Earth-Space Propagation Research in Canada

D.V. Rogers and R.L. Olsen Communications Research Centre

NAPEX XIX, Fort Collins, Colorado

14 June 1995

C

Communications Research Centre Centre de recherches sur les communications

PROPAGATION IMPAIRMENTS AFFECTING SATELLITE COMMUNICATION SYSTEMS

Impairment	Physical Cause	Prime Importance	
Signal attenuation, sky noise increases	Atmospheric gases, cloud, precipitation melting layer	Systems at f>10 GHz	
Signal depolarization	Raindrops, ice crystals	Dual-polar systems at 6/4 and 14/11 GHz	
Signal scintillations	Refractivity variations	Low-margin systems; low elevation angles; antenna tracking	
Refraction, atmospheric multipath	Atmospheric gases	Systems operating at low elevation angles; antenna tracking	
Reflection multipath, shadowing, blockage	Objects, vegetation on Earth's surface	Nobile-satellite services	
Propagation delays & delay variations	Free-space, variations in troposphere	TDMA & position- location systems; adaptive control	
Intersystem interference	Ducting, precipitation scatter, diffraction	6/4-GHz systems	

ſ

- I. UBC, Vancouver / ACTS Propagation Terminal:
 - Path elevation 29.4°, azimuth 150.4° CWN
 - ITU-R Rain Climate D (maritime)

II. Teleglobe, Montréal:

- Site diversity (separation 93.6 km)
- Path elevation 31.5°, azimuth 214° CWN

III. CRC, Ottawa:

- Path elevation 32.2°, azimuth 212.4° CWN
- Radiometers at 12/20/29.5 GHz
- Possible communication experiments with RADC

Clear-Sky Link Budgets/Ottawa

	<u>20.2 GHz</u>	<u>27.5 GHz</u>
Beacon EIRP (dBW), nominal	16.6	15.1
Free-space Loss (dB)	- 210.2	- 212.9
Clear-sky Loss (dB), nominal	- 0.8	- 0.7
Polarization Loss (dB)	- 0.2	- 0.1
Earth Terminal Pointing Loss (dB)	- 0.2	- 0.4
Modulation Loss (dB), nominal	- 3.2	0.0
Earth Terminal G/T (dB/K), nominal	20.0	20.0
Received Power (dBW)	<u>- 177.8</u>	<u>- 179.0</u>
1/k (dB-Hz K/W)	228.6	228.6
C/N ₀ (dB-Hz)	50.8	49.6
C/N in 65 Hz (dB)	32.7	31.5

Communications Research Centre Centre de recherches sur les communication

Melting-Layer Attenuation Event

Measured at Ottawa using COMSTAR 28-GHz Beacon and 16.5-GHz Polarimetric Radar

Transmission Loss with and without Melting Layer

.

حكح

Communications Research Centre

Centre de recherches sur les communications

38-GHz Low-Angle Fade/Scintillation Data Measured at Alert, N.W.T.

ſ

88

 $\left(\right)$

حكح

Communications Research Centre

Centre de recherches sur les communications

Low-Angle Fade Model Compared to Data

Comparison of model with average worst-month clear-air ______fading (3.2° elev. angle) Spitzbergen, Norway

