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Determination of Time Required for Materials Exposed to 

Oxygen to Return to Reduced Flammability 

ABSTRACT: Increased material flammability due to exposure to high oxygen concentrations is a concern 

from both a safety and operational perspective. Localized, high oxygen concentrations can occur when exiting 

a higher oxygen concentration environment due to material saturation, as well as oxygen entrapment between 

barrier materials.  Understanding of oxygen diffusion and permeation and its correlation to flammability risks 

can reduce the likelihood of fires while improving procedures as NASA moves to longer missions with 

increased extravehicular activities in both spacecraft and off-Earth habitats. This paper examines the time 

required for common spacecraft materials exposed to oxygen to return to reduced flammability after removal 

from the increased oxygen concentration environment. Specifically, NASA-STD-6001A maximum oxygen 

concentration testing and ASTM F-1927 permeability testing were performed on Nomex®4 HT90-40, 

Tiburon®5 Surgical Drape, Cotton, Extravehicular Mobility Unit (EMU) Liquid-Cooled Ventilation Garment, 

EMU Thermal Comfort Undergarment, EMU Mosite Foam with Spandex Covering, Advanced Crew Escape 

Suit (ACES) Outer Cross-section, ACES Liquid Cooled Garment (LCG), ACES O2 Hose Material, Minicel®6 

Polyethylene Foam, Minicel® Polyethylene Foam with Nomex® Covering, Pyrell Polyurethane Foam, and 

Zotek®7 F-30 Foam. 
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Introduction  

Catastrophic fires have occurred as a result of gaseous oxygen enrichment, even in low pressure 

environments. One contributing factor is that textile materials become more flammable and easier to ignite 

after exposure to gaseous oxygen enrichment or saturation. In addition, these materials can serve as barriers 

by trapping localized oxygen-enriched environments.  

When materials are moved from a higher oxygen concentration environment to an environment with 

lower oxygen concentration, the corresponding flammability and ignitability risks are difficult to characterize. 

An industrial example of such a scenario would occur when a person performs liquid oxygen filling 

operations and is exposed to a high amount of oxygen vapor. An aerospace example of such a scenario would 

occur when an astronaut completes an extravehicular activity (EVA) performed in 100% oxygen, and then 

moves into a spacecraft with a lower oxygen concentration (such as 34% oxygen). In each of these scenarios, 

it is not known how long it would take for the person’s garments to return to the flammability and ignitability 

expected in the lower oxygen concentration. The generally accepted rule of thumb used in such a scenario has 

historically been to allow 30 minutes for materials to return to their flammability and ignitability in the lower 

oxygen concentration (and essentially to avoid any potential ignition sources during that 30-minute time 

frame). This rule of thumb is not based on data, and could result in significant time lost, particularly in the 

case of an astronaut moving back and forth between different environments. 

NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) developed a test 

methodology and conducted tests to relate oxygen permeation with flammability of materials that have been 

exposed to oxygen enrichment or saturation. This report examines both the scenario of saturation of materials 

exposure to oxygen-enriched environments, and the scenario of entrapment when materials function as a 

potential barrier to create localized high oxygen concentrations. The entrapment scenario is particularly 

focused on simulating oxygen trapped between a material and a person’s body.  
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Test Methodology 

The test methodology characterized flammability as a function of time, thereby relating the flammability to 

the permeation of oxygen in entrapment and saturation scenarios. It was determined that a two-phase 

approach could be used and data correlated. The two phases of the methodology were permeability testing 

and flammability testing.  

Permeability Phase of Methodology  

When a material is moved from a high oxygen concentration to a low oxygen concentration, the 

oxygen concentration in the material decreased over time through diffusion. Mass transfer is mass in transit 

as the result of a species concentration difference in a mixture as a driving potential for transport. This 

transport process is called diffusion. Permeation is the flux of a species through a material due to species 

concentration differences on either side normalized to the pressure gradient. For simplification, only 

oxygen transport was considered in our models. Nitrogen transport was assumed to be reasonably 

negligible due to a significantly smaller concentration gradient that would drive transport, and transport 

rates that tend to be two to three times slower than those for oxygen.  

Permeability testing was performed to generate oxygen-transmission rate data that was then used to 

perform calculations determining the time necessary for materials to return to reduced oxygen concentrations. 

