SDSS-SN Hubble Diagram and Cosmology

The first season data (2005)

Hubert Lampeitl (STScI) for the SDSS-SN Collaboration

Luminosity Distance & Cosmology

$$d_{L} = \sqrt{\frac{F}{4 \pi L}}$$

$$d_{L} = c(1+z) \frac{1}{\sqrt{1 - \Omega_{0}} H_{0}} S\left[\sqrt{1 - \Omega_{0}} H_{0} \int_{0}^{z} \frac{dz}{H(z)}\right]$$

$$s(x) = sin(x) \forall \Omega_{0} > 1$$

$$S(x) = x \forall \Omega_{0} = 1$$

$$S(x) = sinh(x) \forall \Omega_{0} < 1$$
WMAP: $\Omega_{0} = 1 \pm 0.04$
Eriedmann Equation:

$$H^{2}(z) = H_{0}^{2} \Sigma_{x} \left[\Omega_{X} \exp\left(3 \int_{0}^{z} (1 + w_{x}(u)) d\ln(1 + u)\right)\right]$$

Equation of state:

$$w_{x} = \frac{p_{x}}{\rho_{x}c^{2}} \quad w_{\Lambda} = -1 \quad w_{matter} = 0 \quad w_{radiation} = \frac{1}{3} \quad w_{K} = -\frac{1}{3}$$

The Dataset / Selection Criteria

- Reliable 'scene modeling' photometry 118
- S/N > 5 for all photometric measurements
- only g,r and i used (1x each)
- at least 6 points on LC 106
- first measurement <10 days after max 103
- LC must span at least 15 days
- Av < 0.75 77 74
- χ^2 / ndf < 4

209th AAS Meeting, Seattle, January 2007

79

MLCS2k2.V5 (S. Jha, astro-ph/0612666, Riess, ApJ 473, 1996)

Multicolor Light Curve Shape Method / Bayesian Approach

$$m_{x}(t-t0) = M_{x}^{0} + \mu_{0} + \xi(\alpha_{x} + \beta_{x}/R_{v})A_{v} + P_{x}\Delta + Q_{x}\Delta^{2}$$

galactic extinction k-correction time dilation z

Training Set of 37 SNIa:

 M_{x}^{0} , P_{x} , Q_{x}

Simultaneous fit for: t_0 , $\mu_{0,} A_V^0$, Δ

Various choices:

- rest frame passbands
- template lightcurves
- host galaxy extinction priors

- ...

Lightcurves

increase in redshift z

sn03901_SMP01_gri

$$t_0 = 53655.168 \quad R_v = 3.10$$

$$\Delta = -0.26 \quad A_v = 0.32$$

$$\mu_0 + 5 \log (H_0/65) = 37.49$$

$$E(B-V)_{MW} = 0.03 \quad z = 0.0630$$

$$\chi^2/\nu = 49.54/76$$

sn05751_SMP01_gri $t_0 = 53664.795$ R_v = 3.10 $\Delta = -0.30$ A_v = 0.75

$$\mu_0 + 5 \log (H_0/65) = 39.02$$

E(B-V)_{MW} = 0.02 z = 0.1310
 $\chi^2/\nu = 34.32/62$

sn05844_SMP01_gri

$$t_0 = 53662.162 \quad R_v = 3.10$$

$$\Delta = -0.18 \quad A_v = 0.09$$

$$\mu_0 + 5 \log (H_0/65) = 41.26$$

$$E(B-V)_{MW} = 0.11 \quad z = 0.3120$$

$$\chi^2/\nu = 13.66/32$$

Hubble Diagram (I)

The Nearby Sample

the low z SNe within the SDSS 2005 sample are not **yet** sufficient to do a self contained analysis (degeneracy between Ω_{Λ} and H_{0})

in total 133 nearby SNe with z<0.125 (see S. Jha, astro-ph/0612666)

selection criteria: same as Riess 2004 (39)
 z>0.0233 (49)
 z>0.0150 (71)
 "Hubble Bubble"

Jha, 2006

Hubble Diagram (II)

Systematic Effects

Experiment:

- photometric zeropoints
- filter response / atmosphere k-corrections (spec. libraries)
- selection bias
- reconstruction bias
- Light emission & propagation:
- dust in host amount and absorption law priors on Av
- SNe evolution

Cosmology:

- lensing (high-z SNe)
- 'Hubble bubble'
- grey dust etc.

eg. spectral libraries:

Photometric Calibration

Table 3. AB Magnitude Offsets

Quantity	\boldsymbol{u}	g	r	i	z
Δm_{WD}	-0.033	0.016	0.011	0.013	0.015
rms Δm_{WD}	0.021	0.010	0.013	0.009	0.007
Δm_{Solar}	-0.037	0.024	0.005	0.018	0.016
rms Δm_{Solar}	0.005	0.006	0.005	0.010	0.014
BD+17°4208	-0.033	0.011	0.000	0.009	0.003

Marriner et al.

how well do well are we tight to the HST White Dwarf scale?

Monte-Carlo Studies

Kessler, Miknaitis, Cinabro et al.

- selection biases
- reconstruction biases
- influence of Av priors
- assesment of systematic errors

Hubble Diagram Residuals

Constraints on w

- additional information necessary to constrain w

assuming flat universe
constraints from BAO (Eisenstein, et al., 2004) as prior (0<z<0.35)

- SDSS SNe data and BAO cover the same redshift range. No interpolation in w necessary

current status: w = -? +/- 0.15 stat +/- ? sys

Outlook

- SDSS in combination with BAO provides a unique measurement on w at z<0.35
- assessment of systematic uncertainties under way
- analysis of SDSS SNe data in combination with other SNe data sets in progress