest levels, however, have increased slightly throughout the 1990s, but are still thought to be generally below 20% of exploitable biomass. Target harvest strategies for many species reduce biomass to 40-60% of equilibrium unfished levels, or to levels thought to be more productive without undue risk of overfishing the spawning stock. However, there is significant variance around point estimates of current stock size as well as historical stock size. Removals by commercial fishers are not evenly distributed in time and space, nor with respect to the distribution of the target species itself. Therefore, rates of removal in specific fished locations (many of which are in Steller sea lion critical habitat) are likely to be considerably higher than the target harvest rate of the species in the management area.
- 9. In the Gulf of Alaska, there has been a dramatic change in the species composition of the nearshore marine community since the 1970s. A nearshore community dominated by shrimp and forage fish in the 1960s and 1970s was replaced by one dominated by cod, flatfish and other groundfish in the 1980s and 1990s. This shift in community composition seems to be driven by long-term environmental regime shifts that have repeatedly occurred over 1000s of years.
- 10. More data are needed to evaluate the impact of killer whales on the population dynamics of the western population of Steller sea lions. Currently, there are inadequate data to estimate the number of

killer whales that occur west of Kodiak Island in the Gulf of Alaska and in the Bering Sea. In addition, to ascertain the impact of predation, information on the frequency at which Steller sea lions are killed by killer whales is needed, as are data on the age and sex composition of the kill. Finally, information is needed on whether killer whale foraging behavior is influenced by the relative availability of different prey items (i.e., functional response in the frequency of occurrence of a particular prey item in the diet). Field studies initiated in FY01 are designed to provide the information needed to address the issue of whether killer whale predation on sea lions is an important component in the current decline.

- 11. More data are needed to evaluate the impact of shark predation on the population dynamics of the western population of Steller sea lions. However, to date, there is no evidence that sharks eat Steller sea lions. The following information regarding sleeper sharks is known: 1) sleeper shark abundance in the Gulf of Alaska has increased over the last 5 years, based on IPHC CPUE data, observer data from long line vessels, and data from the triennial trawl survey by NMFS, 2) the diet of sleeper sharks in Alaska includes fast moving fish species (e.g., salmon, herring) and marine mammals (e.g., harbor seal, unidentified cetacean), and 3) large sleeper sharks can grow up to 25 feet in length and weight between 6000 and 8000 pounds. The following information is needed to ascertain the importance of sleeper shark predation on sea lions to the current decline of sea lions in Alaska: 1) how many sleeper sharks occur in the range of the western population of Steller sea lion, 2) what fraction of the diet of sleeper sharks is made up of Steller sea lions and what is the age and sex composition of sea lions killed by sleeper sharks, and 3) do sleeper sharks primarily feed on marine mammal carrion or do they capture and kill free-ranging animals. Field studies initiated in FY01 are designed to provide the information needed to address the issue of whether sleeper shark predation on sea lions is an important component in causing the current decline.
- 12. Regarding competition between increasing populations of pisciverous fish and Steller sea lions, one participant raised the issue of whether the spiny dogfish could have become an important competitor in the last 30 years. It was noted that spiny dogfish abundance has increased dramatically in the region from Prince William Sound to SE Alaska. Additional information on the composition of the diet (e.g., species and size) of spiny dogfish is needed to address this question.

The following questionnaire was distributed to the workshop participants. The results were as follows:

Yes/No Questions	Yes	No
1. Would you agree with the statement that "nutritional stress is the leading hypothesis regarding the current decline of abundance of the western stock of Steller sea lions?"	10 (42%)	14
2. Would you agree with the statement that "killer whale predation is the leading hypothesis regarding the current decline of abundance of the western stock of Steller sea lions?"	1 (4%)	23
3. Would you agree with the statement that "inadequate recruitment is the leading hypothesis regarding the current decline of abundance of the western stock of Steller sea lions?"	19 (79%)	5
4. Would you agree with the statement that "a regime shift alone could have been responsible for the observed decline in sea lion abundance by over 70%?"	10 (42%)	14
5. Would you agree with the statement that "competition with fisheries is the leading hypothesis regarding the current decline of abundance of the western stock of Steller sea lions?"	4 (17%)	20

Short Answer Question

1. What do you think the western population of sea lions will do over the next 10 years, given no intervention from NMFS or ADFG?

Generally, the answers fell in three categories:

A. The population will continue to decline - 6(25%)

B. The population will level off - 13 (54%)

C. Impossible to predict with available data - 5 (21%)

The following questions were discussed in a plenary session. A summary of answers provided by workshop participants appears below:

1. Are you aware of any marine mammal populations that have declined continuously for over 30 years and by over 80%, where the decline was not primarily driven by anthropogenic effects?

This is a relatively rare phenomenon for marine mammal populations. One recent example is the observed decline of sea otters along the Aleutian Islands in the last 10 years. In addition, some of the archeological records from middens indicate that large scale changes in marine mammal abundance was not uncommon.

2. What is the evidence supporting the hypothesis that nutritional stress is currently occurring?

Data consistent with the nutritional stress hypothesis include: 1) past reports of the observed impact on pinniped survival and reproduction of nutritional stress associated with El Nino events, 2) the existing correlation between differences in the diet of sea lions in subregions of the GOA/BSAI and differences in the population dynamics of sea lions in these same subregions, 3) the observation that as much as 75% of the sea lion mortality associated with the current decline is unexplained, 4) fisheries data that indicate the local abundance of a target species is significantly reduced over spatial and temporal scales important to the foraging success of a Steller sea lion, and 5) recognition that the diet of sea lions in the 1990s was different than it was in the 1970s and that the current diet of sea lions generally has a lower caloric density than it did in the 1970s. Further, the species that comprised much of the diet of sea lions in the 1970s may have been energetically more cost-effective to capture and eat (e.g., shrimp and capelin). It was recognized that 1) nutritional stress could be caused by a lack of forage or a lack of availability to adequate forage and 2) nutritional stress could be caused by environmental factors (e.g., regime shifts) or by human-related factors (e.g., competition with fisheries).

3. What is the evidence supporting the hypothesis that nutritional stress is currently not affecting Steller sea lions in the winter months, and not affecting juveniles?

There are inadequate data at present to evaluate this hypothesis.

4. What is the evidence supporting the hypothesis that sea lions are currently in a "predator pit" that is responsible for the current decline in sea lion abundance?

The term "predator pit" is often misused. It is best used when referring to a low-density prey

equilibrium. The conceptual framework for a low-density prey equilibrium due to top-down forcing requires a complex prey field and one or more predatory species. The predator population or populations are maintained at high levels relative to the density that could be supported by only the prey species said to be in the "pit" by alternate prey species. Under this scenario, the low-density prey species is not driven to extinction by the predator complex because of functional responses in the foraging behavior of the predators, but can not achieve a high-density equilibrium because predation rates increase with increasing density. While this phenomenon is possible regarding the relationship between Steller sea lions in Alaska and various predatory species (e.g., killer whale and sleeper shark), the data are inadequate at this time to evaluate its likelihood.

5. Given the definitions of jeopardy and adverse modification in the ESA, is it reasonable to conclude that the groundfish fishery in the Bering Sea and Gulf of Alaska will either jeopardize the continued existence of sea lions or adversely modify their critical habitat?

To address this question, NMFS will have to establish quantitative or qualitative guidelines on what the following terms mean: 1) reasonable, 2) jeopardize, and 3) to adversely modify. In addition, NMFS will have to develop explicit classification criteria to allow scientists to understand what recovery means for the western population of Steller sea lion.

List of Appendices

Appendix 1. List of participants.

Appendix 2. Agenda.

Appendix 3. Abstracts from workshop presentations.

Appendix 1 Is It Food? II Workshop

May 30-31, 2001 List of Participants

Paul Anderson NOAA/AFSC 301 Research Court Kodiak, AK 99615-7400 Phone: (907) 481-1723; Fax: (907) 487-1703	Russel Andrews, Ph.D. University of British Columbia Vancouver, B.C. V6T 1Z4
Shannon Atkinson, Ph.D. ASLC/UAF P.O. Box 863 Seward, AK 99664 Phone: (907) 224-6346; Fax: (907) 224-6360	John Calder NOAA 1315 East-West Hwy Silver Spring, MD 20910-3282 Phone: (301) 713-2518 x114; Fax: (301) 713-1967
Don Calkins ASLC P.O. Box 863 Seward, AK 99516-2904 Phone: (907) 224-6325	Shane Capron NOAA/NMFS 709 W. 9th St. Juneau, AK 99802-1668 Phone: 907-586-7312; Fax: 907-586-7012
Michael Castellini, Ph.D. UAF/Institute of Marine Science P.O. Box 757220 Fairbanks, AK 99775-7220 Phone: (907) 474-6825; Fax: (907) 474-7204	Randall Davis, Ph.D. Texas A&M Univ. 5006 Avenue U Galveston, TX 77553 Phone: (409) 740-4712; Fax: (409) 740-5002
Douglas DeMaster NOAA/NMFS 7600 Sandpoint Wy NE Seattle, WA 98115-6349 Phone: (206) 526-4047; Fax: 206) 526-6615	Robert Foy UAF/SFOS 118 Trident Way Kodiak, AK 99614-7401 Phone: (907) 486-1514
Lowell Fritz NOAA/NMFS 7600 Sandpoint Wy NE Bldg 4 Seattle, WA 98115-6349 Phone: 206-526-4246; Fax: 206-526-6723	Tom Gelatt ADF&G/Division of Wildlfe Conservation 525 W. 67th Ave. Anchorage, Ak 99518-1599 Phone: (907) 267-2188; Fax: (907) 267-2859
Ronald Heintz NOAA/NMFS/ABL 11305 Glacier Hwy Juneau, AK 99801-8626 Phone: (907) 789-6058	Leland Hulbert NOAA/NMFS 11305 Glacier Hwy Juneau, AK 99801-8626 Phone: (907) 789-6056; Fax: (907) 789-6608
Thomas Loughlin, Ph.D. NOAA/NMFS 7600 Sandpoint Wy NE Seattle, WA 98115-6349 Phone: (206) 526-4040	Craig Matkin North Gulf Oceanic Society P.O. Box 15244 Homer, AK 99603 Phone: (907) 235-6590

Ken Pitcher ADF&G/Division of Wildlife Conservation 333 Raspberry Road Anchorage, AK 99518-1599 Phone: (907) 267-2363; Fax: (907) 267-2859	Lorrie Rea, Ph.D. ADF&G/Division of Wildlife Conservation 333 Raspberry Road Anchorage, AK 99518-1599 Phone: (907) 267-2291; Fax: (907) 267-2859
Michael Rehberg ADF&G 333 Raspberry Road Anchorage, AK 99518-1599	David Rosenm Ph.D. UBC/Marine Mammal Research Unit Vancouver, B.C. V6T 1Z4 Phone: (604) 822-8184; Fax: (604) 822-8180
Elizabeth Sinclair NOAA/NMML 7600 Sand Point Way, N.E. Seattle, Washington 98115 Phone: (206) 526-6466	Robert Small ADF&G P.O. Box 25526 Juneau, Alaska 99801-5526 Phone: (907) 465-6167; Fax: (907) 465-6142
J. Ward Testa ADF&G 333 Raspberry Road Anchorage, AK 99518-1599 Phone: (907) 267-2209	Richard Thorne Prince William Sound Science Ctr. P.O. Box 705 Cordova, AK 99574 Phone: (907) 424-5800
Kate Wynne, Ph.D. UAF 118 Trident Way #226 Kodiak, AK 99615-7104 Phone: (907) 486-1500	

ALASKA SEALIFE CENTER

Bear Mountain Conference Room, 301 Railway Avenue, Seward Alaska 99664 presents

"IS IT FOOD? II" Workshop May 30-31, 2001 Agenda

May 30

8:00 a.m.	Continental Breakfast
8:30 a.m.	Introductions
8:45 a.m.	Tom Loughlin (NMML): Accounting for losses above replacement
9:15 a.m.	Ken Pitcher (ADF&G): Food limitation: Clouding the issue
9:45 a.m.	Russ Andrews (UBC): At sea foraging energetics
10:15 a.m.	Break
10:30 a.m.	Randy Davis (TA&M): Maternal attendance, energy transfer to pups, and pup growth
	on rookeries
11:00 a.m.	Lorrie Rea (ADF&G): Condition indices of Steller sea lions
11:30 p.m.	Michael Rehberg (ADF&G): Telemetry studies
12:30 p.m.	Working Lunch - Catered

12:00 p.m. 1:00 p.m. 1:30 p.m. 2:30 p.m.	Mike Castellini (UAF): Captive studies in Alaska David Rosen (UBC): Captive studies in Vancouver Kate Wynne (UA): Gulf Apex Predator Study Break
2:00 p.m.	Beth Sinclair (NMML): Recent scat analyses
2:45 p.m.	Lowell Fritz (AFSC/REFM): Status of groundfish stock in the North Pacific and Bering Bea
3:15 p.m.	Paul Anderson (AFSC/Kodiak): Status of fish stocks around Kodiak
6:30 p.m.	Catered Dinner Off-Site
	<u>May 31</u>
8:00 a.m.	Continental Breakfast and Welcome
8:15 a.m.	Craig Matkin (NGOS): Killer whale populations in the Gulf of Alaska
8:45 a.m.	Lee Hulbert (NMFS/ABL): Shark predation on marine mammals 8:15 a.m. Round Robin Discussion on the May 30 talks
9:15 a.m.	Round Robin Discussion on the May 30 Talks
10:15 a.m.	Break
10:30 a.m.	Discussion of Importance of Nutritional Stress and Predation on the Status of the Western Stock of Steller Sea Lions (Chair: Doug DeMaster)
Noon	Catered Lunch/Facility Tours
12:30 p.m.	Summary Statement of Consensus (to be presented at June NPFMC meeting)
1:30 p.m.	Where Do We Go From Here?
3:00 p.m.	Workshop ends

Appendix 3. Extended abstracts from workshop presentations.

