- NASA Contractor Report 178263

ICASE REPORT NO. 87-12

IC A SE

on LIPSCHITZ CONTINUITY OF

NONLINEAR DIFFERENTIAL OPERATORS

Stephen L. Keeling

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665
Operated by the Universities Space Research Association

nNSA

National Aeronautics and
Space Administration

Langley Research Center

Hampton, Virginia 23665

On Lipschitz Continuity of Nonlinear Differential Operators

Stephen L. Keeling*

Abstract

In connection with approximations for nonlinear evolution equations, it is standard to assume that nonlinear terms are at least locally Lipschitz continuous. However, it is shown here that $f=f(\mathbf{x}, \nabla u(\mathbf{x}))$ is Lipschitz continuous from the subspace $W^{1, \infty} \subset L_{2}$ into $W^{-1,2}$, and maps $W^{2, \infty}$ into $W^{1, \infty}$, if and only if f is affine with $W^{1, \infty}$ coefficients. In fact, a local version of this claim is proved.

[^0]
1 Introduction

This paper follows efforts to sharply estimate the convergence of some fully discrete approximations for semilinear parabolic partial differential equations [3]. At a certain point in the analysis, it is tempting to postulate that the semilinearity, viewed as a nonlinear operator, is Lipschitz continuous in a sense described below. However, it is proved here that this condition can hold if and only if the function in question is actually affine with respect to the argument for which Lipschitz continuity is assumed. Hence, while Lipschitz assumptions are standard in proving convergence of schemes for nonlinear evolution equations, generalizing them even very weakly to a function space setting may amount to linearizing the equation.

To establish some notation, suppose that Ω is a bounded domain in \mathbf{R}^{N}. For $1 \leq p \leq \infty$ and integers $m \geq 0$, let $W^{m, p}(\Omega)$ represent the well-known Sobolev spaces consisting of functions with distributional derivatives of order $\leq m$ in $L_{p}(\Omega)$. Also, $\|\cdot\| W^{m, p}(\Omega)$ denotes the usual norm. Next, let $C_{0}^{\infty}(\Omega)$ consist of infinitely differentiable functions with support compactly contained in Ω. Completing the latter with respect to $\|\cdot\|_{W^{m, p}(\Omega)}$ produces the spaces $W_{0}^{m, p}(\Omega)$. Then, for $1 \leq p<\infty, p^{-1}+q^{-1}=1$ and integers $m \geq 1$, define $W^{-m, q}(\Omega) \equiv W_{0}^{m, p}(\Omega)^{*}$ equipped with the norm:

$$
\|v\|_{W^{-m, q}(\Omega)} \equiv \sup _{u \in W_{0}^{m, p}(\Omega)}|(u, v)| /\|u\|_{W^{m, p}(\Omega)} \quad(u, v) \equiv \int_{\Omega} u(\mathbf{x}) v(\mathbf{x}) d \mathbf{x} .
$$

Finally, let $L_{p}^{N}(\Omega)$ represent a Cartesian product of $L_{p}(\Omega)$ normed in the natural way, e. g. :

$$
\|\mathbf{U}\|_{L_{\infty}^{N}(\Omega)} \equiv \max _{1 \leq i \leq N}\left\|U_{i}\right\|_{L_{\infty}(\Omega)}
$$

See Adams [1] for more details.
Now given a function $f: \mathbf{R}^{\mathbf{2 N}} \rightarrow \mathbf{R}$, the generalized local Lipschitz postulate which would permit a stronger convergence theorem in [3] is that for some $u \in W^{2, \infty}(\Omega)$, and $\rho>0$:

$$
\left\{\begin{array}{c}
\exists c_{\rho}>0 \quad \text { such that } \quad \forall U_{1}, U_{2} \in W^{1, \infty}(\Omega) \quad \text { satisfying } \quad \max _{m=1,2}\left\|\nabla U_{m}-\nabla u\right\|_{L_{\infty}^{N}(\Omega)} \leq \rho \tag{1.1.i}\\
\left\|f\left(\nabla U_{2}\right)-f\left(\nabla U_{1}\right)\right\|_{W^{-1,2}(\Omega)} \leq c_{\rho}\left\|U_{2}-U_{1}\right\|_{L_{2}(\Omega)} .
\end{array}\right.
$$

However, with the additional assumption:

$$
\left\{\begin{array}{c}
\forall v \in W^{2, \infty}(\Omega) \quad \text { satisfying } \quad\|\nabla v-\nabla u\|_{L_{\infty}^{N}(\Omega)} \leq \rho \tag{1.1.ii}\\
f(\mathbf{x}, \nabla v(\mathbf{x})) \in W^{1, \infty}(\Omega)
\end{array}\right.
$$

it is shown in section 3 that (1.1.i) and (1.1.ii) are actually equivalent to the following:

$$
\left\{\begin{array}{c}
\exists\left\{f_{m}(\mathbf{x})\right\}_{m=0}^{N} \subset W^{1, \infty}(\Omega), \quad \mathbf{f} \equiv\left\langle f_{1}, f_{2}, \ldots, f_{N}\right\rangle^{T} \tag{1.2}\\
\text { such that } \quad \forall w \in W^{1, \infty}(\Omega) \quad \text { satisfying } \quad\|\nabla w-\nabla u\|_{L_{\infty}^{N}(\Omega)} \leq \rho \\
f(\mathbf{x}, \nabla w(\mathbf{x}))=f_{0}(\mathbf{x})+\mathbf{f}(\mathbf{x}) \cdot \nabla w(\mathbf{x})
\end{array}\right.
$$

