STOMP Short Course June 19-20, 2003 Delft University

<u>Problem 10:</u> Simulation of Countercurrent Flow and Heat Transport with Local Evaporation and Condensation (Natural Heat Pipe)

Abstract: This heat pipe problem demonstrates the simulator's ability to model countercurrent aqueous and gas flow in variably saturated geologic media, including saturations below residual saturation. As posed, the problem involves one-dimensional horizontal flow and heat transport, but this classic multifluid subsurface flow and transport problem involves complex flow behavior, which is subtle to changes in soil properties. The user will first explore the affects of changes in soil thermal conductivity, specific heat, and enhanced vapor transport on the formation and temperature distribution for a horizontal one-dimensional heat pipe. After completing these investigations the user is asked to design an input file for a two-dimensional problem involving dynamic heat pipe flow.

Because of their ability to transport large quantities of heat over small temperature differences and surface areas, engineered heat pipes are commonly used in thermal engineering applications. Natural heat pipes can occur in partially saturated soils, subjected to thermal gradients. The typical scenario for a natural heat pipe, occurs when a heated engineered surface is in contact with the subsurface (e.g., nuclear waste repository containers, nuclear waste storage tanks, or in-situ soil heating). The general requirements for creating countercurrent hydrothermal (i.e., heat pipe) flow in geologic media are a heat source and heat sink separated by partially saturated porous media. The heat source causes pore water to evaporate, creating a locally elevated gas pressure and water vapor concentration. Evaporation of the pore water reduces the saturation near the heat source, which in turn elevates the local capillary pressure. The heat sink causes water vapor to condense, creating a locally reduced gas pressure and water vapor

1

concentration. The condensing water vapor also increases the local saturation. The pressure and water vapor gradients in the gas phase produce a flow of water vapor and associated heat from the heat source to the heat sink. Conversely, the capillary draw created by the elevated capillary pressures near the heat sink produces flow of liquid water towards the heat source. This countercurrent flow of water vapor in the gas phase and liquid water in the aqueous phase yields a net flow of heat from the heat source to the heat sink. Because of the importance of heat pipe flow to the overall heat transfer of engineered geologic systems, the ability of the numerical simulator to accurately and efficiently predict these complex and multiple-phase flow structures is imperative. The heat pipe problem chosen for solution is a modified version of the problem posed and solved by Udell and Fitch (1985).

Problem Description and Input Parameters

The heat pipe problem solved by Udell and Fitch involved a one-dimensional horizontal cylinder (2.25-m in length) of porous media, which was assumed perfectly insulated on the sides, subjected to a constant heat flux (100-W/m2) on one end, and maintained at a constant temperature (70°C) on the other end. The heat flux end of the cylinder was sealed and the constant temperature end was maintained under total-liquid saturation conditions. Initial conditions for the porous media were a total-liquid saturation of 0.7, a temperature of 70°C, and an absolute gas pressure of 101,330 Pa. Initial conditions and boundary conditions are listed for reference in Table 10-1.

The constitutive functions used in this problem differ slightly from those used by Udell and Fitch. Soil-moisture retention was described using the van Genuchten formulation (van Genuchten 1980) with a modification to the residual saturation that allows aqueous saturation to fall below the residual saturation, as shown in Equations (10.1) and (10.2). The aqueous and gas relative permeabilities were described by the Fatt and Klikoff formulations, as shown in Equations (10.3) and (10.4), respectively. The effective thermal conductivity of the partially saturated porous media was described by the formulation of Sommerton (1974), according to Equation (10.5).

are shown in Table 10-1.

$$S_l = \left[1 + (\alpha h_{gl})^n\right]^{-m} \left[1 - \overline{S}_m\right] + \overline{S}_m = \overline{S}_l \left[1 - \overline{S}_m\right] + \overline{S}_m$$
(10.1)

$$\overline{S}_m = \left[1 - \frac{\ln(h_{gl})}{\ln(h_{od})}\right] S_m$$
(10.2)

$$k_{rl} = \overline{S}_l^3 \tag{10.3}$$

$$k_{rg} = (1 - \bar{S}_l)^3 \tag{10.4}$$

$$k_e = k_{unsat} + \sqrt{S_l} \left(k_{sat} - k_{unsat} \right)$$
(10.5)

Parameter Description	Parameter Value
Unsaturated Thermal Conductivity	0.582 W/m K
Saturated Thermal Conductivity	1.13 W/m K
Intrinsic Permeability	10^{-12} m^2
Porosity	0.4
Grain Density	2650. kg/m ³
Grain Specific Heat	700. J/kg K
Tortuosity	0.5
van Genuchten α	1.5631 m ⁻¹
van Genuchten <i>n</i>	5.4
Residual Saturation	0.15

Table 10-1. Simulation Parameter Values

The relative high van Genuchten *n* parameter is representative of well-drained soils and is numerically difficult to resolve, as it yields a strongly nonlinear function between capillary head and saturation. To reduce convergence problems with this simulation, the

time stepping was controlled using three execution periods over the 10,000-day span of the simulation. During the first 10-day period the maximum time step was limited to 0.1 day. During the second execution period from day 10 to day 100 the maximum time step was increased to 1 day, and during the final period from day 100 to day 10,000, the maximum time step was increased to 1000 day. The simulation will execute without this manual time-stepping control, but the simulation suffers from numerous convergence errors and primary variable exceptions. Both of these errors are trapped by STOMP and result in a reduction in the current time step.