Note: This is a partial abstract compilation - all of the presentations will be summarized in the proceedings being published by Alaska Sea Grant.

Status of Demersal and Epi-benthic Species in the Kodiak Island and Gulf of Alaska Region

Paul J. Anderson¹ J. E. Blackburn²

¹Kodiak Fisheries Research Center National Marine Fisheries Service 301 Research Court Kodiak, Alaska 99615 tel (907)481-1723 fax (907)481-1701 paul.j.anderson@noaa.gov

²Alaska Department of Fish and Game Kodiak, Alaska 99615

May 2001

The Gulf of Alaska (GOA) marine ecosystem undergoes extreme changes in trophic structure which have become known as regime shifts (Anderson and Piatt, 1999, Anderson, 2000, Piatt and Anderson, 1996) The extent and degree of these changes are documented and will become important in determining future strategies for management of the marine ecosystem. Analysis of over 50 years of small-mesh trawl data is a first step in gaining an appreciation for the rapid and abrupt changes that have occurred in the marine species complex in the last five decades. The data from small-mesh shrimp trawl cruises provides an opportunity to review changes in the composition of forage species and other epi-benthic fish and invertebrates that occurred through time in the GOA from the early 1950s to the present. Yet, the state of scientific knowledge is inadequate to explain the mechanisms at work that drive changes in this system. The following report is a compendium of what the data tells us is important in the demersal and epi-benthic portion of the GOA marine ecosystem and offers some possible mechanisms that control trophic structure. Unfortunately the data needed to fully understand the dynamics of this abundant system has not been collected consistently in the past and our hope is that we can make a compelling case for collecting this information in the future.

Historically, there is evidence of major abundance changes in the fish/crustacean community in the western GOA. Fluctuation in Pacific cod availability on a generational scale was reported for coastal Aleutian native communities. Similarly, landings from the near-shore Shumagin Islands cod fishery showed definite periods of high and low catches with the fishery peaking in late 1870s. King crab commercial catches in the GOA show two major peaks of landings, one in the mid 1960s and another in 1978-1980. All of the area was closed to fishing in response to low population levels in 1983 and has yet to reopen. By the 1960s there was evidence of high Pandalid shrimp abundance in these same areas. One of the highest densities of Pandalid shrimp known in the world was to spur the development of a major shrimp fishery. By the late 1970s the shrimp population density had declined radically and was accompanied by a closure of the shrimp fishery and the return of cod to inshore areas. Finally, catches of almost all salmon stocks of Alaskan origin suddenly increased to unprecedented levels in the 1980's. These changes, witnessed over the last century, imply dynamic fluctuations in abundance of commercially fished species. Managers, fisherman, and processors should be aware of these dynamics and their impacts on the ecology and economy. Indicator Species:

In a complex natural ecosystem, it is difficult (if not impossible) to measure the complete set of factors that provides a unified picture of the state of the ecosystem. Indicator species may provide a good sense of the ecosystem's status in some global way. Indicator species can either be indicative of some environmental condition or correlated with concurrent changes in other species (Thorson, 1957; Dufrene and Legendre, 1997). Pandalid shrimp occupy a central position in the trophic structure of the northeast Pacific where they constitute the main prey of many species and in turn prey on the zooplankton community. They also occupy all depths of the water column from benthos to near surface. Therefore shrimp are good candidates for indicators of possible environmental change because they integrate changes that occur throughout the water column.

Absence of multiple species of different orders with similar tolerance levels that were present previously at the same site is more indicative of environmental effect than absence of a single species. It is clearly necessary to know which species should be found at the site or in the system under prevailing environmental regimes. In the case of the trawl survey data we analyze species group abundance against environmental variables. Canonical correlation analysis was used to measure the association between abundance of three major species groups (pandalid shrimps, gadids including walleye pollock (*Theragra chalcogramma*) and Pacific cod (*Gadus macrocephalus*), and pleuronectid flatfish) and environmental parameters. These groups together represented more than 90% of catch weights from shrimp surveys. The relation of shrimp and environmental parameters was investigated with correlation using Pearson Product Moment Correlation and Spearman's Rank Correlation taking into account any ties.

The abundance of the three species groups and the set of environment variables were correlated at 95%, as indicated by the first canonical variate. The correlation was slightly improved (96%) when the species were lagged: shrimp and flatfish at one year, gadids at three years. In the canonical correlation, gadids were almost as important as shrimp, perhaps yielding this species as another indicator. The correlations for shrimp abundance relative to water column temperature are significantly different (P<0.001) from zero, indicating that there is a trend between the variables. The correlation of shrimp CPUE and water column temperature anomaly (GAK250) was \$ = -0.71). The correlation between proportion of shrimp in survey catches and water column temperature anomaly was \$ = -0.72).

The results reported in this study suggest that shrimp react very quickly to warming climate trends and are a useful indicator of impending changes in the ecosystem that require longer time periods to fully manifest themselves. When the climate reverts to colder temperatures the low shrimp population may not react as quickly due to its low reproductive potential. In the case of near extinctions such as *P. goniurus* rebuilding may take a

considerable amount of time. The present high biomass of fish in the GOA probably precludes rapid re-building of shrimp stocks.

It is noteworthy that the GOA and the northeast Pacific are predicted to soon revert to the cold regime. Pandalid shrimp appear to be useful as an indicators of a cold to warm regime changes, so it is unlikely that shrimp population changes will reflect this latest cooling trend for some time. However, there is some evidence that Pacific cod have the ability to react quickly to near-shore cooling of the water column. Recent data analysis suggest that cod are redistributing away from near-shore bay habitat in the Kodiak region. Cod are probably good indicators when reverting to cold from warm regime conditions.

In addition to the main indicator species of cod and shrimp, several non-commercial species of different orders were apparently impacted by the environmental changes. Among non-commercial species the most significant change since the early 1970s has been the decline of *Lumpenella longirostris*, long-snout prickleback. Catches of pricklebacks averaged 2 to 3 kg/km in the early 1970s. However since 1981 catches have remained at relative low levels averaging substantially less than 1 kg/km. All pricklebacks combined averaged 0.9 kg/km in the period 1972-99, and have remained stable at 0.3 kg/km in the 1994-99 period. *Eumicrotremus orbis*, spiny lumpsucker has completely disappeared from catches in recent years. In the early part of the 1970s this fish was locally abundant in some of the bays along the Alaska peninsula . These species while relatively low in total biomass during the early 1970s are now almost extinct in the near-shore region of the GOA. Highest catch rates of spiny lumpsucker occurred in 1963 and 64, no records of this species in this trawl series has been recorded since 1988. Clearly there is some concern that this species may now be functionally extinct in our survey area.

References

Anderson, P. J., and J. F. Piatt. 1999. Community reorganization in the Gulf of Alaska following ocean climate regime shift. *Mar. Ecol. Prog. Ser.*, **189**:117-123.

Anderson, P. J. 2000. Pandalid Shrimp as Indicators of Ecosystem Regime Shift. J. Northw. Atl. Sci., 27:1-10.

Dufrêne, M. and P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345-366.

Francis, R.C., S. R. Hare, A. B. Hollowed, and W. S. Wooster. 1998. Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. *Fish. Oceano.*, 7: 1-21.

Thorson, G. 1957. Bottom communities. In Hedgepeth, J. W. (ed.), *Treatise on Marine Ecology and Paleoecology*, *1 Ecology*, pp. 461-534. Geological Society of America, New York.

Piatt, J. F. and P. Anderson. 1996. p.720-737 *In* Rice, S. D., Spies, R. B., and Wolfe, D. A., and B.A. Wright (Eds.). 1996. *Exxon Valdez* Oil Spill Symposium Proceedings. American Fisheries Symposium No.18.

Foraging behavior and energetics of adult female Steller sea lions. Russel D. Andrews, University of British Columbia Draft abstract of presentation at the "Is it food II?" workshop, May 30, 2001.

(Research described below has been a collaborative effort, including the following researchers, but they have not yet had a chance to review this draft summary: D.G. Calkins², R.W. Davis³, B.L. Norcross⁴, K. Peijnenberg¹, and A.W. Trites¹

1: University of British Columbia and the North Pacific Universities Marine Mammal Research Consortium; 2: Alaska Dept. of Fish and Game; 3: Texas A & M University. Critical support was also received from researchers from the National Marine Mammal Laboratory, NOAA, NMFS, and the Universities of Alaska and California at Santa Cruz.)

The current decline in the population of Steller sea lions (SSL) in western Alaska may be attributable to food shortages in critical areas. Unfortunately, the feeding ecology of SSLs is poorly understood. Population modelling suggests that a decline in juvenile survival is a likely explanation for the recent SSL population decline. Such an increase in juvenile mortality could be due to the inability of mothers to adequately nourish their pups during lactation, or could be due to weaned juveniles not being able to successfully forage on their own. Other pinniped species have been observed to respond to apparent nutritional stress by increasing female foraging trip durations during lactation and/or increasing energy expenditure during foraging.

Studying the foraging behavior and energetics of pups and lactating females should reveal whether SSLs are food stressed in the areas where their numbers continue to decline. Predictions from such a nutritional stress hypothesis include: lactating female SSLs will increase their foraging effort in the area of population decline, and this may be reflected in increased energy expenditure or a change in diving strategy, such as less time spent resting; foraging trip durations will be longer in the area of decline; and sea lions in the area of decline will travel for a longer period of time and/or cover greater distance before successfully finding and ingesting prey.

Captive juvenile SSLs at the Vancouver Aquarium were used to develop and validate the use of stomach temperature monitoring in order to determine the timing and quantity of prey ingestion (indicated by precipitous drops in stomach temperature). Estimation of the quantity of ingested prey was complicated by many factors (e.g body temperature and stomach heat flux changes, movement of the STT within the stomach, diverse prey size and shape, potentially concomitant water ingestion, and insulation of the STT by previously swallowed prey) and suffered a large margin of error. Determination of the timing of ingestion, however, was much more accurate, at least for the first few ingestion events in a bout of feeding. Initial deployments on wild SSLs demonstrated that prey were consumed on all foraging trips. However, long periods of time often elapsed and large distances were covered between successful foraging events. The preliminary work demonstrated that knowing where sea lions traveled and dove does not necessarily allow one to distinguish productive feeding areas from unproductive ones.

In June 1997, we conducted a test of the hypothesis that the current SSL decline is due to nutritional stress. SSLs were studied at two of the central Aleutian Islands, Seguam and Yunaska, and at the Forrester Is. rookery complex in southeast Alaska. In the central Aleutians, 5 lactating SSL were captured and instrumented as described above. Four of these were recaptured, but one sea lion had

lost her instrument package, resulting in the recovery of three foraging records from this area. Near Forrester Is., 10 lactating SSL were captured and instrumented. Five of these were recaptured and all resulted in successful data recordings. During the research cruise near Forrester Is., real-time satellite tracking data on the at-sea locations of sea lions were relayed to a vessel conducting a fish assessment around Forrester Is., and a similar fish assessment occurred around Seguam Is. that summer.

Although a great deal of variability in foraging behavior was observed (both at the individual and group level), some basic differences between SSLs from different regions can be identified (Table 1). Trip durations and the percent time spent at sea were much shorter for SSLs from Seguam Is. compared to those from the Forrester Is. rookery. Dives at Seguam Is. were shorter and shallower, but more frequent than those at Forrester Is. The short trips at Seguam Is. generally consisted of a single bout of uninterrupted dive cycles while at Forrester Is. the trips were broken into dive bouts of varying length separated by periods spent traveling or resting at the surface. However, on average, the percent of a trip spent submerged was no different. Another measure of foraging effort, the vertical travel distance per unit time at sea, was about 1.5 times greater for SSLs at Forrester Is. The at-sea field metabolic rates, however, were similar for both groups. Data on the time and distance elapsed from departure on a foraging trip until commencement of "foraging dives" shows that at both rookeries SSLs appear to begin searching for prey very soon after entering the water (Table 1). However, the mean time from departure until the first prey ingestion event identified on the stomach temperature record was about 5 times longer for SSLs at Forrester Is. compared to those at Seguam Is. The rough estimation of prey intake rate at Seguam Is. was about 2 times greater than at Forrester Is. Therefore, it would appear that in 1997, adult female SSLs at Seguam Is. found suitable prey much quicker, and once they found it were able to ingest it at a much higher rate than SSLs at Forrester Is.

The higher prey capture rate of SSLs at Seguam apparently allows these sea lions to spend shorter periods away from their pups and thereby spend a greater proportion of total time suckling their pups. This may account for the nearly two times greater pup growth rates measured in the central Aleutians compared to Forrester Is. (Brandon and Davis, pers. comm.). The fish abundance assessments conducted at these two rookeries concurrent with the SSL monitoring may provide some insight into the differences in prey capture rate. Catch per unit effort for the fishing vessel at Seguam and another central Aleutians rookery was much higher than that at Forrester Is.

The following factors restrict our ability to make inferences concerning either the past or current SSL population decline from this limited comparison of the foraging ecology of SSLs from the declining and stable populations: extremely small sample sizes, the possibility of adverse effects of the instruments on foraging behavior and energetics, the difference between the current rate of decline compared to the larger rate from 1979 to 1990, density dependent effects on individual foraging success (reduced population size implies reduced intra-specific competition) and the potential interannual variations in many environmental parameters (e.g. the 1997 El Niño and the anomalous conditions in the Bering Sea that year). However, the direct comparison between two similarly handled groups should allow some general conclusions about SSL foraging behavior to be drawn. From this study it appears that a directly measured difference in prey availability may account for the observed difference in prey capture rate. This greater capture rate by SSLs at Seguam Is. may partially explain the greater pup growth rates observed there compared to Forrester Is. The lack of a single highly abundant prey species and the larger SSL population at SEA may result in longer search times for SEA SSL. An important value of this and the related studies to date is that we were able to demonstrate a correlation between prey

availability, foraging success, and pup growth, a parameter that is potentially indicative of future survival and therefore adult female reproductive success.

