GREET 1.5 — Transportation Fuel-Cycle Model Volume 1: Methodology, Development, Use, and Results

Argonne National Laboratory

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government, and operated by the University of Chicago under the provisions of a contract with the Department of Energy.

This technical report is a product of Argonne's Energy Systems Division. For information on the division's scientific and engineering activities, contact:

Director, Energy Systems Division Argonne National Laboratory Argonne, Illinois 60439-4815 Telephone (630) 252-3724

Publishing support services were provided by Argonne's Information and Publishing Division (for more information, see IPD's home page: http://www.ipd.anl.gov/).

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161. ANL/ESD-39, Vol. 1

GREET 1.5 — Transportation Fuel-Cycle Model Volume 1: Methodology, Development, Use, and Results

by M.Q. Wang

Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

August 1999

GREET — Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation

Work sponsored by the United States Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies

Contents

No	otation		XV
Fo	rewor	d	xix
Ac	know	ledgments	XX
Ał	ostract		1
1	Intro	duction	3
2	Revi	ew of Previous Fuel-Cycle Studies	5
	2.1	Delucchi 1991, 1993	5
	2.2	National Renewable Energy Laboratory et al. 1991, 1992	6
	2.3	Bentley et al. 1992	7
	2.4	Brogan and Venkateswaran 1992	8
	2.5	Ecotraffic, AB 1992	9
	2.6	Wang and Santini 1993	10
	2.7	Darrow 1994a, 1994b	10
	2.8	Acurex 1996	12
	2.9	Delucchi 1997	13
	2.10		13
	2.11	Sheehan et al. 1998	14
		Summary	15
3	Mod	eling Approach	16
	3.1	Fuel Cycles and Their Stages	16
	3.2	Vehicle Types	18
	3.3	Calculation of Energy Use and Emissions of Upstream Stages	19
		3.3.1 Calculation of Energy Use for an Upstream Stage	19
		3.3.2 Calculation of Emissions for an Upstream Stage	21
		3.3.3 Consideration of Energy Use and Emissions of Upstream Stages	
		for a Fuel Cycle	26
		3.3.4 Aggregation of Energy Use and Emissions of Individual Upstream	
		Stages for a Fuel Cycle	27
		3.3.5 Energy Use and Emissions of Vehicle Operations	28
		3.3.6 Total Fuel-Cycle Energy Use and Emissions for a Combination	
		of Fuel and Vehicle Type	30

Volume 1: Methodology, Development, Use, and Results

Contents (Cont.)

		3.3.7 Total and Urban Emissions for Five Criteria Pollutants	30
		3.3.8 Summary: Results of Fuel-Cycle Energy Use and Emissions	
		Calculated with GREET	32
4	Para	metric Assumptions and Their Data Sources	34
	4.1	Petroleum-Based Fuel Cycles	34
		4.1.1 Petroleum Recovery	36
		4.1.2 Crude Transportation and Storage	39
		4.1.3 Crude Refining	40
		4.1.4 Production of Oxygenates	41
		4.1.5 Transportation, Storage, and Distribution of Petroleum Products	44
	4.2	Natural-Gas-Based Fuel Cycles	44
		4.2.1 Brief Description of the Natural Gas Industry	44
		4.2.2 System Descriptions and Energy Efficiencies of Natural	
		Gas-Based Fuel Cycles	46
		4.2.3 Summary of Energy Efficiencies of Natural Gas-Based Cycles	55
		4.2.4 CH ₄ Emissions during Natural Gas Production and Transportation	56
		4.2.5 Noncombustion Emissions during Natural Gas Processing	
		and Production of Natural Gas-Based Fuels	60
		4.2.6 Potential Steam Co-Generation in Methanol, H ₂ , DME,	
		and FTD Plants	62
	4.3	Ethanol Production Cycles	63
		4.3.1 Fuel and Chemicals Used for Corn and Biomass Production	63
		4.3.2 Energy Use and Emissions of Transporting Corn and Biomass	
		from Farms to Ethanol Plants	65
		4.3.3 Energy Use of Manufacturing Fertilizers and Pesticides	66
		4.3.4 Energy Use of Transporting Fertilizers and Pesticides	
		from Manufacturing Plants to Farms	68
		4.3.5 Ethanol Production	69
		4.3.6 N_2O and NO_x Emissions from Nitrification and Denitrification	
		of Nitrogen Fertilizer	76
		4.3.7 CO ₂ Emissions or Sequestration from Potential Land Use Changes	-
		for Ethanol Production.	78
		4.3.8 Ethanol Transportation, Storage, and Distribution	80
	4.4	Biodiesel Production	80
		4.4.1 Soybean Farming	80
		4.4.2 Soybean Oil Extraction	82
	4 7	4.4.3 Soy Oil Transesterification	83
	4.5	Coal to Electricity	85
		4.5.1 Energy Efficiencies	86
	1 -	4.5.2 Noncombustion Emissions	86
	4.6	Uranium to Electricity	86

 \bigcirc

Contents (Cont.)