The permeation tests were performed in accordance with ASTM-F1927 Standard Test Method for the 

Determination of Oxygen Gas Transmission Rate, Permeability and Permeance at Controlled Relative 

Humidity through Barrier Materials Using a Coulometric Detector. This test method determines the rate of 

transmission of oxygen gas at steady-state conditions at a given temperature and percent relative humidity  

(% RH) through films, sheeting, laminates, coextrusions, or plastic-coated papers and fabrics. The 

relationship between the oxygen transmission rate (absolute flux) and the concentration gradient is described 
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by Fick’s First Law of Diffusion when describing a steady-state stationary medium as shown in equation 1. 

Absolute flux can further be correlated with total amount of permeant using equation 2. [2] 

x
CDJ
∂
∂

−=  

(1) 

Equation 1: Fick’s First Law for a steady-state stationary medium is where J is the flux per unit area of 

permeant through the polymer, D is the diffusion coefficient, and δc/δx is the concentration gradient of 

the permeant across a thickness δx. 

At
QJ =  

(2) 

Equation 2: Correlation of absolute flux (J) to amount of permeant (Q) that has passed through area (A) 

during time (t). 

The scenarios in question are not steady state due to their dependence on time for atoms to 

accumulate in a region and correspondingly deplete from another a region. Nonetheless, equation 2 can be 

evaluated at discrete time steps, which can be considered steady state within each time step. By using this 

method, the time needed for materials to return to reduced oxygen concentrations was determined [8]. For 

saturation scenarios we assume materials are filled with oxygen. The extent to which a material can absorb a 

gas is dependent on the solubility of that gas in a solid. This relationship is shown in equation 3 and is used in 

conjunction with Fick’s laws for diffusion in calculations of concentration decay [2, 8]. 

Equation 3: Concentration equation and relationship to solubility and partial pressure of gas adjoining to 

the surface of solid material.  

AA pSC ⋅=)0(  

(3) 
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Flammability Phase of Methodology 

Flammability testing was conducted to determine the Maximum Oxygen Concentration (MOC) 

flammability limits for each material. The MOC method uses NASA-STD-6001A, Test 1 methodology to 

determine oxygen concentration thresholds for which a material will pass NASA’s criteria for acceptable 

flammability in a specified environment. Acceptable flammability is determined to be a burn length of 

less than 6 inches before self-extinguishment occurs with no drip or burning that propagates fire to K-10 

paper set below the sample. The test setup was a modified NASA-STD-6001A, Test 1 configuration, as 

shown in Figure 1. Non-edge ignition was performed to better simulate a realistic ignition scenario. To 

achieve this scenario, materials were angled at 15○ from vertical with the igniter positioned 2 in. above 

the bottom of the sample and 1/4 inch below the surface. 

Passing of this test can be considered conservative as it is meant to identify materials that will 

self-extinguish with only minimal burning and limited possibilities for propagation to surrounding 

materials. The MOC threshold established for each material can be considered to be the desired oxygen 

gas concentration below which a material will have reduced flammability. When this concentration is 

reached, the material will not need any additional special restrictions for use and continued operation  

In both entrapment and saturation scenarios, once a material configuration is moved to a lower 

oxygen-concentration environment, the oxygen concentration will begin to decrease as a result of diffusion 

with respect to time, and flammability will decrease correspondingly. Once MOCs were determined and 

environments defined, permeation calculations based on Fick’s First Law were performed to determine the 

time required for each material to reach the MOC. 

 

Test Materials 

The NASA groups that encounter potentially oxygen-enriched entrapment and saturation scenarios 
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collaborated to develop a list of realistic and applicable materials for testing. Groups involved in material 

selection were: the Johnson Space Center Material and Process Branch, the Extravehicular Activity 

Office, and the Crew Escape Suit and Systems Group. Some materials not used in NASA scenarios were 

chosen for their comparison with past data [1].The materials chosen were grouped into separate categories 

by function and tested in their use thickness. Table 1 describes the thirteen materials and layups that were 

tested.  

 

Test Results & Discussion 

Results from the two phases of testing are discussed in the following sections, as well as the 

analysis and correlation of test data.  

Permeability Phase of Methodology 

ASTM-F1927 was conducted at a specified temperature, and % RH expected during material 

usage. Results of these tests are shown in Table 2 and Figure 2. In inspecting materials for permeation 

testing it was determined that porous materials would not exhibit resistance to natural diffusion, and so it 

was assumed that these materials would exhibit diffusion rather than permeation. Therefore, for porous 

materials, natural oxygen diffusion coefficients were used in calculations and permeability data was not 

generated [2]. Porous materials were identified by holding the material up to light to determine if there 

were any holes large enough to allow light to show through. The ACES layup was questionable and was 

tested for porosity using ASTM-F1927. Testing showed that the layup was indeed porous. Results for 

ASTM-F1927 Testing and Corresponding Permeability Coefficients are found in Table 2. Materials that 

were determined to be porous and their diffusion coefficient are shown in Table 3.  