	SAF 1994	SAF 1997	SAF 1997
Instrument Type*:	STT/DVR/S	STT/DVR/S	STT/DVR/S
	Forrester Is.	Forrester Is.	Seguam Is.
Number of Animals	4	4	3
Area	SE Alaska	SE Alaska	Central
			Aleutians
Trip Duration			
Mean duration (hr)	38.6	39.1	7.5
Percent time at sea	42.0%	48.4%	22.1%
Dives †			
Mean duration (min)	2.51	2.22	1.34
Mean % of dive cycle sub. ‡	50.4%	51.5%	45.7%
Mean depth (m)	48.4	44.5	14.8
Maximum depth (m)	217	310	140
Foraging effort			
Dive frequency (dives/hr)	8.4	10.7	23.5
Time submerged (hrs/day) ¥	2.62	3.73	2.15
% of total attendance cycle submerged	11.2%	15.6%	10.2%
% of at sea time submerged	32.8%	39.4%	37.3%
Diving Efficiency	0.37	0.32	0.38
Foraging Efficiency	0.20	0.18	0.20
VTD per time at sea (m/hr)	802	938	523
Time to initial dives and ingestion events			
Time (h) from trip departure to 1st dive >4m	0.03	0.07	0.11
Time (h) from trip departure to 1st dive >10m	0.24	0.13	0.44
Time (h) from departure to 1st ingestion event	5.1	4.7	0.9

STT/DVR/S – Stomach Temperature Transmitter plus data logger for depth, velocity, and water temp.recording plus satellite transmitter for locations

Diving Efficiency = proportion of a dive spent at Bottom

Foraging Efficiency = proportion of a dive cycle spent at Bottom

VTD: Vertical Travel Distance per unit time at sea (2X the sum of the depth of all dives divided by the foraging trip duration)

^{†:} All dive records were analyzed with minimum depth of dive to be analyzed set at 4m

^{‡:} dive cycle = dive and the subsequent surface interval; sub.: submerged

^{¥:} Time sub. (hrs/day) is the sum of all the dive durations in a foraging trip divided by the total time of the attendance cycle (=a foraging trip and the subsequent on-shore visit)

Title: Captive studies with Steller sea lions at the Alaska SeaLife Center

Dr. Michael Castellini Institute of Marine Science Univ of Alaska, Fairbanks 99775

mikec@ims.uaf.edu

Phone: 907 474 6825 FAX: 907 474 7204 Captive studies on Steller sea lions at the Alaska SeaLife Center were initiated in 1998 and consisted of multiple, simultaneous studies on a range of topics that dealt with both nutrition and non-food related project areas. Most of these were funded to outside (non –ASLC) scientists. Work not directly associated with food and nutrition included metal chemistry, immune function, organochlorine chemistry, reproductive chemistry and dive instrumentation development. There were also a series of projects that were directly relevant to the "Is It Food" issue. These included studies on fasting biochemistry, body condition and optimal foraging theory. A large, multi-year feeding regime trial designed by the ASLC was also initiated and continues at the present time.

FASTING BIOLOGY: The fasting biochemistry study was run by Dr. Lorrie Rea through the University of Central Florida. She examined the biochemical and physiological reactions in sea lions to medium length fasting periods (about 10-14 days). Since seasonal fasting is a normal component of the sea lion annual cycle, Dr. Rea was interested in examining how sea lions reacted to fasting during the time of year when they should be adapted to this behavior (breeding season), vs fasting during the time of year when they would ordinarily be feeding. This work was directly related to the issue of how sea lions would react to limited food intake during winter in the field. These experiments determined that sea lions are able to enter a "fasting adapted" metabolic state all times of the year, but that the ability to maintain this conservative state may be limited during the non-breeding season. Furthermore, smaller animals may be limited in their fasting ability even within the breeding season. She concluded that most sea lions could easily adapt to reduced food sources during summer months, but may be more severely impacted by low food availability during the rest of the year.

BODY CONDITION: The development of photogrammetric methods for determining body mass and condition was a project run by Dr. Markus Horning from Texas A&M University. Along with MS student Jason Waite, they were able to develop methods to use 3-D digital photographs to determine the body volume and mass of sea lions. This work forms the basis of continued work by Dr. Horning to develop remote, visual body condition monitoring methods for sea lions. In addition, the Horning laboratory worked on the development of an attached recording device that could monitor the bio-impedance of a free-swimming sea lion in order to track body condition. While the device recorded valid impedance data, it was not compatible with long term deployment on the animals due to tissue reactions to the electrodes.

OPTIMAL FORAGING THEORY: This project, also by Dr. Horning at Texas A&M, examined how sea lions would balance time spent underwater with the quantity of food presented to them through underwater feeding tubes. This project was a primary component of the PhD work for Leslie Cornick and will be completed in the summer of 2001. This research established an experimental relationship between simulated prey density and dive behavior, an important verification of foraging theory predictions. One of the primary goals in the work this summer is to show if an increase of the cost of swimming has similar effects to a decrease in prey accessibility. If this can be shown, then research teams can monitor the response of free-ranging animals to experimental changes in cost of swimming, and use the response of these free-ranging animals to this manipulation to predict their response to changes in a reduction in prey accessibility. This will be a very important element in a comprehensive, energetics-based model.

FEEDING REGIME STUDY: The largest study relevant to Food issues is the ongoing feeding regime program. This study was initiated to test the hypothesis that different types of prey would impact the body condition and health of Steller sea lions. The conceptual design of the study is to test the sea lions on three different prey regimes representing diets consumed by sea lions before the decline began (1970's diet), during the period of significant decline (1980's) and a diet representative of southeast Alaska, where the sea lion population is stable.

There were several design criteria that were essential to a robust interpretation of the feeding study:

First, the animals were to stay on any particular diet long enough to eliminate behavioral or short term responses to dietary shifting.

Second, each sea lion would act as its own control.

Third, the impact of seasonal changes in metabolism needed to be quantified.

Three different periods in the annual cycles of sea lions were defined:

- A. The reproductive period (February-May)
- B. The post reproductive/molting period (July-November)
- C. The winter fattening period (November-March)

Given these caveats, a three year, repeated measures-crossover experimental design was created. In this design, each sea lion consumes each diet (A,B,C) during each of the three seasons. For example, when the experiment is finished, the female "Kiska" will have consumed diet 1 during the spring, summer and fall-winter periods, and likewise with diets 2 and 3. This will provide a seasonal correction for any particular diet. In the final matrix, diets will be able to be compared across season for each animal.

The study is scheduled to be completed in the spring of 2002, therefore, not all seasons can be compared with each diet. However, several patterns appear to be emerging:

First, under some seasonal conditions, the animals appear to defend body mass regardless of diet. They seem to do so by adjusting the volume of food consumed.

Second, the male sea lion and one of the females, hold body composition (percent lean or fat tissue) relatively stable regardless of season or diet. The second female shows more flexibility in body composition.

Third, the sea lions have maintained excellent health and blood chemistry, regardless of diet.

These preliminary results suggest that the animals have a tremendous ability to compensate for dietary shifts through behavior (consuming more or less), physiology (defense of body mass and perhaps, body condition) and biochemistry (maintenance of metabolic status). Studies designed to identify and quantify the regulation of the metabolic pathways associated with this apparent adaptive ability are currently being reviewed.

The four projects on captive sea lions at the ASLC have shown great progress in how laboratory controlled experiments can be valuable for field studies. They have demonstrated the biochemical background to fasting, developed the core concepts for remote monitoring of body condition, tested models for assessing foraging theory and continue with long-term feeding studies.

Female Attendance, Lactation and Pup Growth in Steller Sea Lions

Davis, R.W.¹, Adams, T.A.², Brandon, E.A.¹, Calkins, D.G.³ and Loughlin, T.R.⁴

Corresponding author: R. Davis

Ph 409-740-4712 Fax 409-740-5002

Email: davisr@tamug.tamu.edu

¹ Texas A&M University, 5007 Avenue U, Galveston, TX 77551

² NMFS, Office of Protected Resources, Marine Mammal Conservation Division,1315 East-West Highway, 13th Floor, Silver Spring, MD 20910-3226

³ Alaska SeaLife Center, P.O. Box 1329, Seward, AK 99664

⁴ National Marine Mammal Laboratory, 7600 Sand Point Way N.E., Seattle, WA 98115

A number of possible causes for the Steller sea lion population decline have been proposed, including redistribution, pollution, predation, subsistence and commercial harvesting, disease, natural fluctuations, environmental changes and commercial fishing. A change in the overall distribution, abundance or nutritional quality of key prey species was suspected to be the most significant factor when this research was conducted (1990-97). If prey (especially high-caloric prey) in the area of Steller sea lion population decline has become less abundant or diverse, this may negatively affect female provisioning of pups. Possible effects include: 1) increased female foraging trip duration, 2) longer atsea/onshore attendance cycle, 3) reduced milk production and nutritional quality, 4) slower pup growth, and 5) poor pup body condition. Poor nutrition can delay pup maturation and increase mortality. Female foraging success is therefore critically important for pup development and survival during the first year of life. Our null hypotheses for lactating Steller sea lions and their pups during the first six weeks post-partum were: 1) there is no difference in foraging trip duration or time on shore between populations, 2) there is no difference in the nutritional composition of milk or pup milk intake rates between populations, and 3) there is no difference in the rate of pup growth or pup body condition between populations. Our study sites in Alaska were Lowrie Island (located in the area of stable population and Marmot, Chirikof, Seguam and Yunaska Islands (located in the area of declining population). Fish Island lies between the areas of declining and stable populations.

Female attendance

Rationale. Lactating Steller sea lions alternate periods onshore feeding their pups with foraging trips to sea. The average length of a foraging trip is influenced by prey density and distribution and the fasting ability of the pup. Steller sea lion pups do not have large lipid reserves, so their ability to fast is very limited, especially if they are to grow. As a result, female foraging trips are generally short and limited to the area around the rookery. If prey in the area of Steller sea lion population decline has become less abundant or diverse, this may increase both foraging trip duration and the length of the at-sea/onshore attendance cycle.

Methods. VHF radio transmitters were glued to the hair in the dorsal axillary area of lactating female sea lions. Radio signals from the transmitters were recorded with an automated data logger set to scan each frequency for 20 seconds on a duty cycle of 15 minutes. The presence of a signal indicated that the female was on land or near the water's surface, while the lack of a signal indicated that the female was either at sea or a rock or other obstacle blocked the signal. Antennas were positioned to minimize the latter possibility. Transmitter range was estimated in the field to be 2-4 miles. When possible, absence or presence of the females on the rookery was verified by direct observation.

Summary of results for female attendance:

- 1) There was no significant difference among rookeries in the time spent on shore or in the total length of the onshore/at sea cycle, but there was a significant difference among rookeries in time at sea and in the percentage of time at sea.
- 2) Trips to sea ranged in length from an average of 7.1 25.6 hr.
- 3) Time onshore ranged from an average of 20.7 25.2 hr.
- 4) Females spent from 24 51% and 49 76% of their time at sea and on the rookeries, respectively.
- 5) Females in the Aleutian Islands made significantly shorter trips to sea than females on Lowrie Island.

- 6) Females on both the Aleutian Islands and Chirikof Island spent a significantly smaller percentage of time at sea than did females on Lowrie Island.
- 7) Females on the Aleutian Islands also spent a significantly smaller percentage of time at sea than did females on Fish Island.
- 8) The pattern of arrivals and departures showed no clear pattern on Lowrie Island.
- 9) Females on Chirikof Island and the Aleutian Islands tended to arrive in the morning and depart in the evening.

Milk composition and consumption

Rationale. The energy available to the pup during lactation is a function of both milk composition and milk yield (volume). If a lactating female is unable to consume sufficient prey to meet the demands of milk synthesis, body fat and protein reserves will be mobilized to satisfy the nutritional requirements. Female Steller sea lions do not accumulate large adipose tissue reserves prior to parturition, so the ability of a nutritionally stressed female to synthesize milk from

body reserves is limited. As a result, access to adequate prey (i.e., energy) during lactation is crucial for milk production and pup growth.

Methods. Milk samples were collected from anesthetized females and analyzed for water, protein and lipid content. Milk energy content was calculated from the lipid and protein content. Pups were captured, weighed, bled and injected with deuterium oxide. Ten to 14 days later, they were recaptured, bled and re-injected with deuterium oxide. Total water intake was calculated from the decline in the blood concentration of deuterium oxide. Milk and energy intake were calculated from water intake, the water and energy content of milk, and metabolic water production.

Summary of results for milk composition and consumption:

- 1) The proximate composition of milk did not differ significantly among rookeries. Milk averaged 62% water, 22% lipid, 9% protein, and 2% ash. Energy content averaged 10.2 kJ·ml⁻¹.
- 2) There were no significant differences among rookeries for water (64 ml kg⁻¹ d⁻¹), milk (72 ml kg⁻¹ d⁻¹), or energy (741 kJ kg⁻¹ d⁻¹) intake rates.
- 3) Water, milk, and energy intake rates did not differ between male and female pups when these rates were expressed on a body weight basis.
- 4) The average predicted maintenance requirement for milk energy was 390 kJ kg⁻¹ d⁻¹.

Neonatal growth

Rationale: Sea lion pups depend completely on milk for neonatal growth. Studies of other otariid species have shown that if a pup does not obtain enough milk from its mother, it will exhibit poor body condition (i.e., reduced lean mass and total lipid mass for a given age) and a reduced growth rate. This may have lifelong consequences because neonatal growth is an important factor in determining adult size and survival.

Methods: Body mass (BM), standard length (SL) and body composition were measured for pups 1-5 days old. Water labeled with a stable isotope of hydrogen (deuterium) was used to estimate total body water, lean mass and total body lipid. Pups were recaptured at two- to three-week intervals over a six-week period, weighed and measured. Isotope-ratio mass spectrometry was used to determine serum deuterium concentration and estimate total body water (TBW). Lean body mass (LBM) was estimated from TBW. Total body lipid (TBL) was calculated as the difference between BM and LBM.