	4.7	Landfill Gases to Methanol	87
		4.7.1 Energy Efficiencies	87
		4.7.2 Emission Credits for Methanol Production	87
	4.8	Electricity Generation	87
		4.8.1 Combustion Technologies	88
		4.8.2 Power Plant Conversion Efficiencies	88
		4.8.3 Natural Gas-Fired Combined-Cycle Gas Turbines	90
		4.8.4 Electric Generation Mixes	91
	4.9	Vehicle Operations	94
		4.9.1 Alternative Fuels and Vehicle Technologies Included in GREET	94
		4.9.2 Gasoline Vehicles Fueled with Reformulated Gasoline	97
		4.9.3 Compressed Natural Gas Vehicles	100
		4.9.4 Methanol Vehicles.	103
		4.9.5 Ethanol Vehicles	104
		4.9.6 Liquefied Petroleum Gas Vehicles	105
		4.9.7 Other Vehicle Types	105
		4.9.8 Summary	108
5	Mod	el Layout	115
6	Fuel	-Cycle Energy Use and Emissions Results	123
	61	Neer and Long Term Alternative Evels and Vakiala Technologies	123
	6.1 6.2	Near- and Long-Term Alternative Fuels and Vehicle Technologies Mobile 5b and Part 5 Runs	125
	6.2	Contribution of Each Stage to Fuel-Cycle Energy Use and Emissions	127
	0.5	6.3.1 Near-Term Technologies	132
		6.3.2 Long-Term Technologies	132
	6.4	Per-Mile Energy Use and Emissions Results	138
	0.4	6.4.1 Near-Term Technologies	140
		6.4.2 Long-Term Technologies	147
	6.5	Summary	202
	0.5	Summary	202
7	Refe	rences	204

Volume 2: Appendices of Data and Results

Appendix A:	Emission Factors of Fuel Combustion	3
Appendix B:	Per-Mile Fuel-Cycle Energy Use and Emissions	7
Appendix C:	Graphic Presentation of Changes in Per-Mile Fuel-Cycle Energy Use and Emissions by Use of Alternative-Transportation Fuels and Advanced Vehicle Technologies: Light-Duty Trucks 1 and Light-Duty Trucks 2	

Volume 2: Appendices of Data and Results (Cont.)

Appendix D: Chang	es in Per-Mile Fu	el-Cycle Energy	Use and Emissions	165
-------------------	-------------------	-----------------	-------------------	-----

Figures

3.1	Flowchart of a Total Energy-Cycle Analysis	17
3.2	Closed-Loop Calculations of Upstream Energy Use and Emissions in GREET: Diesel Fuel Use in the Petroleum-to-Diesel Fuel Cycle	27
4.1	Stages Included in Renewable Ethanol Cycles	64
4.2	Historical Corn Productivity: Bushels of Corn Produced per Pound of Fertilizer Applied	65
4.3	Historical Estimates of Energy Use in Ethanol Plants	71
5.1	GREET's Logistics for Upstream Energy Use and Emissions Calculations	117
6.1	Shares of Fuel-Cycle Energy Use and Emissions by Stage: Converted Gasoline Vehicles	133
6.2	Shares of Fuel-Cycle Energy Use and Emissions by Stage: CIDI Diesel Vehicles	133
6.3	Shares of Fuel-Cycle Energy Use and Emissions by Stage: Dedicated CNG Vehicles	134
6.4	Shares of Fuel-Cycle Energy Use and Emissions by Stage: Methanol FFVs Fueled with M85	135
6.5	Shares of Fuel-Cycle Energy Use and Emissions by Stage: LPG Vehicles	135
6.6	Shares of Fuel-Cycle Energy Use and Emissions by Stage: Ethanol FFVs Fueled with E85 Produced from Corn	136
6.7	Shares of Fuel-Cycle Energy Use and Emissions by Stage: Battery-Powered EVs	137
6.8	Shares of Fuel-Cycle Energy Use and Emissions by Stage: Grid-Connected HEVs, ICEs Fueled with RFG	137

