

NRC Convair-580 Atmospheric Remote Sensing Capabilities and Recent Research Activities

Mengistu Wolde and Dave Marcotte

Contributions:

A. Pazmany (ProSensing Inc.), S. Haimov (Uwyo), G.A. Isaac, W. Strapp, D. Hudak, and A. Korolev (EC), J. Vivekanandan (NCAR)

Acknowledgments: EC/NRC flight crew, S. Cober, students (Short, Fievet, Frebrowski & Shen) and various funding agencies.

Principal Canadian
 airborne atmospheric
 and geophysical research
 platform

✤ Instrumented by NRC, EC and DND Used for various atmospheric research applications
 Icing
 Hurricane
 Air quality
 Remote sensing system

Cloud Radar/Radiometer on NRC Convair 580

1999 – EC Ka-band (35 GHz) radar (EC: W. Stapp et al., FRL: J. Jordan & D. Marcotte)

First Alliance Icing Research Study - (AIRS I)

Hurricane Extra tropical Transition (ET) Study – Oct 2000

2003 – Porlarimetric W-band (95 GHz) NIF – AIRS II

✤ Nadir and Side-view (dual-pol)

NRC·CNRC

NRCaerospace.com

One time installation of University of Wyoming Cloud Radar

2006 –NRC MIC Funding + CSA

WRC Airborne W and X-band (NAWX) Polarimetric radar system

ProSensing Inc. 183 GHz G-band Water Vapor Radiometer
(GVR)

NRCaerospace.com

AIRSII Project

- Conducted b/N Nov 2003
 Feb 2004 over Quebec and Ontario, Canada
 Collaborative international icing study with both ground and airborne component. The research focus include:
 - Better characterization of icing
 environment
 - Remote detection of icing and validation
 - Better understanding of icing process and its effect on aircraft

NRCaerospace.com

NRC Convair 580 – AIRS II instrumentation

Arrays of cloud physics probes
PMS King LWC

- ✤ Rosemount icing detector
- PMS FSSP (5 95 μm)
- ✤ PMS 2DC
- ✤ Temperature

Remote sensing instruments
 University of Wyoming Cloud Radar (WCR)

- Moderate icing case over Mirabel
- Repeated horizontal transects at various altitude
- \rightarrow Icing encounter from just above the melting layer to 4.5 km (T~ -10°C)
- Up to 0.8 g m⁻³ LWC

Radar signatures of Melting xls, mixed phase and icing clouds

Cloud Z structure

Canada

NRCaerospace.com

Nov 19, 2003 – Melting Layer to Mixed Phase

 \blacktriangleright Melting layer: Z ~15-20 dBZ, LDR ~ -15 to -10 dB, ZDR~ 0-3 dB

- Mixed phase: Z ~ 5-10 dBZ, LDR ~ -30 to -20 dB, ZDR ~ 0-1 dB
- Rain: LDR \sim < -30 dB, ZDR \sim 0 dB

NRCaerospace.com

Nov 19, 2003 – Cloud Top – Mixed Phase

High Z change near cloud top (-30 to 10 dBZ), ML at 3 km
Weak Z: calculated Z match the WCR Z at 75 m range
High Z cores: mixed phase / ice

NRCaerospace.com

Combining in-situ and radar data

NRC CNRC

NRCaerospace.com

3000 2000 1000

20:14:36

plates

Fuzzy-logic based particle classification

Radar signatures of particles – coincident radar and in-situ measurements

20:15:52

ml

20:17:08

rain

20:18:23

sdr

20:19:39

sld

20:20:55

M D Ice

20:22:10

LΟ

Determine particle membership functions

20:23:26

need

20:24:41

20:25:57

crys

20:27:13

dendrites

NRCaerospace.com NRCaerospace.com Nov 11: Particle type: Radar / In-situ

NRCaerospace.com

Nov 19: Particle type: Radar / In-situ

Nov 24: Particle type: Radar / In-situ

NRC.CNRC

NRCaerospace.com

NRC CNRC

NRCaerospace.com

Particle Types Identification

 Good agreement between fuzzy-logic particle type classification result including icing from radar with in-situ cloud microphysics data
 Issues/Future work:

✤ Identification of mixed phase clouds – plan to add other radar variables: Doppler velocity field, Dual-frequency option, more polarimetric variables

Image classification from in-situ measurements

http://www.nawx.nrc.gc.ca

NRCaerospace.com

NRC Airborne W and Xbands radar (NAWX)

NAWX

Transmitted Frequency (GHz)	94.05	9.41
Peak Tx Power (KW)	1.7 - typical	25 (split b/n two ports)
Polarization	Co and Cross	Simultaneous H and V
Doppler	Pulse Pair and FFT	
Pulse Duration (µs)	0.1 - 10	
Max PRF (KHz)	20	5
Ant. 3 dB BW (°)	0.75	3.5
Antenna ports	5	4
View direction	Up, down and side	Up, down and side

More details/updates: http://www.nawx.nrc.gc.ca

NRC CNRC

NRCaerospace.com

NAWX / CloudSat 18-Feb-2007

Feb 18-2007: Boundary layer Cu Clouds

- ✤ A/C at ~ 6 km at the time of the CloudSat pass
- ✤ Good agreement of cloud top boundaries by WCR and NAWX[∞]

Difference b/n CPR and NAWX near the surface

NAWX / CloudSat

25 - Feb-2007

Time (UTC

18:28:40

Mixed phase mid-level cloud – A/C flying just below cloud top

NRC·CNRC NRCaerospace.com

The images (top three - right) show cloud vertical profiles obtained by CPR and the two NAWX radars.

Horizontal Z from NAWX

NAWX – 01-Mar- 2007

NRC CNRC

NRCaerospace.com

NAWX Nadir Ze profile 8 192000-192002 193000-193002 193600-193602 altitude (km) 6 Χ W 2 0 0 10 -10 10 10 20 -10 0 0 Ze (dBZ)

→ X and W Z_e from small (<800 µm) irregular ice crystals

→ Vertical profile of X and W $Z_{e_{-}}$ note the reduction in W Ze – attenuation + mie effect

G-band (183 GHz) water Vapor Radiometer (GVR) during C3VP

Developed by ProSensing Inc. and installed on the MRC Convair in a wingtip pod - looking in Zenith direction

Measures brightness temperature at 183.31 ±1, ±3, ±7 and ± 14 GHz

Operated in C3VP, STAR and ISDAC Projects

GVR/NAWX – 26-Jan-2007

NRCaerospace.com

measurement

Multiple layers- Upper layer: All ice and shallow layer of supercooled drops at the top of the lower layer at T of ~ -10C°
Convair made repeated porpoise maneuver in the liquid layer
Good correlation between GVR and in-situ LWC

 Preliminary work on retrievals of r_{eff} and N form combined GVR and NAWX data show good agreement with in-situ data (Pazmany, Wolde and Hudak − 33rd AMS radar conference, Cairns, Australia, 2007)
 ProSensing Systems Engineering for Environmental Remote Sensing
 Systems Engineering
 Systems
 S

GVR/NAWX – 26-Jan-2007

NRCaerospace.com

measurement

Multiple layers- Upper layer: All ice and shallow layer of supercooled drops at the top of the lower layer at T of ~ -10C°
Convair made repeated porpoise maneuver in the liquid layer
Good correlation between GVR and in-situ LWC

Preliminary work on retrievals of r_{eff} and N form combined GVR and NAWX data show good agreement with in-situ data (Wolde et. al. ICCP08) ProSensing