Summary of results for pup growth and body condition:

1) Average BM at birth did not differ by rookery. However, male pups were significantly larger (22.4 kg) than female (18.7 kg) pups at birth.

- 2) There was no significant difference by rookery or sex in total body water (TBW), lean body mass (LBM) or total body lipid (TBL) of newborn pups. Average %TBW was 72.1% of BM, resulting in a %LBM of 96.6% and a %TBL of 3.4% of BM.
- 3) Male and female pups on the same rookery grew at the same rate during the first six weeks postpartum.
- 4) BM increased at a faster rate for pups on the Aleutian Islands and Chirikof Island.

Conclusions

In comparing the areas of stable and declining populations, we observed no differences in: 1) milk composition, 2) milk consumption, and 3) pup body mass and body composition at birth. Females in the area of population decline made shorter foraging trips and spent a smaller percentage of the attendance cycle at sea. Pups in the area of population decline grew faster. Our results show no evidence of nutritional stress in lactating females and their pups in the area of population decline during the first six weeks postpartum. However, lactation in this species may last 12 months or longer, and milk intake increases with pup age and mass. Without data on female attendance, milk production and pup growth throughout lactation, we can not say whether food availability during the entire pre-weaning period is a factor in the population decline.

Pacific sleeper shark predation on Steller sea lions

¹ Leland Hulbert, Michael Sigler, and Chris Lunsford National Marine Fisheries Service, Auke Bay Laboratory 11305 Glacier Highway, Juneau, Alaska 99801 ¹Corresponding author; Lee.Hulbert@noaa.gov; 907-789-6056 Steller sea lion (*Eumetopias jubaus*) abundance has declined since at least 1965 in Alaska from Prince William Sound westward (Calkins et al. 1999, Frost et al. 1994, Frost et al. 1999). The extent of this decline led the National Marine Fisheries Service (NMFS) to list the Steller sea lion as threatened range_wide under the Endangered Species Act (ESA) in April 1990. The decline has continued for the western stock in Alaska, which was declared endangered in 1997. The eastern stock remains listed as threatened.

The cause of the sea lion decline is unknown. Several hypotheses have been proposed including fisheries competition, environmental change, predation, anthropogenic effects of disturbance/intentional mortality/harvests, disease, and pollution. One or more of these factors may have caused the decline. The purpose of our study is to determine whether sleeper sharks prey on Steller sea lions and if they do, estimate the predation rate.

Pacific sleeper sharks (*Somniosus pacificus*) and its Atlantic congener, the Greenland sleeper shark (*Somniosus microcephalus*) consume marine mammals. A whole seal was found in a Greenland shark stomach (Bigelow and Schroeder 1948). The genital zone and complete fetus of a female southern right whale dolphin (*Lissodelphis peronii*) was found in the stomach of a Pacific sleeper shark caught in Chilean waters (Crovetto et al. 1992). Portions of at least three harbor seals were found in the stomach of a 3.45 m female sleeper shark caught in Kachemak Bay, Alaska (Bright 1959). Seven of thirty-three sleeper shark stomachs collected in Prince William Sound in August 2000 contained cetacean tissue, and one contained fresh harbor seal tissue (Hulbert 2000 unpublished data). Other biologists working in Alaska waters have reported identifying harbor seal tissue in stomach contents of sleeper sharks (William Bechtol, ADF&G, Homer, AK 2001 pers. comm, Jim Taggart, USGS Biological resources division, Juneau AK 2000 pers. comm, and Craig Matkin, North Gulf Oceanic Society, Homer, AK 2000 pers. comm). Yang and Page (1998) found no marine mammal tissue in 13 sleeper sharks collected near Kodiak Island, Alaska. It is unknown whether sleeper sharks actively prey on live, free swimming marine mammals, or are scavengers of marine mammal carrion.

Predation of juvenile Steller sea lions is a difficult event to measure, as the potential predators are not commercial species that are routinely observed or sampled, predation events may be opportunistic, dispersed offshore, difficult to observe, and affected by prey limitation (few prey for sea lions probably increases foraging time and exposure to predation). Evidence of shark predation on Steller sea lions would identify a source of Steller sea lion mortality.

The purpose of our study is to determine whether sleeper sharks prey on Steller sea lions and if they do, estimate the predation rate. We will accomplish our objectives with a three phase approach. The objective of Phase I is to determine if sleeper sharks *prey on live* Steller sea lions. Phase II will be to estimate the proportion of sleeper sharks preying on Steller sea lions, and Phase III will be a Pacific sleeper shark stock assessment program.

Phase I: Sleeper shark diet, and habitat overlap studies

Our approach is to capture sleeper sharks around Steller sea lion rookeries during times of pup vulnerability to sleeper shark predation. This study will use stomach content samples, including microsatellite DNA based identification of questionable prey items, forensic methods to determine whether the prey was live or scavenged, and fatty acids analysis of sleeper shark tissue from sleeper sharks caught on longlines near Steller sea lion rookeries. Cruise operations are planned for August 2001 and May 2002, two time periods of high pup vulnerability. In August pups are vulnerable to predation as they begin entering the water (D. Demaster pers. comm. 12/21/2001). Another vulnerable period for pups is the weaning period, March to May. Lucas and Stobo (2000) found that most Sable Island harbor seal pup mortality due to sharks occurred during the pupping and weaning period (mid-summer). Sampling effort will be focused near three seal lion rookeries in the central Gulf of Alaska: Outer Island, Sugarloaf Island, and Marmot Island. The three largest rookeries in the central Gulf of Alaska are located on these islands and large numbers of sleeper sharks are commonly caught near these islands during the International Pacific Halibut Commission's (IPHC) halibut survey.

The objective of shark habitat utilization tagging studies in FY2001 is to determine if the habitat of sleeper sharks and sea lions overlap. Our approach is to measure the vertical migration behavior of sleeper sharks by tagging for comparison to the diving behavior of Steller sea lions while at sea. Currently, three sleeper sharks are tagged with satellite pop up tags (tagged in 2000); we plan to tag nine more in 2001. Sharks will be tagged during the cruises described in the previous section.

Phase II. Predation rate

If Steller sea lion tissue is found in sleeper shark stomachs during the August 2001 cruise, then we plan to expand sampling of sleeper shark stomachs in 2002 to estimate the proportion of sleeper sharks preying on Steller sea lions. Representative samples of sleeper shark stomachs will be requested to be collected during International Pacific Halibut Commission (IPHC), NMFS, and Alaska Department of Fish and Game longline surveys.

Phase III. Shark stock assessment

We plan to begin conducting sleeper shark stock assessments in 2003, probably in cooperation with the Alaska Fisheries Science Center's Resource Ecology and Fisheries Management (REFM) Division scientists.

Literature Cited

Bigelow, H. B., and W. C. Shroeder. 1948. Lancelets, cyclostomes and sharks. In Fishes of the western North Atlantic, part 1, p. 1-576. Sears Found. Mar. Res., Yale Univ, New Haven, CT.

Bright, H. B. 1959. The occurrence and food of the sleeper shark, *Somniosus pacificus*, in a central Alaska bay. Copeia 1959(1):76-77.

Calkins, D. G., D. C. McAllister, K. W. Pitcher and G. W. Pendleton. 1999. Steller sea lion status and trend in southeast Alaska: 1970-1997. Marine Mammal Science, 15(2):462-477.

Crovetto, A., J. Lamilla and G. Pequeno. 1992. *Lissodelphis peronii*, Lacepede 1804 (Delphinidae Cetacea) within the stomach contents of a sleeping shark, *Somniosus cf. Pacificus*, Bigelow and Schroder 1944, in Chilean waters. Marine Mammal Science 8(3):312-314.

Frost, K. F., L. F. Lowrey, E. Sinclair, J. Ver Hoef and D. C. McAllister. 1994. Impacts on distribution, abundance, and productivity of harbor seals. Pages 97-118 *in* T. R. Loughlin, ed. Marine Mammals and the *Exxon Valdez*. Academic Press, Inc., San Diego, CA.

Frost, K. F., L. F. Lowrey, and J. Ver Hoef. 1999. Monitoring the trend of harbor seals in Prince William Sound, Alaska, after the *Exxon Valdez* oil spill. Marine Mammal Science. 15(2):494-506.

Lucas, Z. and W. T. Stobo. 2000. Shark-inflicted mortality on a population of harbour seals (Phoca vitulina) at Sable Island, Nova Scotia. J. Zool., Lond. 252: 405-414.

Yang, M. and B. N. Page. 1998. Diet of Pacific sleeper shark, *Somniosus pacificus*, in the Gulf of Alaska. Fish. Bull. 97:406-409.

AN ACCOUNTING OF THE SOURCES OF STELLER SEA LION MORTALITY

Thomas R. Loughlin and Anne E. York

National Marine Mammal Laboratory Alaska Fisheries Science Center 7600 Sand Point Way, NE Seattle, WA 98115 USA

> 206-526-4040 v 206-526-6615 f

email tom.loughlin@noaa.gov anne.york@noaa.gov

The western stock of Steller sea lions (Eumetopias jubatus) is declining at about 5% per year and total population numbers have dropped by over 80% since the late 1960s (Sease and Loughlin 1999). The magnitude and continuous nature of the decline resulted in this stock being listed as endangered in 1997 by the National Marine Fisheries Service (NMFS). The cause of the decline is not known but likely has changed. During the early phases of the decline incidental catch of sea lions in trawl fisheries and legal shooting were important sources of mortality (Trites and Larkin 1992). After the North Pacific Ocean regime shift in the 1970s, and as U.S. fishery management changed during the mid-1970s and 1980s, the cause of the decline was attributed to nutritional stress resulting from either environmental variability that caused a change in prey base, removal of prey by commercial fisheries, or a combination of these two factors (Loughlin 1998). During the early phases of the decline the cumulative loss of animals from predation, subsistence harvest, and other anthropogenic sources were considered inconsequential. However, as the sea lion population continues to decline, these factors will account for a larger portion of total mortality than before, and thus, estimating the amount of sea lion mortality attributable to nutritional stress or the indirect effects of fisheries may be difficult. Our purpose here is to report our efforts to estimate the number of animals lost to the population each year to each of the possible sources of mortality.

Methods

The present rate of decline in the western stock was estimated by regressing the natural logarithm of the 1991-2000 trend-site non-pup count (NMFS, unpublished) on time. We also calculated the rate of decline by geographic region in the same way. Estimates of the total number of non-pups in the western stock were calculated by multiplying the number of non-pups counted on trend sites by a correction factor of 1.807 (Loughlin et al. 1992); that factor accounts for animals that were at sea during the survey and for sites that were not surveyed. We approximated the number of sea lion mortalities each year from the western Steller sea lion population using estimates of the total number of non-pups in the population and the observed rate of sea lion decline during 1991-2000, assuming the decline would continue at the same rate.

Based on York's (1994) life table and the assumption that the population was stable, the number of non-pup mortalities would be about 15% per year; this is the level of natural mortality we would expect if the population instantly stabilized. If the population were stable, the number of pups recruited into the non-pup population would equal the number of non-pups lost to natural mortality (e.g., no net gain or loss). In a declining population losses above replacement are ÒadditionalÓ mortality which result from a combination of non-pup and pup mortalities and decreased birth rates, assuming a closed population and no or little emigration, and no density dependence.

Results

During 1991-2000, the western stock of Steller sea lions declined at 5.2% (SE = 0.3%) per year. The population declined at statistically significant rates (P < 0.10) in all regions except the eastern Aleutian Islands. The greatest rates of declines occurred in the eastern and central Gulf of Alaska and the western Aleutian Islands (all greater than 8.6% per year). Using a published correction factor, we estimated the total population size of the western stock of Steller sea lions to be about 33,000 animals. Based on a published life table and the current rate of decline, we estimate that the total number of mortalities of non-pup Steller sea lions is about 6,425 animals; of those, 4,710 (73%) are mortalities

that would have occurred if the population were stable, and 1,715 (27%) are additional mortalities that fuel the decline (Table 1). We tabulated the levels of reported anthropogenic sources of mortality (subsistence, incidental take in fisheries, and research), guessed at another (illegal shooting), then approximated levels of predation (killer whales and sharks). We attempted to partition the various sources of ÒadditionalÓ mortalities as anthropogenic and as additional mortality including some predation. We classified 438 anthropogenic mortalities and 779 anthropogenic plus some predation mortalities as "mortality above replacement" (Table 2); this accounted for 25% and 45 % of the estimated total level of "mortality above replacement". The remaining mortality (75% and 55%, respectively) was not attributed to a specific cause and may be the result of nutritional stress.

Discussion

If our estimations are in the Oball parkÓ, then the estimated OadditionalÓ mortality that can be accounted for sums to about 436 for identified anthropogenic sources. If we add 343 mortalities attributable to predation by killer whales and sharks that we consider unnatural mortality, then the total OadditionalÓ mortality is 779 Steller sea lions annually, or about 45% of the mortality above replacement. We subtracted this sum from the estimated mortality in 2001 (1,715) resulting in about 936 Steller sea lions that may die from an unknown source and possibly attributable to environmental changes, the indirect effect of fisheries, or other factors yet to be recognized. However, if all predation remains in the OnaturalÓ mortality category then the anthropogenic source (436 sea lions) represents 25% of the OadditionalÓ mortality resulting in 1,279 dead sea lions in the unknown source category.