Flammability Phase of Methodology 

NASA- STD-6001A Maximum Oxygen Concentration (MOC) flammability testing was conducted 
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at specified environmental pressure while the oxygen concentration was varied to determine the flammability 

threshold. Though the actual materials are used in a variety of pressure and concentration combinations, a 

single worst-case pressure of 101 kPa (14.7 psia) was chosen for consistency and ease of data comparison [7]. 

MOC threshold results are shown in Tables 4 and 5 for permeable and porous materials, respectively.  

Analysis and Correlation of Permeation and Flammability Data  

Two scenarios are examined in the following section. One scenario represents oxygen entrapment as 

found between clothing and a person’s body, and the other scenario represents saturation of the material itself 

as would be common for cabin insulation and other materials exposed to an oxygen-enriched environment. It 

should be noted that any type of permeation calculations are dependent on configuration and that scenarios in 

real life will vary in their specific configuration from those modeled here. Nonetheless, the scenarios 

proposed are meant to model typical situations that may be encountered in real life. Therefore, data should be 

used as an order of magnitude approximation for time data in similar situations with similar materials.  

In the entrapment scenario, the model situation has oxygen trapped between an impermeable surface 

(human body) and that of a barrier material. The volume of gas was determined through an assumed 1 cm of 

depth between the barrier material and the impermeable surface. Calculations were performed to ascertain 

how well each barrier material “traps” oxygen and to determine the oxygen-concentration decay in the 

confined area.  It was assumed that the initial concentration between the barrier and the impermeable surface 

was 100% and that the oxygen concentration on the outside of the barrier was a well-mixed environment of 

20.9%. Figures 3 and 4 are example plots showing the decay of the oxygen concentration in the trapped area 

as permeation progresses with time. Tables 6 and 7 show the amount of time needed for the trapped area to 

reach the MOC threshold determined in flammability testing or to reach 20.9% oxygen if the MOC was 

determined to be below 20.9% oxygen. 
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Because the diffusion through all porous materials is assumed to be the same, the only variation 

in time for these materials is dependent on their thickness. Table 7 presents the thickest and thinnest 

porous materials tested to give a range of time for decreased flammability.  

For the saturation scenario, the model situation represents a potential situation of oxygen 

saturating a material and the time associated for this saturated material to permeate out enriched oxygen 

to equilibrate with surrounding concentration. Saturation is a great concern for larger, bulkier materials as 

they can hold the largest quantity of oxygen when saturated. Therefore, for the saturation scenario, bulk 

materials were modeled. The saturated material was an assumed cube of bulk material with a length of 

0.5 m. Due to limited solubility information, materials were assumed to have solubility equal to that of 

oxygen in rubber at 298K. The saturation scenario shows how well saturated materials retain oxygen and 

the decay function of oxygen concentration was determined for each material. It was assumed that each 

material was initially saturated in 100% mole fraction of oxygen permeating out into a well-mixed 20.9% 

oxygen environment. Tables 8 and 9 show the times required for each material to reach the MOC, or 

20.9% oxygen if the MOC was determined to be below 20.9% oxygen.  

 

Conclusions and Future Work 

The two-phase methodology consisting of NASA-STD-6001A MOC flammability testing and 

ASTM F-1927 permeability testing was successful in correlating time required for materials exposed to 

oxygen to return to reduced flammability. This methodology is recommended for future use in examining 

flammability risks for localized, enriched-oxygen environments. Validation testing will be performed to 

confirm modeled scenarios, but were not completed in time for this publication. Validation testing will 

consist of burning materials at time intervals after being removed from 100% oxygen environments, and 

their burn lengths and burn rates will be correlated to known concentration testing. 