This equivalence is established in Theorem 3.1 using techniques found in Dacorogna [2], where for example, Theorem 2.1 is proved. There are various aspects of the latter which impede its adaptation for the question at hand. However, most important is the fact that the set $\left\{\nabla U: U \in W^{1, \infty}(D)\right\}$ is not dense in $L_{\infty}^{N}(D)$ for $N \geq 2$, as demonstrated in Lemma 2.2. In spite of this, results in Chapter 4 of Morrey [4] can be distilled to obtain Theorem 2.2. For the significance of the arbitrariness of D, note that Morrey's proof requires sequential weak * continuity of $G(u, D)$ for vanishingly small hypercubes. On the other hand, (1.1.i) and (1.1.ii) are equivalent to (1.2) for a fixed, but arbitrarily bounded domain Ω. Finally, for [3], it is important not to append regularity assumptions to (1.1.i) and (1.1.ii), since for example, finite element approximation subspaces consisting of continuous piecewise linear functions are only in $W^{1, \infty}(\Omega)$. Nevertheless, Example 3 below shows that assuming additional regularity widens the class of functions for which the generalized local Lipschitz inequality holds.

2 Examples and Related Results

In this section, a few examples are offered to capture the spirit of claims made in the Introduction. The first two are intended to demonstrate the restrictive character of (1.1.i).

Example 1. Let $N=1, \Omega \equiv(0,1)$, and $f(p) \equiv p^{2}$. Now, for arbitrary $\rho>0$, a sequence $\left\{U_{n}\right\}_{n=1}^{\infty} \subset W^{1, \infty}(\Omega)$ is constructed in such a way that for a certain $u \in W^{2, \infty}(\Omega)$:

$$
\left\|D_{x} U_{n}-D_{x} u\right\|_{L_{\infty}(\Omega)}=\rho \quad \forall n
$$

and:

$$
\left\|U_{n}-u\right\|_{L_{2}(\Omega)} \quad \xrightarrow{n \rightarrow \infty} \quad 0
$$

while:

$$
\begin{aligned}
\left\|f\left(D_{x} U_{n}\right)-f\left(D_{x} u\right)\right\|_{W^{-1,2}(\Omega)} & \geq\left|\int_{0}^{1}\left[f\left(D_{x} U_{n}(x)\right)-f\left(D_{x} u(x)\right)\right] \phi(x) d x\right| \\
& =\rho^{2}\left|\int_{0}^{1} \phi(x) d x\right| \quad \forall \phi \in W_{0}^{1,2}(\Omega), \quad\|\phi\|_{W^{1,2}(\Omega)}=1
\end{aligned}
$$

The plan is to construct a sequence of saw-toothed functions which converge to zero as f remains constant. First define the characteristic function for $\left[0, \frac{1}{2}\right]$:

$$
\chi(x) \equiv \begin{cases}1 & 0 \leq x \leq \frac{1}{2} \\ 0 & \frac{1}{2}<x \leq 1\end{cases}
$$

Now, let $U(x)$ be given by:

$$
U(x) \equiv \rho x \chi(x)+\rho(1-x)[1-\chi(x)]
$$

and extend this function by periodicity to \mathbf{R} to obtain $\bar{U}(x)$. Similarly, let $\bar{\chi}(x)$ be the periodic extension of $\chi(x)$. Next, set:

$$
U_{n}(x) \equiv n^{-1} \bar{U}(n x) \quad \text { and } \quad \chi_{n}(x) \equiv \bar{\chi}(n x) \quad x \in[0,1]
$$

so that:

$$
D_{x} U_{n}(x) \stackrel{w}{=} \rho \chi_{n}(x)-\rho\left[1-\chi_{n}(x)\right] .
$$

Finally, since:

$$
f\left(D_{x} U_{n}(x)\right)=\rho^{2} \quad \text { a. e. }
$$

the claim above follows with $u(x) \equiv 0$.
In spite of the simplicity of Example 1, it may not be sufficiently satisfying because f is not monotone, or fails to meet some other favorite condition. So, Example 2 aspires for complete satisfaction but at a small cost. It requires the following Lemma which is also used in the next section. The proof of a special case is given here for completeness. (See Dacorogna [2].)

Lemma 2.1 Let Q be a hypercube in \mathbf{R}^{N} and suppose that $\chi \in L_{\infty}(Q)$. Extend χ by periodicity to \mathbf{R}^{N} to obtain $\bar{\chi}$ and define $\chi_{n}(\mathbf{x}) \equiv \bar{\chi}(n \mathbf{x})$. Then the following holds:

$$
\chi_{n} \underset{L_{\infty}(Q)}{\stackrel{*}{*}} \frac{1}{\mu(Q)} \int_{Q} \chi(\mathbf{x}) d \mathbf{x} \quad \text { as } n \rightarrow \infty
$$

Proof. Only the case $N=1$, and $Q \equiv[0,1]$ is considered here. Since the simple functions are dense in $L_{1}(Q)$, it suffices to show for example, that:

$$
\int_{0}^{\alpha} \chi_{n}(x) d x \quad \xrightarrow{n \rightarrow \infty} \quad \alpha \int_{0}^{1} \chi(x) d x \quad \forall \alpha \in[0,1] .
$$