6.9	Shares of Fuel-Cycle Energy Use and Emissions by Stage: Grid-Independent HEVs, ICEs Fueled with RFG	138
6.10	Shares of Fuel-Cycle Energy Use and Emissions by Stage: Grid-Independent HEVs, ICEs Fueled with CD	139
6.11	Shares of Fuel-Cycle Energy Use and Emissions by Stage: CIDI Vehicles Fueled with FT50	140
6.12	Shares of Fuel-Cycle Energy Use and Emissions by Stage: CIDI Vehicles Fueled with BD20	140
6.13	Shares of Fuel-Cycle Energy Use and Emissions by Stage: CIDI Vehicles Fueled with DME	141
6.14	Shares of Fuel-Cycle Energy Use and Emissions by Stage: Grid-Connected HEVs, ICEs Fueled with CNG	141
6.15	Shares of Fuel-Cycle Energy Use and Emissions by Stage: Grid-Independent HEVs, ICEs Fueled with NG	143
6.16	Shares of Fuel-Cycle Energy Use and Emissions by Stage: FCVs Fueled with H ₂ Produced from NG	143
6.17	Shares of Fuel-Cycle Energy Use and Emissions by Stage: FCVs Fueled with H_2 from Solar Energy	144
6.18	Shares of Fuel-Cycle Energy Use and Emissions by Stage: FCVs Fueled with Methanol	144
6.19	Shares of Fuel-Cycle Energy Use and Emissions by Stage: FCVs Fueled with RFG	145
6.20	Shares of Fuel-Cycle Energy Use and Emissions by Stage: FCVs Fueled with Ethanol	145
6.21	Shares of Fuel-Cycle Energy Use and Emissions by Stage: FCVs Fueled with CNG	146
6.22	Changes in Fuel-Cycle Total Energy Use Relative to GVs Fueled with CG: Near-Term Technologies	148
6.23	Changes in Fuel-Cycle Fossil Energy Use Relative to GVs Fueled with CG: Near-Term Technologies	149

 \wedge

6.24	Changes in Fuel-Cycle Petroleum Use Relative to GVs Fueled with CG: Near-Term Technologies	150
6.25	Changes in Fuel-Cycle GHG Emissions Relative to GVs Fueled with CG: Near-Term Technologies	152
6.26	Changes in Fuel-Cycle VOC Emissions Relative to GVs Fueled with CG: Near-Term Technologies	153
6.27	Changes in Fuel-Cycle CO Emissions Relative to GVs Fueled with CG: Near-Term Technologies	154
6.28	Changes in Fuel-Cycle NO _x Emissions Relative to GVs Fueled with CG: Near-Term Technologies	155
6.29	Changes in Fuel-Cycle PM ₁₀ Emissions Relative to GVs Fueled with CG: Near-Term Technologies	157
6.30	Changes in Fuel-Cycle SO _x Emissions Relative to GVs Fueled with CG: Near-Term Technologies	158
6.31	Changes in Fuel-Cycle Total Energy Use Relative to GVs Fueled with RFG: Long-Term SI and SIDI Vehicles	160
6.32	Changes in Fuel-Cycle Total Energy Use Relative to GVs Fueled with RFG: Long-Term SI and SIDI HEVs	161
6.33	Changes in Fuel-Cycle Total Energy Use Relative to GVs Fueled with RFG: Long-Term CIDI Vehicles and CIDI HEVs	162
6.34	Changes in Fuel-Cycle Total Energy Use Relative to GVs Fueled with RFG: Long-Term EVs and FCVs	163
6.35	Changes in Fuel-Cycle Fossil Energy Use Relative to GVs Fueled with RFG: Long-Term SI and SIDI Vehicles	164
6.36	Changes in Fuel-Cycle Fossil Energy Use Relative to GVs Fueled with RFG: Long-Term SI and SIDI HEVs	165
6.37	Changes in Fuel-Cycle Fossil Energy Use Relative to GVs Fueled with RFG: Long-Term CIDI Vehicles and CIDI HEVs	166
6.38	Changes in Fuel-Cycle Fossil Energy Use Relative to GVs Fueled with RFG: Long-Term EVs and FCVs	167