Our estimates of known removals from the western Steller sea lion population do not fully explain the current decline. It is interesting that if our estimates of mortality are correct, then why are so few dead sea lions observed? Over six thousand dead sea lions per year far exceeds our expectations of mortality based on the number of observed carcasses, yet we believe the values are correct given the present knowledge of Steller sea lion population status and trends. To us the area of possible contention is not the level of mortality but the categorization and magnitude of mortality. As the difficulties of categorizing killer whale mortality exemplify, there are other important interactions among the causes of mortality. For example, if sea lions are nutritionally stressed, mortality from predation could increase because sea lions spend more time at sea searching for food. Similarly, mortality from disease could increase because of greater nutritional stress or stress from avoiding predators. Also puzzling is the population in southeastern Alaska which continues to increase even though it probably experiences similar types of removals from the same causes (except for subsistence harvests). As the western population continues to decline, mortality attributable to OadditionalO losses will become smaller and those attributable to known removals, if constant, become more important. Now that the western Steller sea lion population is less than 33,000 animals, known anthropogenic sources of mortality can explain about 25% of the missing sea lions; if those numbers do not change, they would account for more of the missing sea lions in 20 years.

Literature Cited

Loughlin, T.R. 1998. The Steller sea lion: A declining species. Biosphere Conservation 1:91-98.
 Loughlin, T.R., A.S. Perlov, and V.A. Vladimirov. 1992. Range-wide survey and estimation of total abundance of Steller sea lions in 1989. Marine Mammal Science 8:220-239.

Sease, J.L., and T.R. Loughlin. 1999. Aerial and land-based surveys of Steller sea lions (Eumetopias

- <u>jubatus</u>) in Alaska, June and July 1997 and 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-100, 61 p.
- Trites, A.W., and P.A. Larkin. 1992. The status of Steller sea lions populations and the development of fisheries in the Gulf of Alaska and Aleutian Islands. Report to Pacific States Marine Fisheries Commission, 133 p. Fisheries Centre, Univ. British Columbia, Vancouver, B.C., Canada V6T 1Z4.
- York, A.E. 1994. The population dynamics of northern sea lions, 1975-1985. Marine Mammal Science 10:38-51.

Table 1. Projected counts of non-pup Steller sea lions at trend sites and estimates of the total population size for 2001-2020 in Alaska if trends continue as they have in 1991-2000; a 5.2% (SE - 0.25%) annual decrease in the western stock and a 1.7% (SE = 0.95%) annual increase in southeast Alaska (part of the eastern stock); projected counts were computed from a base of actual counts in 2000.

Western Alaska Population						SE Ala	aska Population	1
		Estimated	Additional	Stable	Total		Estimated	
Year	Count	population	losses	population	mortalities	Count	population	Gain
2000	18325	33116				9862	17822	
2001	17376	31400	1715	4710	6425	10030	18143	321
2002	16476	29774	1627	4466	6093	10210	18469	327
2003	15622	28232	1542	4235	5777	10394	18802	332
2004	14813	26769	1462	4015	5478	10581	19140	338
2005	14046	25383	1387	3807	5194	10772	19485	345
2006	13318	24068	1315	3610	4925	10965	19835	351
2007	12628	22821	1247	3423	4670	11163	20193	357
2008	11974	21639	1182	3246	4428	11364	20556	363
2009	11354	20518	1121	3078	4199	11568	20926	370
2010	10766	19455	1063	2918	3981	11776	21303	377
2011	10208	18447	1008	2767	3775	11988	21686	383
2012	9679	17492	956	2624	3579	12204	22076	390
2013	9178	16586	906	2488	3394	12424	22474	397
2014	8702	15727	859	2359	3218	12648	22878	405
2015	8252	14912	815	2237	3051	12875	23290	412
2016	7824	14140	772	2121	2893	13107	23709	419
2017	7419	13407	732	2011	2743	13343	24136	427
2018	7035	12713	694	1907	2601	13583	24571	434
2019	6670	12054	659	1808	2467	13828	25013	442
2020	6325	11430	624	1714	2339	14076	25463	450

Table 2. Estimates and source of Steller sea lion mortality during 2001 and that mortality expressed as a percentage of all estimated mortality above replacement/ÓadditionalÓ losses (1,715).

<u>Source</u>	Estimated mortality ^a	Estimated mortality ^b	As % estimated mortality
			above replacement
Subsistence harvest	353	353	20.6
Incidental to fishing	30	30	1.7
Illegal shooting	50	50	2.9
Research	3	3	0.2
Predation by killer whales	0	309	0.0/18.0
Predation by sharks	0	34	0.0/2.0
Total	438	779	25.4/45.4

^aAssumes all predation is in the natural category

^bAssumes some portion of predation is ÒadditionalÓ to natural.

Killer Whales and Predation on Steller sea lions

Craig O.Matkin, North Gulf Oceanic Society, 60920 Mary Allen Ave. Homer, Alaska 99603

Lance Barrett Lennard, Department of Zoology, University of British Columbia, Vancouver, B.C. V6T 1Z4

Graeme Ellis, Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, B.C. Canada V9R 5K6

The western stock of Steller sea lions has declined from over 140,000 individuals in the 1960s to possibly fewer than 40,000 individuals in 2000. The primary hypotheses put forth by the National Marine Fisheries Service explaining this decline centers around food limitation. One alternative hypothesis that has recently received attention is that the decline and/or lack of recovery is due to the effects of predation by killer whales and/or sharks. Reports of large numbers of killer whales surrounding longline and trawl fishing vessels in western Alaska suggest that there are a large number of killer whales in the region.

In order to assess the impact of killer whale predation on this population decline, we need the following information:

- 1.) number of Steller sea lions
- 2.) intrinsic rate growth rate of Steller sea lion population.
- 3.) number of killer whales that prey on Steller sea lions.
- 4.) percentage of the killer whale diet that consists of Steller sea lions and age class of sea lion that is consumed.

There is good data from adult and pup counts on trend sites (haulouts and rookeries) to establish mimimum numbers of Steller sea lions both in the eastern population (about 30,000) and in the western population (about 38,000). Trites (pers. comm.) estimated an intrinsic rate of increase of 4% for Steller sea lions in both the eastern and western populations. However, since the late 1960s, the western population has been decreasing at an average rate of about 5% per year.

In the eastern North Pacific, from Puget Sound to Kenai Fjords, two ecotypes of killer whales have been identified. These are residents (fish eaters) and transients (marine mammal eaters). They are genetically separable using mtDNA sequencing of the d loop region and nuclear DNA microsatellite techniques. They do not associate or interbreed. It appears that a similar division exists in western Alaska; however, separation of ecotypes in this region has been based only on visual inspection of photographs.

Genetic separation using mtDNA has determined two haplotypes of resident whales, northern resident and southern resident. Although both haplotypes exist in the Prince William Sound/Kenai Fjords region as separate acoustic clans, there is male mediated gene flow between them. Several haplotypes of transient killer whales have been identified in Alaska, including the unique AT1 transient population, the Gulf of Alaska transients and the West Coast transients. The AT1 transients appear limited to the Prince William Sound/Kenai Fjords region and have declined from 22 whales in 1988 to ten whales in 2001. The Gulf of Alaska transients are of unknown population size but have been photographed from Prince William Sound through Kodiak. We suspect their range extends to the west beyond Kodiak. Accurate determination of the size of the transient population the waters west of Kenai Fjords is necessary to assess the impact of killer whale predation on Steller sea lions.

There are more residents than transients, particularly in the range of the western Steller sea lion.(Table 1). In British Columbia and southeastern Alaska, where harbor seal and Steller sea lion populations have been stable or increasing, the percentage of transients is much higher than in Prince William Sound/Kenai Fjords or from preliminary data from western Alaska.

Table 1. Killer Whale Population Estimates for Alaska, British Columbia, and Washington

REGION	Resident	Transient	TOTAL	Reference
Southeast Alaska,	405(65%)	219(35%)	624*	Ford and Ellis 1999,
B.C., Washington				Ford et al 2000
				Matkin et al. 1999 PWS/ Kenai Fjords
	352(87%)	54(13%)	406	Matkin et al. 1999
Western Alaska	238(88%)	33(12%)	271	Dahlheim 1994,
				NMML DatabaseTOTAL 995 (76%)
	306(24%)			
	1301*			

^{*} does not include 200+ genetically unique "offshore whales".

Based on population numbers from Prince William Sound/Kenai Fjords and the preliminary data from western Alaska, we developed a point estimate of 125 marine mammal-eating transient killer whales occupying the range of the western Alaska population of Steller sea lions. The actual figure may range higher or lower than this.

Stomach contents from six Alaskan killer whales contained harbor seals (in 5 stomachs), Dalls porpoise (2), Steller sea lions (2) and beluga(1). One stomach was empty. The percentage of the killer whale diet that consists of Steller sea lions has been examined during feeding habit studies of killer whales conducted in British Columbia and in Prince William Sound. (Tables 2,3). The percentage of the predation and harassment events that involved Steller sea lions were 12 percent in British Columbia and 19 percent in Prince William Sound. The actual percentages of predation were undoubtedly lower since a majority of the interactions in British Columbia and all of the interactions in Prince William Sound were harassments where no positive evidence of a kill was observed or collected. In addition, feeding habit studies in Prince William Sound indicate that some transient populations and/or individuals specialize on particular prey items. The AT1 transient population preyed primarily on harbor seals and Dall's porpoises, while most Steller sea lion harassments in Prince William Sound were by specific individuals in the Gulf of Alaska transient population. Only stomachs from Gulf of Alaska transients contained Steller sea lion remains. We currently estimate a range of percent sea lion in the killer whale diet of 5-20 with a point estimate of 12.5.

Table 2. Marine mammals and predation by West Coast transient killer whales in British Columbia*. 1973-1996

Prey Species	Kill	Harassment	Total	(% of Total)
Harbor Seal	72	8	80	(49)
Harbor Porpoise	16	0	16	(10)
Steller Sea Lion	8	12	20	(12)
Dall's Porpoise	7	11	18	(11)
California Sea Lion	4	4	8	(5)
White-sided Dolph	in 1	3	4	(2)
Gray Whale	0	2	2	(1)
Minke Whale	0	1	1	(1)
River Otter	0	3	3	(1)
Unid. Mammal	14	0	14	(8)

Also observed were 27 attacks on seabirds

^{*} from Ford et al. 1999

Table 3. Marine mammals and predation by AT1 and Gulf of Alaska Transients in Prince William Sound 1988-1996*.

Prey Species	Kill	Harassment	Total	(% of Total)
Harbor Seal	10	12	22	(30)
Dall's Porpoise	12	6	18	(23)
Steller Sea Lion	0	14	14	(19)
Harbor Porpoise	2	0	2	(3)
Humpback Whale	0	6	6	(8)
Sea Otter	0	3	3	(4)
River Otter	0	1	1	(1)
Unid. Mammal	7	0	7	(9)
Salmon 0		1 1		(1)

Also observed was 1 attack on seabirds

The food requirements for a wild killer whale was determined using estimates of caloric requirements (cal/kg/day) from three sources, Barrett-Lennard et al. 1994, Estes et al. 1998, and Baird 1994. Their estimates ranged from 50- 62 cal/kg/day. For an average killer whale of 3500kg (from captive data) eating pinnipeds with an average caloric value of 3000 cal/gm (Perez 1990), this suggests a requirement of 59-72 kg/day of prey.

Estimates were made using several combinations of derived estimates for the predation parameters that simulated a high, low, and a best guess estimates as well as an estimate of historical predation (Table 4). A more complex model is under construction by one of the authors (L. Barrett-Lennard).

Table 4. Killer whale predation estimates for Western Alaska.

I	High	Low	Best F	Iistorical	
KW food needs (kg/day)		72	59	59	59
Total number of KWs		175	125	125	125
Avg wt sea lion taken (kg)		160	300	160	160
% sea lion in KW diet		0.20	0.05	0.125	0.125
# sea lions eaten by KWs		5908	449	2103	2103
Total number of sea lions		38000	38000	38000	100,000
Total sea lion deaths *		7600	7600	7600	20,000
% deaths due to KWs		77	6	27	10

rate estim ated at 0.20

*crud

death

he result s of T

these calculations demonstrate the need for more reliable data, particularly refinement of our estimates of killer whale population size and the percentage of sea lion in the killer whale diet. Also needed is better information on the size of sea lion typically consumed. Until these data are available, we cannot rule out the possibility that killer whale predation may be a factor in the continuing decline and lack of recovery of Steller sea lions. However, it is unlikely that they played a role in the initial decline of the western population of Steller sea lions.

References:

Baird, R.W. 1994. Foraging behaviour and ecology of transient killer whales (Orcinus orca). Phd. Thesis. Simon

^{*}from Saulitis et al. 2000

- Fraser University. Vancouver. 157pp.
- Barrett-Lennard, L.G., K Heise, E Saulitis, G. Ellis, and C. Matkin. 1995. The impact of killer whale predation on Steller sea lion populations in British Columbia and Alaska. North Pacific Universities Marine Mammal Research Consortium, University of British Columbia, Vancouver, BC. unpubl. rept. pp 66.
- Dahlheim, M.E. 1994. Abundance and distribution of killer whales, *Orcinus orca*, in Alaska, 1993. Unpubl. Report National Marine Mammal Laboratory. Alaska Fisheries Science Center, NMFS, NOAA, 7600 SandPoint Way, N.E. Seattle, WA 98115.
- Estes, J.A., Tinker, M.T., Williams, T.M., and Doak, D.F. 1998. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. *Science*. 282: 473-476.
- Ford, J.K.B., Ellis, G.M. and Balcomb, K.C. 2000. *Killer Whales: the Natural History and Genealogy of Orcinus orca in British Columbia and Washington State*. UBC Press: Vancouver. Second Edn. 104 pp.
- Ford, J.K.B., Ellis, G.M., Barrett-Lennard, L.G., Morton, A.B., Palm, R.S., Balcomb III, K.C. 1998. Dietary specialization in two sympatric populations of killer whales (*Orcinus orca*) in coastal British Columbia and adjacent waters. *Can. J. Zool.* 76: 1456-1471.
- Ford, J.K.B. and Ellis, G.M. 1999. Transients, Mammal-hunting killer whales. UBC Press: Vancouver. 102 pp.
- Heise, K., L.G. Barrett-Lennard, E. Saulitis, D.Bain, C.O. Matkin. in review. Examining the Evidence for Killer Whale Predation on Steller Sea Lions. Marine Mammal Science.
- Matkin, C.O., Ellis, G.M., Saulitis, E.L., Barrett-Lennard, L.G., & Matkin, D. 1999. *Killer Whales of Southern Alaska*. North Gulf Oceanic Society, Homer, Alaska.
- Perez, M.A. 1990. Review of marine mammal population and prey information for Bering Sea ecosystem studies. NOAA Technical Memmorandum NMFS F/NWC-186, U.S. De;pt of Commerce.
- Saulitis, E.L., C.O. Matkin, K. Heise, L. Barrett Lennard, and G.M. Ellis. 2000. Foraging strategies of sympatric killer whale (*Orcinus orca*) populations in Prince William Sound, Alaska. Marine Mammal Science16(1):94-109.