This follows after taking the limit in:

$$
\int_{0}^{\alpha} \chi_{n}(x) d x=n^{-1} \int_{0}^{n \alpha} \bar{\chi}(y) d y=[n \alpha] n^{-1} \int_{0}^{1} \chi(y) d y+n^{-1} \int_{[n \alpha]}^{n \alpha} \chi(y) d y
$$

where [•] represents the greatest integer function.
Example 2. Except for the form of f, let every element of Example 1 be transported for use here. Now assume that $f(p)$ is any function which satisfies:

$$
f(-\rho)+f(\rho) \neq 2 f(0)
$$

First, choose an arbitrary $\phi \in W_{0}^{1,2}(\Omega)$ with a nonzero average value and $\|\phi\|_{W^{1,2}(\Omega)}=1$. Since $\phi \in L_{1}(\Omega)$ also, it follows from Lemma 2.1 that:

$$
\begin{aligned}
\left\|f\left(D_{x} U_{n}\right)-f\left(D_{x} u\right)\right\|_{W^{-1,2}(\Omega)} & \geq\left|\int_{0}^{1}\left\{f\left(D_{x} U_{n}(x)\right)-f(0)\right\} \phi(x) d x\right| \\
& =\left|\int_{0}^{1}\left\{f(\rho) \chi_{n}(x)+f(-\rho)\left[1-\chi_{n}(x)\right]-f(0)\right\} \phi(x) d x\right| \\
& \xrightarrow{n \rightarrow \infty}\left|\left\{f(\rho) \frac{1}{2}+f(-\rho)\left[1-\frac{1}{2}\right]-f(0)\right\} \int_{0}^{1} \phi(x) d x\right|>0 .
\end{aligned}
$$

Hence, the left side cannot be made to vanish as $\left\|U_{n}\right\|_{L_{2}(\Omega)} \xrightarrow{n \rightarrow \infty} 0$.
These examples also suggest that the method of characteristic functions used to prove the following might be useful in proving Theorem 3.1. (See Dacorogna [2].)

Theorem 2.1 Let $g: \mathbf{R}^{N} \rightarrow \mathbf{R}$ be continuous and define:

$$
G(\mathbf{U}, D) \equiv \int_{D} g(\mathbf{U}(\mathbf{x})) d \mathbf{x} \quad \mathbf{U} \in L_{\infty}^{N}(D), \quad D \subset \mathbf{R}^{N}
$$

Then $G(\mathbf{U}, D)$ is sequentially weak * continuous for every $D \subset \mathbf{R}^{N}$ if and only if g is affine, i. e., for every $D \subset \mathbf{R}^{N}$:

$$
G\left(\mathrm{U}_{n}, D\right) \quad \xrightarrow{n \rightarrow \infty} \quad G(\mathrm{U}, D)
$$

whenever:

$$
\int_{D} \mathbf{U}_{n}(\mathbf{x}) \cdot \boldsymbol{\Phi}(\mathbf{x}) d \mathbf{x} \quad \xrightarrow{n \rightarrow \infty} \quad \int_{D} \mathbf{U}(\mathbf{x}) \cdot \boldsymbol{\Phi}(\mathbf{x}) d \mathbf{x} \quad \forall \Phi \in L_{1}^{N}(D)
$$

if and only if:

$$
g(\lambda \mathbf{a}+(1-\lambda) \mathbf{b})=\lambda g(\mathbf{a})+(1-\lambda) g(\mathbf{b}) \quad \forall \lambda \in[0,1], \quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{R}^{N}
$$

Now, the next Lemma is presented to demonstrate the limits of Theorem 2.1 in connection with weak \star convergence in $W^{1, \infty}(\Omega)$.

Lemma 2.2 Let $N \geq 2$ and suppose D is any domain in \mathbf{R}^{N}. Then $\left\{\nabla U: U \in W^{1, \infty}(D)\right\}$ is not dense in $L_{\infty}^{N}(D)$.

Proof: First, fix $\mathbf{x}_{0} \in D$ and let $Q \subset D$ be a hypercube centered at \mathbf{x}_{0}. Then, note that since $W^{1, \infty}(Q) \hookrightarrow C^{0}(Q)[\mathbf{1}]$, the set:

$$
W_{0} \equiv\left\{U \in W^{1, \infty}(Q): \quad U\left(\mathbf{x}_{0}\right)=0\right\}
$$

is a well-defined closed linear subspace of $W^{1, \infty}(Q)$. Also, when applied to gradients, $\|\cdot\|_{L_{\infty}^{N}(Q)}$ is actually a norm on W_{0} equivalent to $\|\cdot\|_{W^{1, \infty}(Q)}$. If it were not so, there would exist a sequence $\left\{V_{n}\right\}_{n=1}^{\infty} \subset W_{0}$ such that:

$$
\left\|V_{n}\right\|_{W^{1, \infty}(Q)}=1 \quad \forall n
$$

while:

$$
\left\|\nabla V_{n}\right\|_{L_{\infty}^{N}(Q)} \quad \xrightarrow{n \rightarrow \infty} 0 .
$$

Since the imbedding $W^{1, \infty}(Q) \hookrightarrow L_{\infty}(Q)$ is compact [1], there is a subsequence which converges in $L_{\infty}(Q)$ and hence in $W^{1, \infty}(Q)$. Further, the limit $V \in W_{0}$ must be constant and satisfy $\|V\|_{W^{1, \infty}(Q)}=1$. However, this leads to a contradiction since $V \equiv V\left(\mathbf{x}_{0}\right)=0$.