6.39	Changes in Fuel-Cycle Petroleum Use Relative to GVs Fueled with RFG: Long-Term SI and SIDI Vehicles	169
6.40	Changes in Fuel-Cycle Petroleum Use Relative to GVs Fueled with RFG: Long-Term SI and SIDI HEVs	170
6.41	Changes in Fuel-Cycle Petroleum Use Relative to GVs Fueled with RFG: Long-Term CIDI Vehicles and CIDI HEVs	171
6.42	Changes in Fuel-Cycle Petroleum Use Relative to GVs Fueled with RFG: Long-Term EVs and FCVs	172
6.43	Changes in Fuel-Cycle CO ₂ -Equivalent GHG Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI Vehicles	174
6.44	Changes in Fuel-Cycle CO ₂ -Equivalent GHG Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI HEVs	175
6.45	Changes in Fuel-Cycle CO ₂ -Equivalent GHG Emissions Relative to GVs Fueled with RFG: Long-Term CIDI Vehicles and CIDI HEVs	176
6.46	Changes in Fuel-Cycle CO ₂ -Equivalent GHG Emissions Relative to GVs Fueled with RFG: Long-Term EVs and HEVs	177
6.47	Changes in Fuel-Cycle Total and Urban VOC Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI Vehicles	179
6.48	Changes in Fuel-Cycle Total and Urban VOC Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI HEVs	180
6.49	Changes in Fuel-Cycle Total and Urban VOC Emissions Relative to GVs Fueled with RFG: Long-Term CIDI Vehicles and CIDI HEVs	181
6.50	Changes in Fuel-Cycle Total and Urban VOC Emissions Relative to GVs Fueled with RFG: Long-Term EVs and FCVs	182
6.51	Changes in Fuel-Cycle Total and Urban CO Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI Vehicles	183
6.52	Changes in Fuel-Cycle Total and Urban CO Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI HEVs	184
6.53	Changes in Fuel-Cycle Total and Urban CO Emissions Relative to GVs Fueled with RFG: Long-Term CIDI Vehicles and CIDI HEVs	185

 Δ

6.54	Changes in Fuel-Cycle Total and Urban CO Emissions Relative to GVs Fueled with RFG: Long-Term EVs and FCVs	186
6.55	Changes in Fuel-Cycle Total and Urban NO _x Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI Vehicles	188
6.56	Changes in Fuel-Cycle Total and Urban NO _x Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI HEVs	189
6.57	Changes in Fuel-Cycle Total and Urban NO _x Emissions Relative to GVs Fueled with RFG: Long-Term CIDI Vehicles and CIDI HEVs	190
6.58	Changes in Fuel-Cycle Total and Urban NO _x Emissions Relative to GVs Fueled with RFG: Long-Term EVs and FCVs	191
6.59	Changes in Fuel-Cycle Total and Urban PM ₁₀ Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI Vehicles	193
6.60	Changes in Fuel-Cycle Total and Urban PM ₁₀ Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI HEVs	194
6.61	Changes in Fuel-Cycle Total and Urban PM ₁₀ Emissions Relative to GVs Fueled with RFG: Long-Term CIDI Vehicles and CIDI HEVs	195
6.62	Changes in Fuel-Cycle Total and Urban PM ₁₀ Emissions Relative to GVs Fueled with RFG: Long-Term EVs and FCVs	196
6.63	Changes in Fuel-Cycle Total and Urban SO _x Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI Vehicles	198
6.64	Changes in Fuel-Cycle Total and Urban SO _x Emissions Relative to GVs Fueled with RFG: Long-Term SI and SIDI HEVs	199
6.65	Changes in Fuel-Cycle Total and Urban SO _x Emissions Relative to GVs Fueled with RFG: Long-Term CIDI Vehicles and CIDI HEVs	200
6.66	Changes in Fuel-Cycle Total and Urban SO _x Emissions Relative to GVs Fueled with RFG: Long-Term EVs and FCVs	201