Simulation results, in terms of profiles of temperature, aqueous saturation, and water vapor mass fraction at days 2, 5, 10, 50, and 10,000 are shown in Figures 10.1 through 10.5, respectively. In these plots the aqueous saturated boundary at 70 C is on the left side and the heated, flow-impermeable boundary is on the right. After 2 days, Figure 10.1, the temperature on the heated boundary has risen from 70 C to 96.7 C and water has started to imbibe from the saturated boundary. The water-vapor mass fraction in the gas phase is primarily a function of vapor pressure, which is a function of temperature. The water-vapor mass fraction profile, therefore, tracks the temperature profile. After 5 days, Figure 10.2, the heated boundary temperature exceeds 100 C and the soil moisture begins to evaporate. After 10 days, Figure 10.3, the 100-C temperature point has nearly reached the mid-point of the column and water is now being forced out the saturated boundary. At this point in time, the zone of countercurrent flow, (i.e., gas evaporating and moving toward the left and water being drawn back toward the right via capillary pressure) is still expanding. After 10,000 days, Figure 10.4, the simulation has reached steady-flow conditions and the column is exhibiting three heat transport regimes. In the left portion of the domain, heat transfer is via conduction, advection, and mass diffusion, as shown by the non-linear temperature profile; in the middle portion heat transfer is primarily via countercurrent advection and mass diffusion, as shown by the flat temperature profile; and in the right portion heat transfer is primarily by conduction as shown by the linear temperature profile. Under steady-flow conditions the right side of the column has aqueous saturations below the residual saturation and the gas phase comprises primarily water-vapor.

Figure 10.2. Temperature, Aqueous Saturation, and Water Vapor Mass Fraction Profiles at 5 Days

Figure 10.4. Temperature, Aqueous Saturation, and Water Vapor Mass Fraction Profiles at 10,000 Days

Analysis

The heat-pipe problem, which was solved using an semi-analytical approach by Udell and Fitch (1985), differs from the current problem in several aspects. First, the Udell and Fitch problem used constant physical properties, whereas the STOMP simulation included temperature and pressure dependent physical properties for the gas and aqueous phases. Second, nitrogen gas, instead of air, was used as the noncondensible in the Udell and Fitch problem. Third, the saturation-capillary function in the Udell and Fitch formulation used the Leverett function (Leverett 1941) without extensions below the residual saturation, whereas the STOMP simulation used a van Genuchten function which closely matched the Leverett function. In spite of these differences the results show good agreement between the solution of Udell and Fitch and the STOMP simulation for the steady-state conditions; the Udell and Fitch solution is valid only for the steady-state solution. Both results show temperature profiles with mixed conduction and advection/diffusion heat transport near the saturated boundary and nearly pure countercurrent gas and aqueous flow heat transport in the center portion of the heat pipe. The Udell and Fitch solution stops short of the dry-out region with the minimum saturation being the residual saturation level. The STOMP solution allows a region near the heated boundary to dry out, thus creating elevated temperatures, in comparison to the Udell and Fitch results.

Summary

The heat-pipe problem was selected as a classical problem because it represents a class of nonisothermal hydrologic systems which produce heat-pipe type conditions. Heat-pipe flows that develop in natural systems, however, are generally three-dimensional. A key component of these simulations is the use of a modified van Genuchten saturation function (Fayer and Simmons 1995) to represent soil moisture retention at all matric suctions. This modification retains the form of the original van Genuchten function in the wet range and transforms to an adsorption equation in the dry range. This approach allows the use of conventionally determined van Genuchten function in the areasonable representation in the high matric suction

7

range, therefore allowing saturations to decrease below the residual saturation level. For nonisothermal conditions the residual saturation becomes solely a function fitting parameter and does not represent a lower saturation limit.

Exercises

- 1. (Basic) Repeat the one-dimensional horizontal column simulation changing the unsaturated and saturated thermal conductivities (*Thermal Properties Card*), grain density (*Mechanical Properties Card*) and grain specific heat (*Thermal Properties Card*). Compare the steady-flow temperature, aqueous saturation, and water-vapor mass fraction profiles against those reported herein.
- 2. (Intermediate) Repeat the one-dimensional horizontal column simulation using various time stepping controls (*Execution Time Periods, Solution Control Card*). Check for differences in the simulation results at 2, 5, 10, 50, and 10,000 days.
- 3. (Intermediate) Repeat the one-dimensional horizontal column simulation using the *Enhanced Gas Diffusion Option*, changing the clay mass fraction (*Solution Control Card*). Compare the steady-flow temperature, aqueous saturation, and water-vapor mass fraction profiles against those reported herein.
- 4. (Advanced) Design and execute a two-dimensional heat pipe simulation with heat emanating from an impermeable subsurface structure (e.g., pipe, nuclear waste canister, nuclear waste repository, heating element). Simulate the system with time varying heat source to form a dynamic heat pipe. Create a time sequence of temperature and aqueous saturation contours to visualize the dynamic heat pipe.