Now, choose a smooth $\mathbf{V} \in L_{\infty}^{N}(D)$ for which:

$$
\partial_{x_{2}} V_{1}(\mathbf{x}) \neq \partial_{x_{1}} V_{2}(\mathbf{x}) \quad \mathbf{x} \in Q
$$

and suppose there exists a sequence $\left\{\nabla \tilde{U}_{n}\right\}_{n=1}^{\infty} \subset\left\{\nabla U: U \in W^{1, \infty}(D)\right\}$ such that:

$$
\left\|\nabla \tilde{U}_{n}-\mathbf{V}\right\|_{L_{\infty}^{N}(D)} \quad \xrightarrow{n \rightarrow \infty} 0 .
$$

Then for $n \geq 1$, select $U_{n} \in W_{0}$ to satisfy:

$$
\nabla U_{n}(\mathbf{x})=\nabla \tilde{U}_{n}(\mathbf{x}) \quad \mathbf{x} \in Q
$$

so that:

$$
\left\|\nabla U_{n}-V\right\|_{L_{\infty}^{N}(Q)} \quad \xrightarrow{n \rightarrow \infty} \quad 0 .
$$

Hence, \mathbf{V} must be the gradient of some smooth $U \in W^{0}$. However, since $\partial_{x_{2} x_{1}}^{2} U=\partial_{x_{1} x_{2}}^{2} U$ cannot hold, the contradiction completes the proof.

In spite of this Lemma, there is the following generalization of Theorem 2.1 [4].
Theorem 2.2 Let $g: \mathbf{R}^{2 N+1} \rightarrow \mathbf{R}$ be continuous and define:

$$
G(u, D) \equiv \int_{D} g(\mathbf{x}, u(\mathbf{x}), \nabla u(\mathbf{x})) d \mathbf{x} \quad u \in W^{1, \infty}(D), \quad D \subset \mathbf{R}^{N}
$$

Then $G(u, D)$ is sequentially weak \star continuous for every $D \subset \mathbf{R}^{N}$ if and only if $g(\mathbf{x}, u, \mathbf{p})$ is affine with respect to \mathbf{p}, i. e., for every $D \subset \mathbf{R}^{\boldsymbol{N}}$:

$$
G\left(u_{n}, D\right) \quad \xrightarrow{n \rightarrow \infty} \quad G(u, D)
$$

whenever:

$$
\int_{D} u_{n}(\mathbf{x}) \phi(\mathbf{x}) d \mathrm{x} \quad \xrightarrow{n \rightarrow \infty} \int_{D} u(\mathrm{x}) \phi(\mathrm{x}) d \mathrm{x} \quad \forall \phi \in L_{1}(D)
$$

and:

$$
\int_{D} \nabla u_{n}(\mathbf{x}) \cdot \Phi(\mathbf{x}) d \mathbf{x} \quad \xrightarrow{n \rightarrow \infty} \quad \int_{D} \nabla u(\mathbf{x}) \cdot \Phi(\mathbf{x}) d \mathbf{x} \quad \forall \Phi \in L_{1}^{N}(D)
$$

if and only if:

$$
\begin{aligned}
& g(\mathbf{x}, \mathbf{u}, \lambda \mathbf{a}+(1-\lambda) \mathbf{b})=\lambda g(\mathbf{x}, u, \mathbf{a})+(1-\lambda) g(\mathbf{x}, u, \mathbf{b}) \\
& \forall \lambda \in[0,1], \quad \forall(\mathbf{x}, u) \in \mathbf{R}^{N+\mathbf{1}}, \quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{R}^{N} .
\end{aligned}
$$

Actually, with $W^{1, \infty}(D)$ viewed as a closed linear subspace $W \subset L_{\infty}^{N+1}(D)$, its predual is the quotient space $L_{1}^{N+1}(D) / W^{\perp}$. Nevertheless, the above is an equivalent formulation of sequential weak * continuity on $W^{1, \infty}(D)$.

Finally, the next example addresses the question of whether the class of functions satisfying (1.1.i) and (1.1.ii) can be widened by appending regularity assumptions.

Example 3. As in Example 1, let $N=1, \Omega \equiv(0,1)$, and $f(p) \equiv p^{2}$. Now choose an arbitrary $u \in W^{2, \infty}(\Omega)$ and consider whether it is possible to show that for some $c_{\rho}>0$:

$$
\left\{\begin{array}{c}
\forall U_{1}, U_{2} \in W^{2, \infty}(\Omega) \quad \text { satisfying } \quad \max _{m=1,2}\left\|D_{x} U_{m}-D_{x} u\right\|_{W^{1, \infty}(\Omega)} \leq \rho \\
\left\|f\left(D_{x} U_{2}\right)-f\left(D_{x} U_{1}\right)\right\|_{W^{-1,2}(\Omega)} \leq c_{\rho}\left\|U_{2}-U_{1}\right\|_{L_{2}(\Omega)} .
\end{array}\right.
$$

That this holds with $c_{\rho}=2 \rho$ can be seen from the following calculation:

$$
\begin{aligned}
\left\|f\left(D_{x} U_{2}\right)-f\left(D_{x} U_{1}\right)\right\|_{W^{-1,2}(\Omega)} & =\sup _{\varphi \in W_{0}^{1,2}(\Omega)} \frac{\left|\left(D_{x}\left[U_{2}-U_{1}\right], \varphi D_{x}\left[U_{2}+U_{1}\right]\right)\right|}{\|\varphi\|_{W^{1,2}(\Omega)}} \\
& =\sup _{\varphi \in W_{0}^{1,2}(\Omega)} \frac{\left|\left(\left[U_{2}-U_{1}\right], D_{x}\left\{\varphi D_{x}\left[U_{2}+U_{1}\right]\right\}\right)\right|}{\|\varphi\|_{W^{1,2}(\Omega)}} \\
& \leq\left\|U_{2}-U_{1}\right\|_{L_{2}(\Omega)}\left\|D_{x}\left[U_{2}+U_{1}\right]\right\|_{W^{1, \infty}(\Omega)} .
\end{aligned}
$$