 It is clear that oxygen entrapment and saturation is a concern, especially when dealing with 

nonporous materials. For porous materials, the 30-minute rule of thumb is overly conservative, and it can 
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be expected that oxygen concentration will equilibrate with the new environment in a matter of seconds 

when considering entrapment scenarios. For saturation scenarios, even large, bulky sections of porous 

material will take only a few minutes to equilibrate. In contrast, nonporous materials are excellent at 

trapping and retaining oxygen, even for many hours. In these cases, there will be localized, enriched-

oxygen areas with higher flammability risks for a substantial length of time, and the 30-minute rule of 

thumb may not be sufficient. With nonporous materials, the risks must be weighed to not overly restrict 

operations, nor to ignore the increased flammability. Localized, enriched-oxygen concentrations should 

be considered in operational planning, especially as there is a move toward a greater quantity of closed-

cell foams. An example is the use of Mosite in the astronaut Liquid-Cooled Ventilation Garment (LCVG) 

that can be worn after a mission is complete and suit is removed and where the astronaut would retain 

enriched-oxygen concentrations in direct contact with his body for extended periods of time. Although 

these foams exhibit superb properties for use, here they are evidenced to be excellent barriers for oxygen 

permeation and retainers of oxygen saturation.  
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TABLE 1—Test materials. 
 

Material Description 

Common/Comparison Fabrics 

Nomex® HT90-40 Aramid fabric with high-performance heat- and flame-resistant 

properties. L/N 7254 

Tiburon surgical 

drape 

Microfiber composite consisting of three layers: an absorbent fluid-

control layer made of microfiber fabric, an impermeable cast-extruded 

polyethylene membrane laminated to the non-woven components, and a 

patient comfort layer 

Cotton Fabric Cellulose fabric in 100% cotton Hanes Beefy T-shirt 

Extravehicular Mobility Unit Materials 

EMU Liquid-

Cooled Ventilation 

Garment (LCVG) 

Polyamide Material Nylon Tricot ST11N791-01 

Thermal Comfort 

Undergarment 

(TCU) 

Polyester-based Material TCU Bottom, P/N SKD38114488-01.  

100% Polyester 

Spandex-Covered 

Viton (Mosite) 

Foam  

Polyurethane/Polyethylene Glycol Elastomeric Spandex ST11N117-07 

Covered Viton (Mosite) Fluoroelastomer Closed-cell Foam  

ST66V2590-01 is used in a variety of pads available for use in the 

EMU. These pads were designed to reduce hot-spots created by suit 

contact with the shoulders, elbows, ribs, or knees. The pads are inserted 

into spandex pockets that are form-fitted to each pad, and these are 

whip-stitched to the LCVG. [5] 
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Advanced Crew Escape Suit(ACES)/Equipment 

ACES Suit Layup Layup consisting of two outer layers of ACES, the outer material being 

composed of the Aramid fiber-based Nomex® and the inner material 

composed of a Polytetrafluoroethylene (PTFE) based Gore-Tex® for 

use as a bladder.  

ACES Liquid-

Cooled Garment 

(LCG) 

An assembly composed of thick, polypropylene-based undergarment 

with plastic tubing stitched in. This garment is worn under the outer 

ACES garment for temperature control [6]. 

 

O2 Hose Oxygen hose, SN-NA (Class 3) for supply of oxygen to astronauts 

during ascent in case of depressurization or escape. The hose is 

composed of a silicone liner, stainless-steel interstitial-weave braid, and 

a Nomex® aramid material cover. 

Cabin Environment Materials 

Minicel® 

Polyethylene Foam 

L-200 Minicel® Polyethylene Foam. This foam is extremely fine-celled, 

chemically cross-linked closed-cell foam, commonly used in the 

various space vehicles. This foam is commonly covered an Aramid 

(Nomex) to mitigate fire risk. 

Minicel® 

Polyethylene Foam 

with Nomex® 

Covering 

HT90-40 Nomex® Covered L-200 Minicel® Polyethylene Foam. This 

foam is closed-cell foam, commonly used in the various space vehicles. 

Pyrell Polyurethane 

Foam 

Pyrell Polyurethane Foam. This foam is open-celled foam.  
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Zotek® F-30 Foam Polyvinylidene Flouride (PVDF), highly non-reactive and pure 

thermoplastic fluoropolymer closed-cell foam; a foam being considered 

for extensive use in future NASA vehicles. 
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TABLE 2—Permeable materials and their permeability coefficients. 
 

Material Analysis Conditions Permeability 

Coefficient 

PaSm
mMol
⋅⋅
⋅

2  

Temp 

(F) 

Test Gas (O2) 

Humidity 

(RH %) 

Carrier Gas 

(N2) 

Humidity 

(RH %) 

Tiburon Surgical 

Drape 

75 35% 35% 

1.4018E-14 

Spandex-Covered 

Viton (Mosite) Foam 

72 47% 35%  

4.1486E-15 

ACES O2 Hose 75 0% 0% 7.3413E-15 

Minicel Polyethylene 

Foam 

75 35% 35% 

1.3362E-13 

Minicel Polyethylene 

Foam with Nomex 

Covering 

75 35% 35% 

1.3543E-13 

Zotek F-30 Foam 75 35% 35% 3.4117E-13 
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TABLE 3—Porous materials and their diffusion coefficient. 
 