Tables

3.1	Fuel Cycles Included in GREET 1.5	18
3.2	Vehicle Types Included in Series 1 and 3 GREET Models	19
3.3	Fuel Specifications	25
3.4	Global Warming Potentials of Greenhouse Gases	32
4.1	Specifications of Conventional and Reformulated Gasoline	35
4.2	1996 Domestic Production and Importation of Crude Oil and Its Products	36
4.3	Energy Efficiencies of Petroleum-Based Fuel-Cycle Stages	37
4.4	Shares of Process Fuels for Each Stage	38
4.5	1996 U.S. Refining Product Outputs	40
4.6	Properties of Four Oxygenates	42
4.7	Energy and Material Inputs for Production of MTBE, TAME, and ETBE	43
4.8	Natural Gas Production and Field Usage in the United States	45
4.9	Natural Gas Consumption in the United States	45
4.10	Worldwide Natural Gas Production and Flaring	55
4.11	Energy Efficiencies of Natural Gas Fuel-Cycle Stages	56
4.12	Process Fuel Shares of Natural Gas Fuel-Cycle Stages	57
4.13	CH ₄ Emissions from Natural Gas Fuel-Cycle Stages	58
4.14	CO ₂ Emissions from Production of Methanol, H ₂ , DME, and FTD	61
4.15	Net Conversion Efficiencies of and Steam Generation in Methanol, H ₂ , DME, and FTD Plants	62
4.16	Energy and Chemical Use for Corn Farming	64
4.17	Energy and Chemical Use for Biomass Farming	66
4.18	Energy Use and Fuel Shares for Fertilizer Manufacture	67

 Δ

Tables (Cont.)

4.19	Energy Use and Fuel Shares for Pesticide Manufacture	68
4.20	Key Assumptions and Results of Energy Use for Transportation of Chemicals	69
4.21	Energy Use and Process Fuel Shares for Corn-to-Ethanol Production at Ethanol Plants	70
4.22	Comparison of Energy Use and Emissions Allocation between Ethanol and Coproducts in Corn Ethanol Plants	73
4.23	Coproduct Production Rates in Ethanol Plants	74
4.24	Coproduct Displacement Ratios	74
4.25	Feedstock Requirements, Energy Use, and Electricity Generation Credits in Cellulosic Ethanol Plants	75
4.26	U.S. Soybean Production and Deposition	81
4.27	Usage Intensity of Fertilizer, Energy, and Pesticide for Soybean Farming	82
4.28	Inputs and Outputs of Soybean Oil Extraction Plants	83
4.29	Split of Energy Use and Emissions between Soybean Oil and Soybean Meal	84
4.30	Inputs and Outputs of Biodiesel Plants with the Transesterification Process	84
4.31	Split of Energy Use and Emissions between Biodiesel and Glycerine	85
4.32	Emissions Rates of Three Types of Coal-Fired Power Plants	88
4.33	Energy Conversion Efficiencies of Electric Power Plants	89
4.34	Electric Generation Mixes of Various U.S. Regions in 2005 and 2015	92
4.35	Near- and Long-Term Vehicle Technology Options for Passenger Cars, Light-Duty Trucks 1, and Light-Duty Trucks 2	95
4.36	Specifications of California Phase 2 Reformulated Gasoline	97
4.37	Changes in Fuel Economy and Emissions by Use of Reformulated Gasoline: Test Results	99
4.38	Reductions in Emissions and Fuel Economy by Use of Reformulated Gasoline: Regulatory Specifications	100

Tables (Cont.)

4.39	Changes in Fuel Economy and Emissions by Use of Compressed Natural Gas Vehicles	101
4.40	Changes in Fuel Economy and Emissions by Use of M85 Flexible-Fuel Vehicles	104
4.41	Changes in Fuel Economy and Emissions by Use of E85 Flexible-Fuel Vehicles	105
4.42	Changes in Fuel Economy and Emissions by Use of Liquefied Petroleum Gas Vehicles	106
4.43	Changes in Fuel Economy and Emissions by Use of DME in Compression-Ignition Engines	108
4.44	Fuel Economy Changes of 1999 MY Alternative-Fuel Vehicle Models	110
4.45	Changes in Fuel Economy and Emissions by Various Vehicle Types: Passenger Cars and Light-Duty Trucks 1	111
4.46	Changes in Fuel Economy and Emissions by Various Vehicle Types: Light-Duty Trucks 2	113
6.1	Tier 1 and NLEV Emission Standards for Light-Duty Vehicles and Trucks	124
6.2	Key Parametric Assumptions for Near- and Long-Term Technologies	126
6.3	Proposed Tier 2 Vehicle Emissions Standards for Passenger Cars and Light-Duty Trucks	128
6.4	Fuel Economy and Emissions Rates of Baseline Gasoline and Diesel Vehicles	129
6.5	Reductions in Emissions Standards for Tier 2 Vehicles Relative to LEVs	130