3 Demonstration of the Theorem

In this section, the equivalence advertised in the Introduction is established in the following.
Theorem 3.1 Let Ω be a bounded domain in \mathbf{R}^{N}. Also, suppose $f: \mathbf{R}^{\mathbf{2 N}} \rightarrow \mathbf{R}, u \in W^{2, \infty}(\Omega)$, and $\rho>0$. Then (1.2) is necessary and sufficient for (1.1.i) and (1.1.ii).

Proof: First, sufficiency is established. Condition (1.1.ii) follows immediately from (1.2). Now, let U_{1} and U_{2} satisfy:

$$
\max _{m=1,2}\left\|\nabla U_{m}-\nabla u\right\|_{L_{\infty}^{N}(\Omega)} \leq \rho .
$$

Using (1.2), condition (1.1.i) is obtained as follows:

$$
\begin{aligned}
\left\|f\left(\nabla U_{2}\right)-f\left(\nabla U_{1}\right)\right\|_{W^{-1,2}(\Omega)} & =\sup _{\varphi \in W_{0}^{1,2}(\Omega)} \frac{\left|\left(\mathbf{f} \cdot \nabla\left[U_{2}-U_{1}\right], \varphi\right)\right|}{\|\varphi\|_{W^{1,2}(\Omega)}} \\
& =\sup _{\varphi \in W_{0}^{1,2}(\Omega)} \frac{\left|\left(\left[U_{2}-U_{1}\right], \nabla \cdot[\varphi \mathbf{f}]\right)\right|}{\|\varphi\|_{W^{1,2}(\Omega)}} \\
& \leq c \max _{1 \leq i \leq N}\left\|f_{i}\right\|_{W^{1, \infty}(\Omega)}\left\|U_{2}-U_{1}\right\|_{L_{2}(\Omega)} .
\end{aligned}
$$

For necessity, it is first shown that:

$$
\left\{\begin{array}{c}
\forall \lambda \in[0,1], \quad \forall \mathbf{x} \in \Omega, \quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{R}^{N} \quad \text { such that } \quad \max \left\{\|\mathbf{a}\| \ell_{\infty},\|\mathbf{b}\| \ell_{\infty}\right\} \leq \rho \tag{3.1}\\
f(\mathbf{x}, \nabla u(\mathbf{x})+[\lambda \mathbf{a}+(1-\lambda) \mathbf{b}])=\lambda f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{a})+(1-\lambda) f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{b})
\end{array}\right.
$$

where $\|\cdot\|_{\ell_{p}}$ represents the usual norm on $\mathbf{R}^{\boldsymbol{N}}$. Now fix $\lambda \in(0,1), \mathbf{a}, \mathbf{b} \in \mathbf{R}^{\boldsymbol{N}}$ satisfying:

$$
\begin{equation*}
\max \left\{\|\mathbf{a}\|_{e_{\infty}},\|\mathbf{b}\|_{e_{\infty}}\right\} \leq \rho \tag{3.2}
\end{equation*}
$$

and define:

$$
\mathbf{c} \equiv(1-\lambda)(\mathbf{a}-\mathbf{b}) \quad \mathbf{d} \equiv \lambda \mathbf{a}+(1-\lambda) \mathbf{b} .
$$

Then, let Q be a hypercube containing Ω, with two of its $(N-1)$-dimensional faces F_{1} and F_{2} orthogonal to \mathbf{c} :

$$
F_{i} \equiv\left\{\mathbf{x} \in Q: \quad \mathbf{c} \cdot \mathbf{x}=\alpha_{i}\right\} \quad i=1,2
$$

Also, define:

$$
\begin{equation*}
F_{\lambda} \equiv\left\{\mathbf{x} \in Q: \quad \mathbf{c} \cdot \mathbf{x}=\alpha_{\lambda}\right\} \quad \alpha_{\lambda} \equiv(1-\lambda) \alpha_{1}+\lambda \alpha_{2} \tag{3.3}
\end{equation*}
$$

and let the convex hull of $\left\{F_{1}, F_{\lambda}\right\}$ be represented by:

$$
Q_{\lambda} \equiv\left\{\mathbf{x} \in Q: \quad \mathbf{x}=t \mathbf{x}_{1}+(1-t) \mathbf{x}_{\lambda}, \quad t \in[0,1], \quad \mathbf{x}_{1} \in F_{1}, \quad \mathbf{x}_{\lambda} \in F_{\lambda}\right\}
$$

Before proceeding, it is shown that:

$$
\begin{equation*}
\mu\left(Q_{\lambda}\right)=\lambda \mu(Q) . \tag{3.4}
\end{equation*}
$$

Let $\mathbf{q}_{1} \in F_{1}$ and $\mathbf{q}_{2} \in F_{2}$ be vertices forming an edge of Q, chosen so that $\left\|\mathbf{q}_{2}-\mathbf{q}_{1}\right\|_{\ell_{2}}^{N}=\mu(Q)$. Then, $\mathbf{q}_{\lambda} \equiv \mathbf{q}_{1}+\lambda\left(\mathbf{q}_{\mathbf{2}}-\mathbf{q}_{1}\right) \in F_{\lambda}$ since:

$$
\mathbf{q}_{\lambda} \cdot \mathbf{c}=\alpha_{1}+\lambda\left(\alpha_{2}-\alpha_{1}\right)=\alpha_{\lambda}
$$