Material Natural Oxygen Gas Diffusion Coefficient  

through air @ 278K and 1 atm (m^2/s) 

Nomex HT90-40 2.1E-05 

Cotton Fabric 2.1E-05 

EMU Liquid-Cooled Ventilation Garment (LCVG) 2.1E-05 

Thermal Comfort Undergarment (TCU) 2.1E-05 

ACES Suit Layup 2.1E-05 

ACES Liquid-Cooled Garment (LCG) 2.1E-05 

Pyrell Polyurethane Foam 2.1E-05 
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TABLE 4—Permeable materials maximum oxygen concentrations at 101kPa. 
 

Material Test 
Pressure 

(pa) 

Maximum Oxygen 
Concentration (%) 

Tiburon Surgical Drape 101,325 20 

Spandex-Covered Viton (Mosite) Foam 101,325 
 

18 

ACES O2 Hose 101,325 49 

Minicel Polyethylene Foam 101,325 20 

Minicel Polyethylene Foam with Nomex 
Covering 101,325 28 

Zotek F-30 Foam 101,325 36 
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TABLE 5—Porous materials maximum oxygen concentrations. 
 

 

Material 

Test 
Pressure 

(pa) 

Maximum Oxygen 
Concentration (%) 

Nomex HT90-40 101325 24 

Cotton Fabric 101325 
 
13 

EMU Liquid-Cooled Ventilation Garment 
(LCVG) 101325 23 

Thermal Comfort Undergarment(TCU) 101325 21 

ACES Suit Layup 101325 34 

ACES Liquid-Cooled Garment (LCG) 101325 18.1 

Pyrell Polyurethane Foam 101325 19 
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TABLE 6—Permeable materials oxygen permeation to low-flammability conditions for entrapment 
scenario. 

 

Material Thickness 
(m) 

MOC  
(%) 

Time (t) to 
achieve MOC 

or ambient 
(hr:min:sec) 

Tiburon surgical drape 0.00022 20 03:04:58 

Spandex-Covered Viton (Mosite) Foam 0.00794 
 

18 74:51:36 

ACES O2 Hose 0.00567 49 11:55:00 

Minicel Polyethylene Foam 0.05100 20 16:30:00 

Minicel Polyethylene Foam with Nomex 
Covering 0.05169 28 12:30:00 

Zotek F-30 Foam 0.0254 36 04:30:00 

 



 
 

HARPER ET AL ON REDUCED IGNITABILITY   21 
 

 
 

TABLE 7—Porous materials oxygen permeation to low-flammability conditions for entrapment scenario. 
 

Material Thickness 
(m) MOC (%) Time (t) for MOC or 

ambient (hr:min:sec) 

EMU Liquid-Cooled Ventilation 
Garment (LCVG) 0.00022 23 00:00:026 

Pyrell Polyurethane Foam 0.0508 19 00:00:10 
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TABLE 8—Permeable materials oxygen permeation to low-flammability conditions for saturation 
scenario. 

 

Material Thickness 
(m) 

MOC  
(%) 

Time (t) for MOC or 
ambient (hr:min:sec) 

Spandex-Covered Viton (Mosite) Foam 0.50 
 

18 2029:30:00 

Minicel Polyethylene Foam 0.50 20 334:30:00 

Minicel Polyethylene Foam with Nomex 
Covering 0.50 28 159:30:00 

Zotek F-30 Foam 0.50 36 52:30:00 
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TABLE 9—Porous materials oxygen permeation to low-flammability conditions for saturation scenario. 
 

Material Thickness 
(m) MOC (%) Time (t) for MOC or 

ambient (hr:min:sec) 

Pyrell Polyurethane Foam 0.50 19 00:02:10 
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FIG.1—Modified NASA-STD-6001A Test 1 on ACES Suit Layup. 
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FIG. 2—Permeation coefficients of materials. 
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FIG. 3—Permeation of oxygen through Tiburon Surgical Drape in entrapment scenario. 
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FIG. 4—Permeation of oxygen through Pyrell Polyurethane Foam in an entrapment scenario. 

 