References

Fayer, M.J., and C.S. Simmons. 1995. "Modified soil water retention function for all matric suctions." *Water Resources Research*, 31(5), 1233-1238.

Leverett, M.C. 1941. "Capillary behavior in porous solids." *AIME Transactions*, 142-152.

Somerton, W.H., A.H. El-shaarani, and S.M. Mobarak. 1974. "High temperature behavior of rocks associated with geothermal type reservoirs." Paper SPE-4897, presented at the 44th Annual California Regional Meeting of the Society of Petroleum Engineers, San Francisco, California.

Udell, K.S., and J.S. Fitch. 1985. "Heat and mass transfer in capillary porous media considering evaporation, condensation, and non-condensible gas effects," In Proceedings of 23rd ASME/AIChE National Heat Transfer Conference, Denver, Colorado.

van Genuchten, M. Th. 1980. "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils." *Soil Sci. Soc. Am. J.*, 44:892-898.

White, M.D., and M. Oostrom. 2000. STOMP Subsurface Transport Over Multiple Phases, Version 2.0, Theory Guide, PNNL-12030, UC-2010, Pacific Northwest National Laboratory, Richland, Washington.

Appendix A.10

```
#_____
~Simulation Title Card
#_____
1,
STOMP Tutorial Problem 10,
Mart Oostrom/Mark White,
PNNL,
June 2003 20,
15:15,
4,
This application problem follows the heat-pipe problem solved
semi-analytically by Udell and Fitch. The soil moisture retention
function has been changed to a modified van Genuchten function to
allow saturations for all matric suctions.
#_____
~Solution Control Card
#_____
Normal,
Water-Air-Energy,
3,
0,day,10,day,1,s,0.1,day,1.25,16,1.e-06,
10, day, 100, day, 0.1, day, 1, day, 1.25, 16, 1.e-06,
100, day, 10000, day, 1, day, 1000, day, 1.25, 16, 1.e-06,
1000,
Variable Aqueous Diffusion,
Variable Gas Diffusion,
Ο,
#-----
~Grid Card
#------
Uniform Cartesian,
50,1,1,
4.5, cm,
```

10.0,cm, 10.0,cm, #-----~Rock/Soil Zonation Card #-----1, Sand, 1, 50, 1, 1, 1, 1, 1, #-----~Mechanical Properties Card #_____ Sand, 2650, kg/m³, 0.4, 0.4, ,, Constant, 0.5, 0.5, #_____ ~Hydraulic Properties Card #-----Sand,1.e-12,m²,,,,, #-----~Thermal Properties Card #-----Sand, Somerton, 0.582, W/m K, ,, ,1.13, W/m K, ,, ,700, J/kg K, #-----~Saturation Function Card #_____ Sand, van Genuchten, 1.563, 1/m, 5.4, 0.15,, #_____ ~Aqueous Relative Permeability Card #_____ Sand, Fatt and Klikoff, #-----~Gas Relative Permeability Card #_____ Sand, Fatt and Klikoff,

```
#-----
~Initial Conditions Card
#-----
Aqueous Saturation, Gas Pressure,
3,
Aqueous Saturation, 0.7, ,, ,, ,1, 50, 1, 1, 1, 1,
Gas Pressure, 101330, Pa, ..., 1, 50, 1, 1, 1, 1,
Temperature,70.0,C,,,,,1,50,1,1,1,1,
#-----
~Boundary Conditions Card
#-----
2,
West, Dirichlet Energy, Dirichlet Aqueous, Dirichlet Gas,
1,1,1,1,1,1,1,1,
0, day, 70, C, 101330, Pa, 1.0, 101330, Pa, 1.0,
East, Neumann Energy, Zero Flux Aqueous, Zero Flux Gas,
50,50,1,1,1,1,1,
0,day,-100,W/m^2,,,,,,
```

```
#-----
~Output Options Card
#-----
2,
1,1,1,
50,1,1,
1,1,day,m,5,5,5,
6,
Temperature,,
Aqueous saturation,,
Phase condition,,
Water gas mass frac.,,
Aqueous pressure,,
Gas pressure,,
4,
2,day,
5,day,
10,day,
50,day,
6,
Temperature,,
Aqueous saturation,,
Phase condition,,
Water gas mass frac.,,
Aqueous pressure,,
Gas pressure,,
```