Thus:

$$
\mu\left(Q_{\lambda}\right)=\left\|\mathbf{q}_{\lambda}-\mathbf{q}_{1}\right\|_{\ell_{2}}\left\|\mathbf{q}_{2}-\mathbf{q}_{1}\right\|_{\ell_{2}}^{N-1}=\lambda\left\|\mathbf{q}_{2}-\mathbf{q}_{1}\right\|_{\ell_{2}}^{N}=\lambda \mu(Q)
$$

and (3.4) is obtained. Now on Q, define the characteristic function of Q_{λ} :

$$
\chi(\mathbf{x}) \equiv \begin{cases}1 & x \in Q_{\lambda} \\ 0 & x \in Q \backslash Q_{\lambda}\end{cases}
$$

Let $\bar{\chi}$ be the periodic extension of χ to $\mathbf{R}^{\boldsymbol{N}}$, and define:

$$
\chi_{n}(\mathbf{x}) \equiv \bar{\chi}(n \mathbf{x}) \quad \mathbf{x} \in Q
$$

By (3.4) and Lemma 2.1:

$$
\begin{equation*}
\chi_{n} \underset{L_{\infty}(Q)}{\stackrel{\star}{*}} \frac{1}{\mu(Q)} \int_{Q} \chi(x) d x \quad=\quad \lambda \quad \text { as } n \rightarrow \infty . \tag{3.5}
\end{equation*}
$$

Now on Q, define the hypertent function:

$$
V_{0}(\mathbf{x}) \equiv\left(c \cdot \mathbf{x}-\alpha_{1}\right) \chi(\mathbf{x})-\lambda(1-\lambda)^{-1}\left(c \cdot \mathbf{x}-\alpha_{2}\right)[1-\chi(\mathbf{x})] \quad \mathbf{x} \in Q .
$$

By (3.3):

$$
\lim _{Q_{\lambda} \exists \mathrm{x} \rightarrow F_{\lambda}} V_{0}(\mathbf{x})=\alpha_{\lambda}-\alpha_{1}=\lambda\left(\alpha_{2}-\alpha_{1}\right)=-\lambda(1-\lambda)^{-1}\left(\alpha_{\lambda}-\alpha_{2}\right)=\lim _{Q \backslash Q_{\lambda} \ni \mathbf{x} \rightarrow F_{\lambda}} V_{0}(\mathbf{x}) .
$$

Hence, $V_{0} \in C^{0}(Q)$ and:

$$
\nabla V_{0}(\mathbf{x}) \stackrel{w}{=} c\left\{\chi(\mathbf{x})-\lambda(1-\lambda)^{-1}[1-\chi(\mathbf{x})]\right\} \quad \mathbf{x} \in Q .
$$

Therefore, $V_{0} \in W^{1, \infty}(Q)$. Further, since V_{0} is constant on hyperplanes parallel to F_{λ}, and zero on F_{1} and F_{2}, it can be extended periodically to \mathbf{R}^{N} to obtain $\bar{V}_{0} \in W^{1, \infty}\left(\mathbf{R}^{N}\right)$. Now on Q, define:

$$
V_{n}(x)=n^{-1} \bar{V}_{0}(n x) \quad x \in Q
$$

so that:

$$
\nabla V_{n}(\mathbf{x}) \stackrel{w}{=} \mathbf{c}\left\{\chi_{n}(\mathbf{x})-\lambda(1-\lambda)^{-1}\left[1-\chi_{n}(\mathbf{x})\right]\right\} \quad \mathbf{x} \in Q
$$

and:

$$
\left\|V_{n}\right\|_{L_{2}(\Omega)} \leq n^{-1} \mu(\Omega) \sup _{x \in Q}\left|V_{0}(\mathbf{x})\right| \xrightarrow{n \rightarrow \infty} 0
$$

Then on Ω, define:

$$
U(\mathbf{x}) \equiv u(\mathbf{x})+\mathbf{d} \cdot \mathbf{x} \quad \text { and } \quad U_{n}(\mathbf{x}) \equiv u(\mathbf{x})+\mathbf{d} \cdot \mathbf{x}+V_{n}(\mathbf{x}) \quad \mathbf{x} \in \Omega
$$

so that:

$$
\begin{equation*}
\left\|U-U_{n}\right\|_{L_{2}(\Omega)} \xrightarrow{n \rightarrow \infty} 0 . \tag{3.6}
\end{equation*}
$$

Also, note that by (3.2):

$$
\begin{equation*}
\|\nabla U-\nabla \mathbf{u}\|_{L_{\infty}^{N}(\Omega)}=\|\mathbf{d}\| e_{\infty} \leq \lambda\|\mathbf{a}\|_{e_{\infty}}+(1-\lambda)\|\mathbf{b}\| e_{\infty} \leq p \tag{3.7}
\end{equation*}
$$

and:

$$
\begin{align*}
& \left\|\nabla U_{n}-\nabla u\right\|_{L_{\infty}^{N}(\Omega)} \\
& \quad=\left\|\mathbf{d}+\nabla V_{n}\right\|_{L_{\infty}^{N}(\Omega)}=\left\|(\mathbf{d}+\mathbf{c}) \chi_{n}+\left(\mathbf{d}-\lambda(1-\lambda)^{-1} \mathbf{c}\right)\left[1-\chi_{n}\right]\right\|_{L_{\infty}^{N}(\Omega)} \tag{3.8}\\
& \quad=\left\|\mathbf{a} \chi_{n}+\mathbf{b}\left[1-\chi_{n}\right]\right\|_{L_{\infty}^{N}(\Omega)} \leq \max \left\{\|\mathbf{a}\|_{\ell_{\infty}},\|\mathbf{b}\|_{e_{\infty}}\right\} \leq \rho .
\end{align*}
$$

