November 15, 1992

TDA Progress Report 42-111

N93-1892

P- \$1

Correction of High-Frequency Noise-Temperature Inaccuracies

87

1193209-

C. T. Stelzried TDA Technology Development Section

Deep-space mission data rates to Earth are limited by the system operating noise-temperature (T_{op}) performance of the DSN. This article addresses some of the techniques and definitions used for measuring and reporting the effective noise temperature of receivers (Te) and T_{op} of the DSN's ground receiving systems. Calibration loads are used to measure T_{op} of the DSN antennas. At 32 GHz, a calibration load cooled to 2-K physical temperature requires a correction of 0.67 K to determine the noise temperature. Using corrected noise temperature for the calibration loads results in the correct values for T_{op} such that the total system noise power can be defined by $Pn = kT_{op} B$, as required for DSN telecommunications design control tables. T_{op} and Te should not be converted to equivalent physical temperatures.

I. Introduction

System operating noise temperature (T_{op}) is very important to the DSN; deep-space mission data rates to Earth are limited by the DSN's T_{op} performance. The DSN uses design control tables to document parameters of the spacecraft-to-ground end-to-end telecommunications system. A key parameter affecting the data quality is the signal-to-noise ratio (SNR) of the signal received by the DSN. The received SNR is proportional to DSN antenna gain divided by the system operating noise temperature (G/T_{op}) .

This article addresses some of the techniques and definitions used for measuring and reporting the effective noise temperature of receivers (Te) and T_{op} of the DSN's ground receiving systems. Proper evaluation of the noisetemperature performance of high-frequency, low-noise amplifiers (LNA's), such as Ka-band (32-GHz) masers currently under development in the DSN Advanced Systems Program, requires the use of frequency-dependent corrections for the noise power available from the calibration loads. At 32 GHz, a calibration load cooled to 2 K has an available noise power equivalent to 1.33 K; a correction of 0.67 K is needed.

An analysis for optimizing the testing configuration for LNA noise temperature is provided in [1]; frequencydependent corrections are not used. Frequency-dependent

[4] can give large errors. Using Eq. (2) with the equivalent corrected noise temperature results in

$$Pn = kTnB \tag{4}$$

Use of the corrected equivalent noise temperature is appropriate for telecommunications design control tables, such as used in the DSN [5].

Calibration of the corrected equivalent noise temperature of an LNA using a load with physical T and a noise source (usually a noise diode connected to the LNA through a directional coupler between the LNA and the load) with temperature TND, all referred to the amplifier input, requires solution of

$$Te = \frac{TND}{Y-1} - Tn \tag{5}$$

where

Y = power ratio at the output of follow-up amplifiers with the noise source turned on and off

TND = noise source excess noise at amplifier input, K

Tn = equivalent noise temperature of source at physical temperature T, K

Measurement configurations using cooled attenuators located between the load and the LNA are evaluated using Eq. (5) by analyzing an equivalent TND and Tn defined at the LNA input. Similarly, using two calibration loads and a cooled attenuator requires the evaluation of corrected equivalent noise temperatures T1 and T2 for the loads, defined at the LNA input, and the solution of

$$Te = \frac{T2 - T1Y}{Y - 1} \tag{6}$$

where Y = power ratio obtained at output of follow-up amplifiers switching between T1 and T2.

The value Te, as measured with Eqs. (5) and (6), contains the follow-up amplifier noise temperature Tf. The LNA noise temperature, TLNA, requires the correction

$$TLNA = Te - Tf \tag{7}$$

For most system applications, especially when the first amplifier has more than a 30-dB gain, Tf is small compared with Te. For system applications, Te is the significant parameter.

III. Results

Equations (5) and (6) have been programmed in Supercalc 4. Assuming the load and noise source are separated from the amplifier by an attenuator with loss L at physical temperature Tp, Figs. 1 and 2 show the solutions using Eq. (5). Using Eq. (6), Figs. 3 and 4 assume the loads are separated from the amplifier by the attenuator. The values TND, L, Tp, T1, T2, and Y are considered known. Equation (3) is used to correct T1, T2, and TL for frequency. The equation TL = Tp (1 - 1/L) represents the attenuator noise-temperature contribution. The Eq. (3) correction is applied to Tp, not TL.