Acronyms and Abbreviations

AEO98	1998 Annual Energy Outlook		
AFV	alternative-fuel vehicle		
AQIRP	Auto/Oil Air Quality Improvement Research Program		
ATR	autothermal reforming		
BD	biodiesel		
BD20	mixture of 20% biodiesel and 80% conventional diesel by volume		
CAAA	Clean Air Act Amendments		
CAFE	corporate average fuel economy		
CARB	California Air Resources Board		
CARFG1	California Phase 1 reformulated gasoline		
CARFG2	California Phase 2 reformulated gasoline		
CD	conventional diesel		
CG	conventional gasoline		
CH_4	methane		
CI	compression ignition		
CI-AFV	compression-ignition alternative fuel vehicles		
CIDI	compression ignition, direct injection		
CNG	compressed natural gas		
CNGV	compressed natural gas vehicle		
CO	carbon monoxide		
CO_2	carbon dioxide		
DDGS	distillers' dried grains and solubles		
DGS	distillers' grains and solubles		
DI	direct injection		
DME	dimethyl ether		
DMM	dimethoxy methane		
DOE	U.S. Department of Energy		
DV	diesel vehicle		
E10	mixture of 10% ethanol and 90% gasoline by volume		
E85	mixture of 85% ethanol and 15% gasoline by volume		
E90	mixture of 90% ethanol and 10% gasoline by volume		
E95	mixture of 95% ethanol and 5% gasoline by volume		
EF	emission factor		
EIA	Energy Information Administration		
EPA	U.S. Environmental Protection Agency		
ETBE	ethyl tertiary butyl ether		
EtOH	ethanol		
EV	electric vehicle		

Electric Vehicle Total Energy Cycle Analysis EVTECA fuel-cell vehicle FCV FFV flexible-fuel vehicle FG flared gas FRFG1 federal Phase 1 reformulated gasoline FRFG2 federal Phase 2 reformulated gasoline FTD Fischer-Tropsch diesel mixture of 50% Fischer-Tropsch diesel and 50% diesel by volume FT50 FTP federal test procedure federal urban driving schedule **FUDS** grid connected GC GHG greenhouse gas grid independent GI Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation GREET Gas Research Institute GRI GV gasoline vehicle GVW gross vehicle weight GVWR gross vehicle weight rating GWP global warming potential H_2 hydrogen hydrogen sulfide H_2S HC hvdrocarbon formaldehyde HCHO HDT heavy-duty truck hybrid electric vehicle HEV high heating value HHV HLDT heavy light-duty truck IGCC integrated gasification with combined cycle internal combustion engine ICE ICEV internal combustion engine vehicle inspection and maintenance I/M Idaho National Engineering and Environmental Laboratory INEEL Intergovernment Panel on Climate Change IPCC potassium oxide (potash) K_2O LCA life-cycle analysis LDGT1 light-duty gasoline truck 1 with a gross vehicle weight of up to 6,000 lb light-duty gasoline truck 2 with a gross vehicle weight of 6,001–8,500 lb LDGT2 light-duty truck with gross vehicle weight of 0-8,500 lb LDT LDT1 light-duty truck 1 with gross vehicle weight of 0-6,000 lb light-duty truck 2 with gross vehicle weight of 6,001–8,500 lb LDT2 LEBS low emission boiler systems LEV low-emissions vehicle LHV low heating value light light-duty truck LLDT liquefied natural gas LNG liquefied petroleum gas LPG