Thus, according to (3.6) - (3.8), and (1.1.i):

$$
\left\|f(\nabla U)-f\left(\nabla U_{n}\right)\right\|_{W^{-1,2}(\Omega)} \xrightarrow{n \rightarrow \infty} 0
$$

or:

$$
\begin{equation*}
\int_{\Omega}\left[f(\mathbf{x}, \nabla u(\mathbf{x})+\lambda \mathbf{a}+(\mathbf{1}-\lambda) \mathbf{b})-f\left(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{d}+\nabla V_{n}(\mathbf{x})\right] \varphi(\mathbf{x}) d \mathbf{x}\right. \tag{3.9}
\end{equation*}
$$

$\xrightarrow{n \rightarrow \infty} 0 \quad \forall \varphi \in W_{0}^{1,2}(\Omega)$.

So, once it is established that:

$$
\begin{gather*}
\int_{\Omega}\left[\lambda f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{a})+(1-\lambda) f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{b})-f\left(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{d}+\nabla V_{n}(\mathbf{x})\right] \varphi(\mathbf{x}) d \mathbf{x}\right. \tag{3.10}\\
\xrightarrow{n \rightarrow \infty} 0 \quad \forall \varphi \in W_{0}^{1,2}(\Omega)
\end{gather*}
$$

the claim (3.1) follows from (3.9) and (3.10). For (3.10), note that:

$$
\begin{aligned}
f(\mathbf{x}, & \left.\nabla u(\mathbf{x})+\mathbf{d}+\nabla V_{n}(\mathbf{x})\right) \\
& =f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{d}+\mathbf{c}) \chi_{n}(\mathbf{x})+f\left(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{d}-\lambda(1-\lambda)^{-1} \mathbf{c}\right)\left[1-\chi_{n}(\mathbf{x})\right] \\
& =f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{a}) \chi_{n}(\mathbf{x})+f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{b})\left[1-\chi_{n}(\mathbf{x})\right] \quad \mathbf{x} \in \Omega .
\end{aligned}
$$

Now, for any $\varphi \in W_{0}^{1,2}(\Omega)$, by (1.1.ii) and (3.2):

$$
\varphi_{a}(\mathbf{x}) \equiv \varphi(\mathbf{x}) f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{a}) \quad \text { and } \quad \varphi_{b}(\mathbf{x}) \equiv \varphi(\mathbf{x}) f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{b})
$$

can be extended by zero to give:

$$
\bar{\varphi}_{a}(\mathbf{x}), \quad \bar{\varphi}_{b}(\mathbf{x}) \in L_{1}(Q) .
$$

Hence, with (3.5):

$$
\begin{aligned}
\int_{\Omega} & f\left(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{d}+\nabla V_{n}(\mathbf{x})\right) \varphi(\mathbf{x}) d \mathbf{x} \\
& =\int_{Q}\left\{\bar{\varphi}_{a}(\mathbf{x}) \chi_{n}(\mathbf{x})+\bar{\varphi}_{b}(\mathbf{x})\left[1-\chi_{n}(\mathbf{x})\right]\right\} d \mathbf{x} \xrightarrow{n \rightarrow \infty} \int_{Q}\left\{\bar{\varphi}_{a}(\mathbf{x}) \lambda+\bar{\varphi}_{b}(\mathbf{x})[1-\lambda]\right\} d \mathbf{x} \\
& =\int_{\Omega}\{\lambda f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{a})+(1-\lambda) f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{b})\} \varphi(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

and (3.10) is obtained.
Condition (1.2) is now extracted from (1.1.ii) and (3.1). First, select any $\mathbf{v} \in \mathbf{R}^{N}$ for which:

$$
\|\mathbf{v}\|_{e_{\infty}} \leq \rho
$$

Then with $\delta_{i j}$ denoting the Kronecker delta, let a basis $\left\{z^{i}\right\}_{i=1}^{N} \subset \mathbf{R}^{N}$, and an $\varepsilon>0$ be chosen arbitrarily but satisfying:

$$
\left|z_{j}^{i}\right|=\varepsilon \delta_{i j} \quad 1 \leq i, j \leq N
$$

in addition to:

$$
\left\|\mathbf{v}+s \mathbf{z}^{i}+t \mathbf{z}^{j}\right\|_{e_{\infty}} \leq \rho \quad \forall s, t \in[0,1] \quad 1 \leq i, j \leq N
$$

Now, fix $x \in \Omega$ and for convenience, take:

$$
F(\mathbf{y}) \equiv f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{y}) \quad\|\mathbf{y}\|_{e_{\infty}} \leq \rho .
$$