Nutritional Limitation?-- An Alternative Hypothesis

Kenneth W. Pitcher
Division of Wildlife Conservation
Alaska Department of Fish and Game
333 Raspberry Road
Anchorage, AK 99518
Phone 907 267 2363

E-mail ken_pitcher@fishgame.state.ak.us

SSLs of the western stock in Alaska have declined substantially over the past 25 years or so. Although there is lots of variation in the spatial and temporal patterns of decline we are now at the point where nearly all regions within the western Alaskan stock have declined by over 80%. Although not as well documented, we have seen similar declines of harbor seals (*Phoca vitulina*) within this region (Frost et al. 1999, Pitcher 1990).

After reviewing all data available to me I am convinced that the information now available justifies serious consideration of an alternative hypothesis to the current working hypothesis of nutritional limitation. I think that one of the things that has made this whole issue difficult to understand is that the North Pacific Ocean is a dynamic environment and we often try to understand what we are currently observing with data collected in past years under different environmental conditions.

There is substantial evidence that during the 1970s declines of Steller sea lions and harbor seals occurred in conjunction with nutritional stress (Calkins et al. 1998, Jemison 1977, Pitcher et al. 1998). It is probable that changes in prey availability brought on by climate change in the North Pacific Ocean played a significant role in these declines (Springer 1998, Anderson and Piatt 1999) although several aspects of timing of the decline do not fit well; namely that the decline in the Eastern Aleutian Islands began before the 1976/77 shift and that the decline in the Northeast Gulf of Alaska may not have started until the late 1980s.

Something appeared to occur around 1989-1990 both in regard to Steller sea lion and harbor seal population dynamics and in regard to the ocean environment. In some areas the decline of SSLs, particularly the eastern Aleutian Islands and the western Gulf of Alaska, and of harbor seals (Tugidak Island) appeared to moderate. It is also my understanding that changes in the ocean environment probably also occurred at about this time (Springer 1998).

A number of studies evaluating the nutritional status of adult female and neonatal pup sea lions took place during the 1990s. Surprisingly, nearly all results appeared to indicate that the nutritional status of western stock animals was similar or ever superior to those in Southeast Alaska where the population was increasing. Following is a brief summary of those findings.

• While pup masses at birth were similar between populations, pup growth rates were higher in the

west (Brandon and Davis in prep)

- Pup masses at one month of age were greater in the west (Merrick et al. 1995, Rea et al. 1998)
- Foraging effort, as defined by foraging trip length and time spent ashore, for females with pups on rookeries was less in the west (Brandon et al. in prep)
- No evidence that pups < 1 month of age from the west were nutritionally compromised based on blood chemistry and hematology (Rea et al. 1998)
- Masses of adult females greater in west (Adams and Davis in prep) and perhaps fatter in west (Castellini in prep)
- Behavioral observations of maternal attendance patterns and activity budgets were not consistent with the hypothesis that animals from the western stock were having greater difficulty obtaining prey compared to those from the eastern stock (Milette 1999)

More recent work has focused on growth and body condition of juvenile SSLs. While we are in the early stages of this work and our sample size is small, particularly in the west, we have found nothing to suggest that either growth or body condition is less for western stocks animals than it is for juveniles from Southeast Alaska. Mass at birth appears similar between pups in Southeast and the west but growth rates appear higher in the west supporting the findings of Brandon and Davis. Body composition estimates, if anything suggest better condition in western stock animals. Data from harbor seals on Tugidak Island in the Gulf of Alaska also suggested improved nutritional status during the 1990s. This included earlier pupping dates and changed haulout patterns (Jemison 1997).

Comparisons of indices of SSL abundance and prey abundance suggest that on a per capita basis, prey availability is substantially higher than it was during the late 1970s or is currently in Southeast Alaska where the population is increasing.

The question remains, why are Steller sea lion numbers the western stock continuing to decline if adequate quantities of prey are available and the animals are not nutritionally limited. One possibility is that the combined sources of non-nutritionally linked mortality are high enough, in relation to current population size, to prevent recovery and cause additional declines in some areas. I loosely refer to this as the predator pit hypothesis. Mortality factors may include predation by killer whales and sharks, subsistence harvests, illegal shooting, incidental take in fisheries, rookery trauma, and entanglement in marine debris.

While I suspect that the original decline was largely due to nutritional factors and that the current population may be regulated by non-nutritionally linked mortality factors there are several research findings that I find bothersome and probably should not be ignored. These include findings of elevated haptoglobin levels in the west (Zenteno-Savin et al. 1997, elevated PCB and DDT metabolites in SSLs from a portion of western stock range (unpublished data), elevated mercury in the western stock (Duffy unpublished data, abnormal porphyrin ratios (Duffy unpublished data), and abnormal hemograms (Beckman unpublished data). These findings are suggestive of stressors such as toxins and diseases but I have no idea of their importance or if they are significanty affecting population dynamics

References Section

Anderson, P. J., and J. F. Piatt. 1999. Community reorganization in the Gulf of Alaska following ocean climate regime shift. Marine Ecology Progress Series 189:117-123.

- Calkins, D. G., E. F. Becker and K. W. Pitcher. 1998. Reduced body size of female Steller sea lions from a declining population in the Gulf of Alaska. Marine Mammal Science 14:232-244.
- Jemison, L. A. 1997. Recent history and demography of harbor seals on Tugidak Island, Alaska. M.S. thesis, University of Alaska, Fairbanks. 82 p.
- Frost, K. J., L. F. Lowry, and J. M. Ver Hoef. 1999. Monitoring the trend of harbor seals in Prince William Sound after the *Exxon Valdez*, oil spill. Marine Mammal Sci. 15:494-506.
- Merrick, R. L., R. Brown, D. G. Calkins, and T. R. Loughlin. 1995. A comparison of Steller sea lion, *Eumetopias jubatus*, pup masses between rookeries with increasing and decreasing populations. Fishery Bulletin 93:753-758.
- Milette, L. L. 1999. Behaviour of lactating Steller sea lions (*Eumetopias jubatus*) during the breeding season: A comparison between a declining and stable population in Alaska. M.S. thesis, University of British Columbia. 57pp.
- Pitcher, K. W. 1990. Major decline in number of harbor seals, *Phoca vitulina richardsi*, Marine Mammal Science 6:121-134.
- Pitcher, K. W., D. C. Calkins, and G. W. Pendleton. 1998. Reproductive performances of female Steller sea lions from the Gulf of Alaska: an energetics based reproductive strategy? Canadian Journal of Zoology 76:2075-2083.
- Rea, L. D., M. A. Castellini, B. S. Fadely, and T. R. Loughlin. 1998. Heath status of young Alaska Steller sea lion pups (*Eumetopias jubatus*) as indicated by blood chemistry and hematology. Comparative Biochemistry and Physiology Part A 120:617-623.
- Springer, A. M. 1998. Is it all climate change? Why marine bird and mammal populations fluctuate in the North Pacific. Pages 109-119 in G. Holloway, P. Muller, and D. Henderson, eds. Biotic impacts of extratropical climate variability in the Pacific. 'Aha Huliko'a Proceedings Hawaiian Winter Workshop, University of Hawaii.
- Zenteno-Savin, T., M. A. Castellini, L. D. Rea, and B. S. Fadely. 1997. Plasma haptoglobin levels in threatened Alaska pinniped populations. Journal of Wildlife Diseases 33:64-71.

Indices of Condition in Steller sea lions (Eumetopias jubatus).

Lorrie D. Rea, Alaska Department of Fish and Game, Wildlife Conservation Division, 525 W. 67th Avenue, Anchorage, Alaska, 99518.

Several studies have utilized traditional indices of body morphology to describe the condition of Steller sea lions throughout their range. Two studies have shown that pups less than 5 weeks of age in western portion of range (area of decline) have higher body mass than those in the area of stable population (Merrick et al. 1995, Rea et al. 1998). Similarly adult females in the western population have been found to be "rounder, longer and heavier than their Southeast Alaska counterparts with lower percent body water, reflecting higher body fat content (Michael Castellini, Univ. of Alaska Fairbanks, AK, Feb. 1999, pers. comm.). Although standard morphometric indices such as standard length and axillary girth have been shown to be predictive of total body mass (Castellini and Calkins 1993), these parameters have been shown to be poor indicators of blubber thickness in Steller sea lion pups (Trites and Jonker 2000). Condition and density indices were unable to distinguish between starveling and average pups (Rea 1995) and LMD- index (using standard length, mass and dorsal blubber depth measures) explained only 58% of the variability in sculp mass in animals collected between 1975 and 1989 (n=523; Pitcher et al. 2000). Density index (calculated as ((mass/(SL x AG²)) \cong 10⁶) was not significantly correlated with total percent body fat measured by deuterium dilution technique in 140 juvenile animals aged 2 months to 5 ($r^2 = 0.01$, Figure 1).

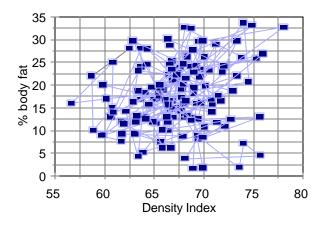


Figure 1. Density index (calculated as (mass/ ($SL \cdot AG^2$)) $\cdot 10^6$)) versus percent body fat content (as determined by deuterium dilution) for Steller sea lions between 2 months and 5 years of age ($r^2 = 0.01$, n = 140).

Percent body fat content has been shown to significantly decrease during food limitation in 7 to 14 day captive fasting studies (0.8 ± 0.4 % decrease in lipid per day as a % of original body mass, n=16). Thus the estimation of total body water (TBW) and the subsequent calculation of total body fat is currently considered the best index of body condition. This technique requires a minimum animal handling time of 2 hours for equilibration of the

injected labeled water, thus has often proven to be the limiting factor in the number of free-ranging animals studied during field investigations. Research has been underway to validate the use of bioelectrical impedance analysis (BIA) as an index of body condition in Steller sea lions as it is an instantaneous measure of TBW. Preliminary data shows that TBW determined by BIA is highly correlated with TBW as estimated by the longer deuterium dilution technique (Actual TBW = 0.985 * (Predicted); forced through zero; r^2 = 0.89; p < 0.0001; Castellini 2001). This regression is particularly strong for small body sizes (up to 150 kg), although there is increased noise in this relationship in animals above 150 kg.

Percent body fat data (estimated by deuterium dilution) is currently available for 119 sea lions, ranging from 2 to 26 months of age (Southeast Alaska n=74; Prince William Sound n=45). An additional 50 samples are under analysis (Kodiak Island area n=13; Southeast Alaska n=37). Given our attempt to distribute sampling coverage throughout the year to investigate several aspects of development of juvenile Steller sea lions, sample sizes at any particular age are not yet sufficiently large to make reliable regional or gender based comparisons. Body fat content within each age group sampled is highly variable, particularly after 10 months of age. I would caution that percent body fat alone, without consideration of the weaning status of that particular sea lion, could be a misleading indicator of fitness. Phocid seals have been documented to decrease body fat content by 15% over a 2 week captive period of feeding on fish following a sustained post-weaning fast by significantly increasing lean body mass growth relative to adipose tissue growth (Rea 1990).

Preliminary data on fatty acid signatures show close correspondence between the lipid profiles of milk collected from the stomach of one 7 month old sea lion and blubber collected from that animal (n=1) suggesting that blubber profiles will prove to be a representative composite of diet in Steller sea lions. Two fatty acids which are indicative of prey are not readily transferred into milk in phocids (20:1w-11 and 22:1w-11 fatty acids, Figure 2). Relatively high levels of these "prey" fatty acids were seen in 10.5 (n=12) and 22.5 (n=3) month old sea lions captured in Prince William Sound. This could indicate either that Prince William Sound animals are relying more heavily on fish than 9 or 19 month old sea lions in Southeast Alaska, or that milk ingested by the Prince William Sound animals had a higher content of these fatty acids. Additional milk and collected blubber biopsy samples are currently being analyzed from both areas. If Prince William Sound milk samples prove similar in composition to that from Southeast Alaska, these two fatty acids may provide evidence to identify juveniles that are at least supplementing their diet with fish. It will be important to look at individual patterns of fatty acid distribution, along with body composition to be able to achieve our goal of identifying animals that are nutritionally independent.

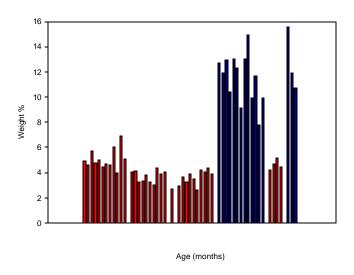


Figure 2. Weight percent of 20:1w11 fatty acid in blubber lipids of Steller sea lion juveniles 2 to 26 months of age, captured in Southeast Alaska (red bars) and Prince William Sound (blue bars).