LPGV	liquefied petroleum gas vehicle		
M85	mixture of 85% methanol and 15% gasoline by volume		
M90	mixture of 90% methanol and 10% gasoline by volume		
M95	mixture of 95% methanol and 5% gasoline by volume		
M193 M100	· ·		
MeOH	100% methanol by volume (pure methanol) methanol		
MSW	municipal solid waste		
MTBE	methyl tertiary butyl ether		
MY	model year		
N	elemental nitrogen		
N_2O	nitrous oxide		
N_2O-N	nitrogen in N ₂ O		
Na/S	sodium/sulfur		
NaOH	sodium hydroxide		
NG	natural gas		
NH ₃	ammonia		
NLEV	National Low-Emission Vehicle		
NMHC	nonmethane hydrocarbon		
NMOG	nonmethane organic gas		
NO	nitrogen oxide		
NO ₃ ⁻	nitrate		
NO_3 -N	nitrogen in nitrate		
NO _x	nitrogen oxides		
NREL	National Renewable Energy Laboratory		
NSPS	New Source Performance Standards		
OBDII	stage 2 on-board diagnosis system		
OEM	original equipment manufacturer		
PFB/CC	pressurized fluidized-bed combustion with combined cycle		
PM	particulate matter		
PM_{10}	particulate matter with diameters of 10 micrometers or less		
POX	partial oxidation		
P_2O_5	phosphate		
REP05	representative cycle No. 5		
RFD	reformulated diesel		
RFG	reformulated gasoline		
ROG	reactive organic gas		
RVP	Reid vapor pressure		
SCAQMD	South Coast Air Quality Management District		
SI	spark ignition		
SI-AFV	spark-ignition alternative fuel vehicle		
SIDI	spark-ignition, direct-injection		
SMR	steam methane reforming		
SO_2	sulfur dioxide		
SO _x	sulfur oxides		
SULEV	super ultra-low emission vehicle		
T50	temperature at which 50% of gasoline is vaporized		

T90	temperature at which 90% of gasoline is vaporized
T&S	transportation and storage
T&S&D	transportation, storage, and distribution
TAME	tertiary amyl methyl ether
TECA	total energy-cycle analysis
THC	total hydrocarbon
ULEV	ultra-low emission vehicle
USDA	U.S. Department of Agriculture
VFV	variable-fuel vehicle
VMT	vehicle miles traveled
VOC	volatile organic compound
ZnO	zinc oxide
ZnS	zinc sulfide

Units of Measure

bbl	barrel
Btu	British thermal unit
bu	bushel
d	day
ft^3	cubic foot
g	gram
gal	gallon
GJ	giga joule
ha	hectare
kcal	kilocalorie
kg	kilogram
kWh	kilowatt-hour
L	liter
lb	pound
mi	mile
mpg	miles per gallon
mpgeg	miles per gasoline-equivalent gallon
nm ³	normal cubic meter
ppm	parts per million
ppmw	parts per million weight
psi	pounds per square inch
scf	standard cubic foot
yr	year

This report is a revision to a previous Argonne National Laboratory report entitled *GREET 1.0* — *Transportation Fuel Cycles Model: Methodology and Use* (dated June 1996). The 1996 report documented the methodologies, key assumptions, and results of the development and use of the first version of the Greenhouse Gases, **R**egulated Emissions, and Energy Use in **T**ransportation (GREET) fuel-cycle model developed at Argonne National Laboratory. Since then, the GREET 1.0 model has been significantly expanded and improved. The model has evolved into three modules (each comprising a series of versions): the first module covers fuel-cycle energy and emissions of passenger cars and light-duty trucks (GREET 1.1, GREET 1.2, etc.); the second covers vehicle-cycle energy and emissions of passenger cars and light-duty trucks (GREET 2.1, GREET 2.2, etc.); and the third module covers fuel-cycle energy and emissions of heavy-duty trucks (gross vehicle weight over 8,500 pounds) (GREET 3.1, GREET 3.2, etc.).

In September 1998, GREET 1.4 was released with a draft report documenting its development. The model was posted at Argonne's transportation website at www.transportation.anl.gov/ttrdc/publications/papers_reports/techassess/ta_papers.html, and the draft report was sent to reviewers for comment. Since then, significant revisions and expansions have been made to both the report and the model. The current version of the 1-series model is GREET 1.5. This report documents the development and use of GREET 1.5. It includes portions of the 1996 report that have few changes (e.g., the introduction and review of previous fuel-cycle studies) to eliminate the need for readers to refer to the previous report. It also reflects reviewers' comments on the August 1998 draft report.

This report is separated into two volumes. Volume 1 presents GREET 1.5 development and use and discussions of fuel-cycle energy and emission results for passenger cars. Volume 2, comprising four appendices, presents detailed fuel-cycle results for passenger cars, light-duty trucks 1, and light-duty trucks 2.