With $h, s, t \in(0,1]$, the following is obtained from repeated applications of (3.1):

$$
\begin{gathered}
\Delta_{i j}^{2}(h, s, t) F(\mathbf{v}) \equiv h^{-1}\left\{s^{-1}\left[F\left(\mathbf{v}+s \mathbf{z}^{i}+h \mathbf{z}^{j}\right)-F\left(\mathbf{v}+h \mathbf{z}^{j}\right)\right]-t^{-1}\left[F\left(\mathbf{v}+t \mathbf{z}^{i}\right)-F(\mathbf{v})\right]\right\} \\
=h^{-1}\left\{s^{-1}\left[(1-s) F\left(\mathbf{v}+h \mathbf{z}^{j}\right)+s F\left(\mathbf{z}^{i}+\mathbf{v}+h \mathbf{z}^{j}\right)-F\left(\mathbf{v}+h \mathbf{z}^{j}\right)\right]\right. \\
\left.-t^{-1}\left[(1-t) F(\mathbf{v})+t F\left(\mathbf{z}^{i}+\mathbf{v}\right)-F(\mathbf{v})\right]\right\} \\
=h^{-1}\left\{(h-1) F(\mathbf{v})-h F\left(\mathbf{z}^{j}+\mathbf{v}\right)+(1-h) F\left(\mathbf{z}^{i}+\mathbf{v}\right)+h F\left(\mathbf{z}^{j}+\mathbf{z}^{i}+\mathbf{v}\right)+F(\mathbf{v})-F\left(\mathbf{z}^{i}+\mathbf{v}\right)\right\} \\
=2\left\{F\left(\frac{1}{2}\left[\mathbf{z}^{j}+\mathbf{z}^{i}+\mathbf{v}\right]+\frac{1}{2} \mathbf{v}\right)-F\left(\frac{1}{2}\left[\mathbf{z}^{j}+\mathbf{v}\right]+\frac{1}{2}\left[\mathbf{z}^{i}+\mathbf{v}\right]\right)\right\}=0 .
\end{gathered}
$$

Hence:

$$
\partial_{v_{i} v_{j}}^{2} f(\mathbf{x}, \nabla u(\mathbf{x})+\mathbf{v}) \equiv 0 \quad \forall \mathbf{x} \in \Omega, \quad\|\mathbf{v}\|_{e_{\infty}} \leq \rho, \quad 1 \leq i, j \leq N
$$

Now all that remains for (1.2) is establishing the regularity of the coefficients. For this, define:

$$
v_{k}(\mathbf{x}) \equiv u(\mathbf{x})+\rho x_{k} \quad 1 \leq k \leq N
$$

so that:

$$
\left\|\nabla v_{k}-\nabla u\right\|_{L_{\infty}^{N}(\Omega)} \leq \rho
$$

Then according to (1.1.ii):

$$
\rho f_{k}(\mathbf{x})=f\left(\mathbf{x}, \nabla v_{k}(\mathbf{x})\right)-f(\mathbf{x}, \nabla u(\mathbf{x})) \in W^{1, \infty}(\Omega) \quad 1 \leq k \leq N
$$

Also:

$$
f_{0}(\mathbf{x})=f(\mathbf{x}, \nabla u(\mathbf{x}))-\mathbf{f}(\mathbf{x}) \cdot \nabla u(\mathbf{x}) \in W^{1, \infty}(\Omega)
$$

Thus, (1.2) is obtained.

References

[1] Adams, R. A., Sobolev Spaces, Academic Press, New York, London, Toronto, Sydney, San Francisco, 1975.
[2] Dacorogna, B., "Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals," Lecture Notes in Mathematics, v. 922, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
[3] Keeling, S. L., "Galerkin/Runge-Kutta Discretizations for Semilinear Parabolic Equations," ICASE Report No. 87-13, NASA Langley Research Center, Hampton, VA, 1987 (NASA CR-178264).
[4] Morrey, C. B., Multiple Integrals in the Calculus of Variations, v.130, Springer-Verlag, Berlin, Heidelberg, New York, 1966.

Standard Bibliographic Page

1. Report No. NASA CR-178263 ICASE Report No. 87-12	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle ON LIPSCHITZ CONTINUITY OF NONLINEAR DIFFERENTIAL OPERATORS		```5. Report Date March 1987```
		6. Performing Organization Code
7. Author(s) Stephen L. Keeling		8. Performing Organization Report No. $87-12$
9. Performing Organization Name and Address Institute for Computer Applicati and Engineering Mail Stop 132C, NASA Langley Res Hampton, VA 23665-5225	ions in Science search Center	11. Contract ${ }^{\text {Na }}$ Gramt No.
12. Sponsoring Agency Name and Address National Aeronautics and Space Washington, D.C. 20546	Administration	14. Sponsoring Agency Code $505-90-21-01$
15. Supplementary Notes Langley Technical Monitor: Submitted to SIAM J. Numer. Anal. J. C. South Final Report		
16. Abstract In connection with approximations that nonlinear terms are at least locall $f=f(\mathbf{x}, \nabla u(\mathbf{x}))$ is Lipschitz continuo $W^{2, \infty}$ into $W^{1, \infty}$, if and only if f is aff claim is proved.	for nonlinear evolution equ ally Lipschitz continuous. ous from the subspace $W^{1, \infty}$ fine with $W^{1, \infty}$ coefficients.	tions, it is standard to assume However, it is shown here that $\subset L_{2}$ into $W^{-1,2}$, and maps In fact, a local version of this
17. Key Words (Suggested by Authors(s)) Lipschitz continuity, affine, nonlinear equations	18. Distribution Statement 64 - Numerical Analysis Unclassified - unlimited	
19. Security Classif.(of this report) Unclassified	20. Security Classif.(of this page) Unclassified	21. No. of Pages 22. Price A02

[^0]: *Supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-18107 while in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665-5225.