Nutritional blood chemistry parameters such as ketone body (∃-hydroxybutyrate or ∃-HBA) and blood urea nitrogen (BUN) concentrations have been shown to change significantly in response to food limitation in fasting studies on 6 week old pups (Rea et al. 2000). Similar changes in ∃-HBA have not been demonstrated by fasting juvenile sea lions over the age of 1.5 years. Thus, ∃-HBA has proven to be a useful term in the proportion of handled pups at a site that are currently fasting. Published blood chemistry data have shown that a higher proportion of pups studied in the 1990's in Southeast Alaska showed ∃-HBA levels indicative of fasting than those pups sampled in the area of decline (Rea et al. 1998). These data are supported by observations of longer at-sea foraging times in Southeast Alaska during the time of the study, thus leaving pups alone fasting on the rookery for longer periods. Similarly, significantly higher ∃-HBA levels were measured in sea lion pups captured on Ugamak Island in 1997 (compared to 4 previous years of capture) coinciding with anomalous warm oceanographic conditions and low relative acoustic biomass signals at that location.

Plasma levels of the hormone leptin have been shown to be related to body and metabolic condition in several mammal species. Preliminary data on Steller sea lions have shown

leptin concentrations to change during periods of food limitation with levels increasing in juvenile female sea lions (n=2) during captive fasting experiments, and decreasing in similar fasting studies on male sea lions (n=3). Plasma leptin levels were not highly correlated with total body fat content, however ongoing research in this area will further consider the role of other factors now recognized to influence leptin secretion in other mammals, such as nutritional state (fasting/feeding), season, reproductive hormone levels, and circadian rhythm in this relationship. There is promise that when used in concert with other hormonal indicators (e.g. thyroid hormones), an informative profile of metabolic condition can be developed.

References

Castellini, M.A. 2001. Using bio-electrical impedance to measure the body composition of seals and sea lions. Experimental Biology Conference, Orlando, FL April 2001.

Castellini, M.A. and D.G. Calkins. 1993. Mass estimates using body morphology in Steller sea lions. Mar. Mamm. Sci. 9:48-54.

Merrick, R.L., R. Brown, D.G. Calkins and T.R. Loughlin. 1995. A comparison of Steller sea lion, *Eumetopias jubatus*, pup masses with increasing and decreasing populations. Fish. Bull. 93:752-757.

Pitcher, K.W., D.G. Calkins and G.W. Pendleton. 2000. Steller sea lion body condition indices. Mar. Mamm. Sci. 16:427-436.

Rea, L.D. 1990. Changes in resting metabolic rate during long-term fasting in northern elephant seal pups (*Mirounga angustirostris*). M.Sc. thesis, University of California, Santa Cruz, CA, USA. 54 pp.

Rea, L.D. 1995. Prolonged fasting in pinnipeds. Ph.D. thesis, University of Alaska, Fairbanks, AK, USA. 135 pp.

Rea, L.D., M.A. Castellini, B.S. Fadely, and T.R. Loughlin. 1998. Health status of young Alaska Steller sea lion pups (*Eumetopias jubatus*) as indicated by blood chemistry and hematology. Comp. Biochem. Physiol. Part A. 120:617-623

Rea, L.D., D.A.S. Rosen and A.W. Trites. 2000. Metabolic response to fasting in 6-week-old Steller sea lion pups (*Eumetopias jubatus*). Can. J. Zool. 78:890-894.

Trites A.W. and R.A.H. Jonker. 2000. Morphometric measurements and body condition of healthy and starveling Steller sea lion pups (*Eumetopias jubatus*). Aquat. Mamm. 26:151-157.

Overview of recent Steller sea lion telemetry work in Alaska

¹Michael Rehberg, Alaska Department of Fish and Game, Division of Wildlife Conservation, 525 W. 67th Ave., Anchorage, AK 99518. Phone: (907) 267-2848; Fax: (907) 267-2859. michael_rehberg@fishgame.state.ak.us.

Kim L. Raum-Suryan, Alaska Department of Fish and Game, Division of Wildlife Conservation, 525 W. 67th Ave., Anchorage, AK 99518. Phone: (907) 267-2848; Fax: (907) 267-2859. kim_raum-suryan@fishgame.state.ak.us.

Jeremy Sterling, Alaska Fisheries Science Center, National Marine Mammal Laboratory, National Marine Fisheries Service, 7600 Sand Point Way, NE, Seattle, WA 98115. Phone: (206) 526-4033; Fax: (206) 526-6615. Jeremy.sterling@noaa.gov

¹Corresponding author.

Steller sea lions in the endangered western stock of Alaska have declined by more than 80% since the 1970s (Loughlin *et al.* 1992, Sease and Loughlin 1999). Nutritional stress has been the leading hypothesis for the decline of the Steller sea lion population. The reproductive success of adult females and survival of juveniles to maturity are important factors in the population dynamics of Steller sea lions (York 1994). To gain a better understanding of movements, foraging behavior, dive ontogeny, and resource selection, location-, haulout- and dive-reporting satellite data recorders (SDRs) and location-only Argos platform transmitter terminals (PTTs) have been deployed on adult females with dependent young and juvenile (< 3 years-of-age) Steller sea lions. Between 1989 and 2001, 179 instruments were deployed on Steller sea lions in Alaska by the Alaska Department of Fish and Game (ADFG) and National Marine Mammal Lab (NMML) (Table 1, Fig. 1). Of those, 94 instruments were deployed in the western stock and 85 instruments were deployed in the eastern stock.

Initial satellite telemetry efforts focused on adult female foraging capabilities and the movements of adult females with dependent pups on the rookery. Adult females were captured on the haulout by darting with Telazol, and instruments attached to the pelage using fast-setting epoxy and nylon mesh. Fifty-four instruments were deployed on adult females from 1990 to 1993. Results from these studies have been previously reported by Merrick and Loughlin (1997) and Merrick *et al.* (1994). An analysis of the foraging ecology of adult females with dependent pups is in preparation (R. Andrews, pers. comm.)

Reduced juvenile survivorship is believed to be one of the primary factors contributing to the decline of the Steller sea lion (York 1994). After emphasis shifted from adult to juvenile survival, we deployed SDRs on juveniles to better describe the early life history of Steller sea lions. This information will yield a more complete picture of the diving capabilities of juveniles and how they compare to adult female sea lions. With this information, we may better understand the limitations in dive behavior of juveniles, describe their usage of at-sea habitat near haulouts, identify the transition between the behavior of nutritionally-dependent pups to independently-foraging juveniles, and understand how diving ability may affect their ability to obtain prey.

We used two different methods to capture juvenile Steller sea lions: capturing animals on land, and capturing animals using the underwater technique developed by D. McAllister and W. Cunningham (ADFG unpub. data). As of May 2001, 125 SDRs have been deployed on juvenile animals (Table 1, Fig. 1). Of those, 53 (30 on males, 23 on females) were deployed in the western stock and 72 (34 on males, 38 on females) were deployed in the eastern stock. SDR deployment duration ranged from 0 to 181 days. Earlier juvenile telemetry results have been reported by Merick and Loughlin (1997). Results of more recent studies are in preparation (M. Rehberg, dive development, K. Raum-Suryan, movement and resource selection, and J. Sterling, integrated movement and diving behavior, pers. comm.).

SDR instrumentation of juveniles continues, and the future goals of juvenile satellite telemetry work are to integrate the dive and location information with concurrent studies by other researchers, such as forage fish distribution and biomass studies (Gulf Apex Predator-Prey study and Southeast Alaska Predator-Prey study, K. Wynne and M. Sigler, pers. comm.), forage information from scat collections, and nutritional status (M. Rehberg, pers. comm.).

ADFG and NMML had slightly different goals for pre-2001 juvenile deployments. ADFG, studying diving ontogeny during the first 2 years of life, programmed its instruments with a day-on/day-off duty cycle to extend SDR life as long as possible. NMML, studying the use of habitat near western

stock haulouts, did not use a daily duty cycle, which resulted in a more continuous set of location data. Since January 2000 ADFG and NMML have programmed their SDRs to collect dive and haulout data in a compatible fashion, which will permit better comparisons between the eastern and western Steller sea lion stocks.

The most recently deployed SDRs (since March 2001) have increased battery capacity at least double that of earlier units, allowing longer, non-duty-cycled deployments and greater data transmission rates. Programming changes devised by NMML have increased the quantity and diurnal spread of location and dive data reported (although data completeness continues to vary by individual). Attachment techniques developed by ADFG have increased the duration of instrument attachment to 8 months (although antenna durability remains an issue). Our future goals include testing improved instrumentation and instrument placement locations on sea lions, which should allow collection of more detailed location, dive and haulout information.

Literature Cited

- Loughlin, T. R., A. S. Perlov and V. A. Vladimirov. 1992. Range-wide survey and estimation of total numbers of Steller sea lions in 1989. Mar. Mam. Sci. 8:220-239.
- Merrick, R. L. and T. R. Loughlin. 1997. Foraging behavior of adult female and young-of-tye-hear Steller sea lions (*Eumetopias jubatus*) in Alaskan waters. Can. J. Zool. 75 (5): 776-786.
- Merrick, R. L., T. R. Loughlin, G. A. Antonelis, and R. Hill. 1994. Use of satellite-linked telemetry to study Steller sea lion and northern fur seal foraging. Pol. Res. 13: 105-114.
- Sease, J. L., and T. R. Loughlin. 1999. Aerial and land-based surveys of Steller sea lions (*Eumetopias jubatus*) in Alaska, June and July 1997 and 1998. U.S. Dept. Commer., NOAA Tech. Rep. NMFS-AFSC-100. 61pp.
- York, A. E. 1994. The population dynamics of northern sea lions, 1975-85. Mar. Mam. Sci. 10:38-51.

Table 1. Stock (Western and Eastern divided at Cape Suckling), region (PWS – Prince William Sound, GOA-C – Central Gulf of Alaska, GOA-E – Eastern Gulf of Alaska, SE – Southeast Alaska, N – North, C – Central, S – south), capture period, sex, approximate age class, and number of satellite transmitters (SDRs) deployed on Steller sea lions in Alaska. Pups/Juveniles are < 36 months of age. Mean deployment duration and range (days) of SDRs also are presented.

Stock/ Region	Capture Period	Age class				Total No. SDRs Deployed	Mean deployment duration/range (days)
Western Stock		Pups / Juveniles		Adults		1 3	` • /
NMML		M	F	M	F		
Central Aleutians	Jul-90; Feb-00	1	3		5	9	43 (0-104)
Eastern Aleutians	Jun-90; Jul/Nov-91,	4	3		8	15	38(1-67)
GOA-W	Jul-91,93; Mar-96	1	1		6	8	28(0-52)
GOA-C	Jun/Dec-90; Jun-91;	7	3		21	31	45(0-174) a
(Kodiak Region) ^b	Feb/Jul-92; Feb-93; Dec-94; Jan-96						
Total		13	10		40	63	
$\underline{ADF\&G}$							
GOA-C (Kodiak)	Mar-01	10	3			13	a
GOA-E	Jan-93				1	1	114
GOA-E	Jan-95	1	1			2	129 (113-145)
GOA-E	Jun-95	1	0			1	11
PWS	April-00	4	4			8	42.5 (10-78)
PWS	April-00	0	2			2	64 (54-74)
PWS	Aug-00	1	3			4	67.8 (51-103)
Total		17	13		1	31	
Eastern Stock							
SE-N	Nov-98	5	5			10	44.6 (12-119)
SE-N	Jan-00	2	5			7	81.6 (60-138)
SE-N	Jan-00	2	1			3	146.7 (120-181)
SE-N	May-01	2	2			4	a
SE-N	May-01	1	1			2	a
SE-C	Mar-98	7	5			12	81.7 (30-143)
SE-C	Aug-99	4	6			10	5.6 (3-13)
SE-C	Sept-00	3	2			5	106 (82-114)
SE-C	May-01	5	3			8	a
SE-S	May/Jul-92	0	1		5	6	40 (28-84) ^c
SE-S	Jun/Jul-93				7	7	28 (21-36) ^c
SE-S	July-98	3	7			10	21.1 (11-34)
SE-S (NMML)	Jul-91				1	1	<1
Total		34	38		13	85	

^aData collection still in progress as of 31 May 2001.

^b10 instruments deployed by NMML in Unimak Pass during March, 2001 are not included in this table

^cFeeding trips for Summer-captured adult females with pups are being analyzed for Andrews et al. (in prep). Locations outside feeding trips not used.

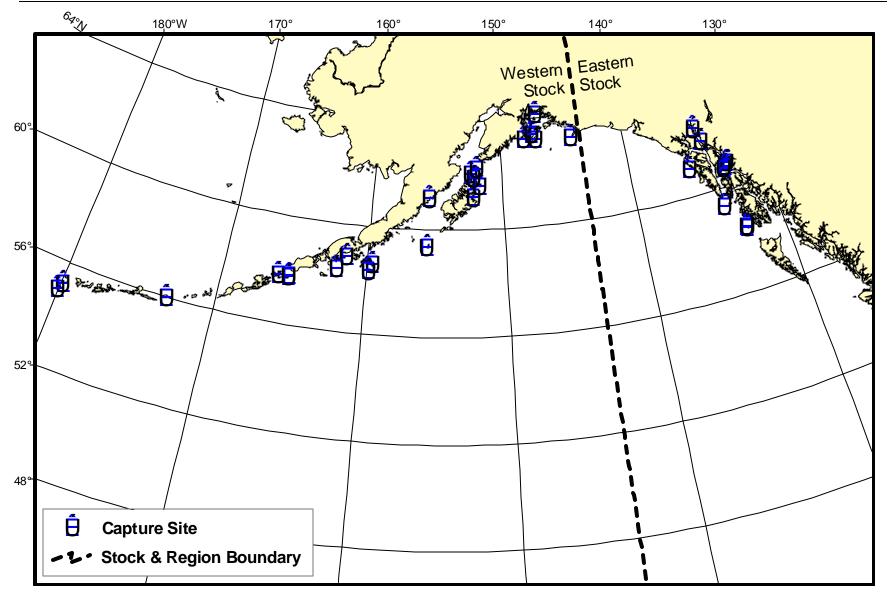


Figure 1. Steller sea lion haulouts and rookeries at which SDRs and PTTs have been deployed by ADFG and NMML.