Acknowledgments

This work was supported by the Office of Transportation Technologies, U.S. Department of Energy (DOE). The author sincerely thanks Phillip Patterson, David Rodgers, and Paul McArdle of DOE's Office of Transportation Technologies for their funding and technical guidance and is grateful to his colleagues Linda Gaines, Hann Huang, Danilo Santini, Margaret Singh, and Frank Stodolsky of Argonne National Laboratory's Center for Transportation Research for their helpful comments and suggestions. The author thanks the following reviewers for providing comments on an early version of this report: Debby Adler of the U.S. Environmental Protection Agency, David Andress of Andress and Associates, Jeff Clark of the Natural Gas Vehicle Coalition, Mark Delucchi of the University of California at Davis, Roland Hwang of the Union of Concerned Scientists, Ben Knight of Honda Research and Development, Jason Mark of the Union of Concerned Scientists, Branch Russell of Syntroleum, and Toshi Suga of Honda Motor Company. The author also appreciates the efforts of Mary Fitzpatrick of Argonne's Information and Publishing Division in editing the report and Dongquan He of Argonne's Energy Systems Division in helping to complete the GREET calculations. The author is solely responsible for the content of this report.

This report was prepared by a contractor of the U.S. Government under contract no. W-31-109-ENG-38; the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Abstract

This report documents the development and use of the most recent version (Version 1.5) of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels and advanced vehicle technologies for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with diameters of 10 micrometers or less, and sulfur oxides) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates total energy consumption, fossil fuel consumption, and petroleum consumption when various transportation fuels are used. The GREET model includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, dimethyl ether, and Fischer-Tropsch diesel; and landfill gases to methanol. This report also presents the results of our analysis of fuelcycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies to be applied to passenger cars and light-duty trucks.

A

Alternative transportation fuels and advanced vehicle technologies are being promoted to help solve urban air pollution problems, reduce greenhouse gas (GHG) emissions, and relieve U.S. dependence on imported oil. To accurately and adequately evaluate the energy and emission effects of alternative fuels and vehicle technologies, researchers must consider emissions and energy use from upstream fuel production processes as well as from vehicle operations. This research area is especially important for technologies that employ fuels with distinctly different primary energy sources and fuel production processes, for which upstream emissions and energy use can be significantly different.

Studies were conducted to estimate fuel-cycle emissions and energy use associated with various transportation fuels and vehicle technologies. The results of those studies were influenced by the assumptions made by individual researchers regarding technology development, emission controls, primary fuel sources, fuel production processes, and many other factors. Because different methodologies and parametric assumptions were used by different researchers, it is difficult to compare and reconcile the results of different studies and to conduct a comprehensive evaluation of fuel-cycle emissions and energy use. Computer models for calculating emissions and energy use are needed to allow analysts and researchers to test their own methodologies and assumptions and make accurate comparisons of different technologies.

The Center for Transportation Research at Argonne National Laboratory has been conducting fuel-cycle analyses for various transportation fuels and vehicle technologies for the past 15 years. In 1996, with funding from the U.S. Department of Energy's (DOE's) Office of Transportation Technologies, Argonne developed a spreadsheet-based fuel-cycle model. The goal was to provide a simple computer tool that would allow researchers to evaluate fuel-cycle energy and emission impacts of various transportation technologies. Since its creation, the model has been used extensively by researchers at Argonne and other institutions to calculate the fuel-cycle energy requirements of and emissions from various alternative transportation fuels and advanced vehicle technologies. The model has evolved significantly since its introduction.

This report describes the development and use of the latest version of the Greenhouse Gases, **R**egulated Emissions, and Energy Use in Transportation (GREET) model (Version 1.5). The GREET 1.5 model calculates, for a given fuel/transportation technology combination, the fuel-cycle emissions of five criteria pollutants: volatile organic compounds (VOCs), carbon monoxide (CO), nitrogen oxides (NO_x), sulfur oxides (SO_x), and particulate matter with diameters of 10 micrometers or less (PM₁₀). The model also calculates the fuel-cycle emissions of greenhouse gases — primarily carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) — and the fuel-cycle consumption of total energy, fossil fuel, and petroleum. The model is designed to allow researchers to readily input their own assumptions and generate fuel-cycle energy and emission results for specific fuel/technology combinations.

This report comprises two volumes. Volume 1 addresses three areas of GREET development and use: (1) review of past and ongoing fuel-cycle studies; (2) methodologies, parametric assumptions, and data sources for the assumptions used in the GREET model; and (3) fuel-cycle energy and emission results for various fuel/technology combinations for passenger cars, as calculated by using the GREET model. Volume 2 contains four appendices that provide detailed fuel-cycle energy and emission results for passenger cars, light-duty trucks 1, and light-duty trucks 2.