What is it about food? Examining possible mechanisms with captive Steller sea lions

David A.S. Rosen* Andrew W. Trites

Marine Mammal Research Unit, University of British Columbia, 6248 Biological Sciences Rd., Vancouver, B.C., Canada, V6T 1Z4

*Corresponding author: Phone: 604-822-8184 FAX: 604-822-8180

Email: rosen@zoology.ubc.ca

What is it about food? Examining possible mechanisms with captive Steller sea lions

Overview

Changes in the quality or quantity of food can have a dramatic effect on the population status of wild animals. Unfortunately, it is difficult to assess (or define) whether nutritional stress is a contributing factor to the decline of any particular species. The 'nutritional quality' of a diet to an animal is a complex matter to assess given the range of components that can influence its value. The effects of different diets on animal health are equally complex, and are particularly difficult to assess in large, wild animals.

Research by the North Pacific Universities Marine Mammal Research Consortium with captive Steller sea lions is evaluating the possible mechanisms by which dietary changes might adversely affect the nutritional or health status of individual animals, and ultimately the population as a whole. The research investigates the three potential proximate mechanisms by which changes in diet might impact Steller sea lions: a decrease in energy intake, a decrease in the intake of some essential element, and the over-consumption of an element detrimental to sea lion health.

Energy intake

To examine the hypothesis that population changes are the result of decreases in relative energy intake, our research evaluates both the potential energetic value of prey items (energy intake), and the energy requirements of sea lions (energy output).

The first step in determining potential limitations in energy intake is to quantify sea lion diet. Although analysis of fish remains in scat samples is an accepted technique for diet determination, we have been developing correction factors for these diet reconstructions, and quantifying the time period that these samples represent. We are also participating in a study to test the efficacy of fatty acid signatures to identify prey intake over longer time periods.

Experiments to determine the heat increment of feeding (HIF) and fecal energy loss (FE) enable us to calculate the net (biologically useful) energy value of common prey. These studies are necessary to accurately convert between energetic demand and food consumption estimates. The results suggest that sea lions would have to consume substantially more pollock (35-80%) and squid (107-145%) to achieve the same energy intake of a herring diet (Rosen and Trites 1999, 2000a, b). The differences can be further magnified by the need to ingest larger meals of low-energy prey, which further decreases digestive efficiency (Rosen and Trites 1997). The significant range of these estimates results primarily from variation in prey energy content. Proximate composition analyses of common prey items have revealed that the gross energy content of potential prey items changes temporally, geographically, and by age/sex class (C. Azano, UBC, unpubl. data).

Ad libitum feeding trials are used to investigate potential controls and limitations in food intake, particularly in younger animals given the allometries between body mass, energetic needs, and digestive capacity. In several studies, young sea lions did not increase their food intake sufficiently on (short-term) low energy diets to maintain energy intake and body mass (Rosen and Trites 1999, 2000a). We suspect that physical or chemical satiation may be a limiting the sea lions' capacity for energetic compensation through increased food intake. Studies continue into the factors limiting food and energy intake including, satiation and feeding opportunities.

A computer model of Steller sea lion bioenergetics has helped to understand the relationship between energy intake and expenditures. The model integrates diet information with empirically-derived data on the costs of particular parameters of the sea lion's energy budget (Winship 2000). Experiments with captive sea

lions have provided data on the costs (including variation and interaction) associated with standard metabolism, swimming, foraging, and thermoregulation. These studies have also been instrumental in testing and developing techniques for measuring energy expenditure in wild sea lions (e.g., heart rate).

Metabolic studies with fasted or food-restricted sea lions have documented the degree to which bioenergetic adaptations (e.g., metabolic depression, changes in activity) can compensate for decreased energy intake. When fasted or on a low-energy diet, the sea lions displayed a decrease in metabolism proportional to changes in body mass (Rosen and Trites 1998), typical of a 'fasting response'. While this metabolic depression was significant (<30%), it was not sufficient to preclude loss of body mass. In contrast, the sea lions exhibited a 'foraging response', characterized by increased activity and no metabolic depression, during food restriction trials. We are investigating further the criteria that trigger these alternate energetic strategies.

Intake of essential or detrimental elements

One aspect of the nutritional stress hypothesis suggests that sea lion health is being negatively affected because their diet does not provide adequate levels of unspecified essential elements. An alternate hypothesis proposes that the diet is providing too much of an element that is detrimental to sea lion health. We have begun to investigate both of these possibilities by evaluating the composition of key prey items, and by documenting the effect of different prey items on animal health. Both avenues are key to the investigation: chemical analyses of prey can help suggest which physiological effects to monitor, and vice-versa.

Given that a major difference between potential prey items is their lipid content, we have been specifically investigating the effects of a low-fat diet on sea lion condition and health. Initial results suggest that when sea lions are maintained on isocaloric pollock and herring diets for 6 weeks, they display similar changes in body mass. However, body lipid stores decrease faster when on a (low fat) pollock-only diet, although there may be additional factors (e.g., season, gender) which control body lipid levels.

There are numerous chemical analyses that can be performed on prey samples. We have concentrated our efforts on those elements we feel are most likely to impact Steller sea lions, including essential fatty acids and key vitamin complexes. The impact of these prey items has primarily been investigated through blood samples taken from sea lions while on different diets. For example, we are currently investigating whether a diet high in gadid species results in hematological abnormalities, as demonstrated with other mammals.

Given the constraints of studying long-lived species, we have used an alternate mammalian model to document the long-term effects of different diets on key life history parameters. Initial experiments have used rats on normal and lipid-enhanced pollock and herring based diets. Results confirm the need for increased pollock intake, but also suggest that increased intake of pollock oil may negatively impact certain life history parameters (e.g., low birth weights) (C. Donnelly, UBC, unpubl. data).

Initial conclusions:

- The gross energy content of specific prey items can vary widely. Our experiments have affirmed that accurate calculations of the net energy of these prey items are essential to determining their biological energy value and for accurate estimates of prey requirements.
- Ingested food mass may be limiting the degree to which sea lions, particularly younger animals, can compensate for

- lower energy-density prey by increasing food intake. The frequency of feeding opportunities may also limit total food intake.
- Steller sea lions can alter their energy budgets to compensate for decreased energy intake, but the extent and duration of this ability is limited. There is also a clear differentiation between a physiological 'foraging' response and a 'fasting' response.
- There are preliminary indications that the nutritional quality of particular prey may be negatively impacting Steller sea lion health. Initial results from sea lion and alternate models suggest both short-term (hematological changes, lipid stores) and long-term (reproductive success) effects.
- It is imperative to evaluate whether potential energetic or nutritional deficiencies incurred by an individual ultimately impact the life history parameters of the population.

References:

- Rosen, D.A.S., and Trites, A.W. 2000a. Pollock and the decline of Steller sea lions: testing the junk food hypothesis. Can. J. Zool. 78:1243-1250.
- Rosen, D.A.S., and Trites, A.W. 2000b. Digestive efficiency and dry-matter digestibility of Steller sea lions fed herring, pollock, squid, and salmon. Can. J. Zool. 78:234-239.
- Rosen, D.A.S., and Trites, A.W. 1999. Metabolic effects of low-energy diet on Steller sea lions, <u>Eumetopias jubatus</u>. Physiol. Biochem. Zool. 72:723-731.
- Rosen, D.A.S., and Trites, A.W. 1998. Changes in metabolism in response to varying energy intake in a marine mammal, the Steller sea lion. Proceedings of the Comparative Nutrition Society, Pp 182-187.
- Rosen, D.A.S., and Trites, A.W. 1997. Heat increment of feeding in Steller sea lions, <u>Eumetopias jubatus</u>. Comp. Biochem. Physiol. 118A:877-881.
- Winship, A.J. 2000. Growth and bioenergetic models for Steller sea lions (<u>Eumetopias jubatus</u>) in Alaska. M.Sc. thesis, Univ. British Columbia, Vancouver, BC.

SEASONAL DIET TRENDS AMONG THE WESTERN STOCK OF STELLER SEA LIONS ($EUMETOPIAS\ JUBATUS$) 1

Elizabeth Sinclair and Tonya Zeppelin

National Marine Mammal Laboratory 7600 Sand Point Way, NE, Seattle, WA 98115

corresponding author: Elizabeth Sinclair

phone: 206-526-6466 fax: 206-526-2615

e-mail: Beth.Sinclair@noaa.gov

¹This is an abstract from a manuscript being submitted to the *Journal of Mammalogy* for review, and contents are therefore subject to change. Please contact the authors for citation permission or additional information.

This study is based on scat (fecal) material collected throughout the 1990's on rookeries and haulouts across the range of the U.S. western stock of Steller sea lions. It is the first study to evaluate long-term regional trends in Steller sea lion diet and document long-term diet trends during winter months, a time considered to be important for juvenile survival.

Steller sea lion scats were collected (1990-1998) from 31 rookeries (May-September) and 31 haul-outs (December-April) across the U.S. range of the western stock resulting in a sample of 3,762 scats with identifiable prey remains. Fish (bones, scales, otoliths) and cephalopod (beaks) remains were identified using reference collection specimens and the relative 'importance' of each prey species was based on their frequency of occurrence (FO). Frequency of occurrence is calculated by dividing the number of scats in which a prey item occurred by the total number of scats that contained identifiable prey. Frequency of occurrence values combined across years, seasons, and sites depict walleye pollock (*Theragra chalcogramma*) and Atka mackerel (*Pleurogrammus monopterygius*) as the two dominant prey species, followed by Pacific salmon (Salmonidae) and Pacific cod (Gadus macrocephalus). Other primary prey species consistently occurring at frequencies of 5% or greater included arrowtooth flounder (Atheresthes stomias), Pacific herring (Clupea pallasi), Pacific sandlance (Ammodytes hexapterus), Irish lord (Hemilepidotus sp.), and cephalopods (squid and octopus). Species that occurred among the top three prey items on select islands included: snailfish (Liparididae), rock greenling (Hexagrammos lagocephalus), kelp greenling (Hexagrammos decagrammus), sandfish (Trichodon trichodon), rock sole (Lepidopsetta bilineata), northern smoothtongue (*Leuroglossus schmidti*), skate (Rajidae), and smelt (Osmeridae).

Sites where the frequency of occurrence of prey species were most similar were identified using Principal Components and Agglomerative Hierarchical Cluster Analysis resulting in regions of diet similarity. These newly defined diet regions were used to compare regional and seasonal differences in prey. The diet divisions closely parallel those defined as metapopulations based on patterns in population decline by York et al. (1996). To be consistent, the regional names defined by York et al. (1996) are used here.

Chi-square analysis demonstrated significantly (P = 0.01) strong seasonal patterns in diet within each of the defined diet regions (island groupings as defined by cluster analysis). Pacific cod FO was significantly larger in winter in every region. Salmon FO was significantly lower during winter in the western Gulf of Alaska through the eastern Aleutian Islands, and higher in winter throughout the central and western Aleutian Islands. In the western Gulf, where arrowtooth flounder is most abundant in scats and well represented year-round, its FO was significantly lower in winter. Atka mackerel was significantly lower in the winter in the central and western Aleutians where it is the dominant prey species year-round. Forage fishes (herring and Pacific sand lance) are significantly different between seasons, however, there is no general trend among the regions. Walleye pollock is an important prey year-round in all regions up to the central Aleutian Islands where it is replaced by Atka mackerel. Likewise, cephalopod FO was not significantly different between seasons in any Region. Irish lord FO was generally higher in winter than in summer and though rarely occurring during summer and not included in Chi-square analysis, sandfish and snailfish have relatively high occurrences during the winter across all regions.

Based on the prey matrix described here and in earlier studies (Fiscus and Baines 1966, Pitcher 1981, Calkins 1998) Steller sea lions specialize feeding throughout the water column in the epipelagic (herring), demersal (arrowtooth flounder), and semi-demersal (pollock, Atka mackerel) zones. While

the size of prey consumed undoubtedly varies with the age and sex of sea lion sampled, the remains of primary prey represented in this study are largely from adult fish (Zeppelin et al. *in prep*). The seasonal and regional patterns in prey consumption by Steller sea lions presented in this study, along with known distributions of their primary prey, indicate that Steller sea lions target prey when they are densely schooled in spawning aggregation near shore (over or near the continental shelf) or along oceanographic boundary zones. This is true in summer when collected scats are primarily from adult females, and in winter when scats are presumably from some increased proportion of juveniles and adult males as well as females.

Based on the close parallel of these data with those of metapopulation patterns of decline (York et al. 1996), we suggest that regional diet patterns reflect regional foraging strategies learned at or near the natal rookery site on seasonally dense prey patches characteristic of that area. These data do not reflect Steller sea lion diet during periods when they are foraging at distant pelagic feeding sites, nor do they reflect diet outside the range of the U.S. western stock.

CITATIONS

- Calkins, D.G. 1998. Prey of Steller sea lions in the Bering Sea. Biosphere Conservation 1(1):33-44. Fiscus, C.H. and G.A. Baines 1966. Food and feeding behavior of Steller and California sea lions. J. Mammal 42:218-223.
- Pitcher, K.W. 1981. Prey of the Steller sea lion, *Eumetopias jubatus*, in the Gulf of Alaska. Fishery Bulletin, US, 79:467-472.
- York, A.E., R.L. Merrick, and T.R. Loughlin. 1996. An analysis of the Steller sea lion metapopulation in Alaska, p. 259-292. *In* Metapopulations and Wildlife Conservation and Management (D. McCullough, ed.). Island Press, Covelo, California, 432 pp.
- Zeppelin, T.K., K.A. Call, and T. Orchard. *In prep*. Size of prey consumed by Steller sea lions (*Eumetopias jubatus*) in the Gulf of Alaska and Aleutian Islands.