For the purposes of this article, f = 0.001 GHz is used as the dc (f = 0) case. The results shown in Fig. 1, at dc, assume Y = 2.1136, appropriate for Te = 4.0 K and the other input parameters assumed and used in [2]. Figure 2 shows the result of operating at f = 32 GHz with all other inputs unchanged. The errors in Te due to various parameter changes are virtually unchanged with frequency and also agree with [2] (Fig. 3 for L = 20 dB). However, Te increases from 4.00 to 4.67 K at f = 32 GHz relative to dc. Figures 3 and 4 have similar results, with Te increasing from 4.00 K at dc to 4.68 K at 32 GHz.

IV. Conclusion

Using loads with corrected equivalent noise temperatures results in the proper value for the amplifier noise temperature, Te. The value Te in this case is the equivalent noise temperature, not the physical temperature. From Eq. (3), the physical temperature is given by

$$T = \frac{hf/k}{ln((hf/kTn) + 1)}$$
(8)

Equation (8) is useful for converting a measured noise temperature, Tn, to a physical temperature, T. An example of this is using T, the physical or thermodynamic temperature, for reporting the cosmic background radiation temperature. The cosmic physical or thermodynamic temperature obtained with Eq. (8) after measuring the noise temperature is independent of frequency.

The physical or thermodynamic temperature is not appropriate for reporting measurements of amplifier noise temperature, Te, for such purposes as the DSN telecommunications-link design tables. In addition, quantum noise is inherent to low-noise amplifiers and is included in

at S- and X-bands presently used in the DSN (T reduced by 0.2 K at 8.4 GHz for a 300-K load) but is important for future Ka-band operation (T reduced by 0.77 K at 32 CHz

λ _ε	
÷ .	
i. Ž	
91 ·	
<u>,</u>	
** ••••••	

, GHz	<i>Т</i> , К	<i>Тс</i> , К	Error in Tc , K due to 10-percen change in T		
8	2	0.19	0.0006		
8	80	0.19	<0.0001		
8	300	0.19	<0.0001		
32	2	0.67	0.0087		
32	80	0.77	0.0002		
32	300	0.77	<0.0001		

Table 1. Examples of errors in treating Tc as a constant with changes of frequency, f, and the calibration load physical temperature, T.

-

INPUT	• • • • • •					.		
T=	300	TND=	1000	Tp=	2	f,GHz=	.001	
DT=	.1	DTND=				Y=		
DYLDB,A=	.01	DLDB,A=	.01	B,MHZ=	50	DYG=	.01	
DYLDB,B=	.01	DLD B,B =	.03	T,SEC=	1	L=	100	
RESULTS				(DT-)-				
	78622			.09900				
DT .(-	.16455			.328408	
DTND .4				.00482			1.83299	
0180 .4	4077		UTW	.00462		KMS	.902007	
CALCULATION	is							
L,DB=	20	Y,D8= 3	.2502	DYN=	.00014	hf/k=	.000048	
NOM	INAL	DE	LTA CA	LCULATI	ONS			
		٤+	DL,DB=	ד י	+DT=	T	N+DTN	
			20.61		300.1		1050	
			L+DL=					
		1	15.08					
TL=	1.98	1	.9826		1.98		1.98	
Tin= 1.	9800	1	.9826		1.9800		1.97998	
TnR= 3.	0000	2	.6069		3.0010		3.00000	
T= 4.			.5895		4.9810	4	4.97998	
TND=		8	.6896		10		10.5	
Te= 3.	9999	3	.2137		3.9989	4	4.44890	
DELTA CALCU		IS, CONT						
	D⊺p=	•					(1+2*DYG)=	
·	2.1		.2927		2.1142		2.15587	
		١	(+DY=			-		
		2.	. 1344					
TL= 2	.079		1.98		1.98		1.98	
TLn= 2.0	0790	1.	9800		1.9800	1	.97998	
TnR= 3.0	0000	3.	0000	:	3.0000		.00000	
T= 5.0	0790	4.	9800		4.9800	4	.97998	
TND=	10		10		10		10	
Te= 3.9	9009	3.	8354	3	3.9951	3	.67150	
DEFINITIONS								
Te=LNA NOISE	TEMP			Т				
LEATTEN LOSS				Tp=PHY TEMP OF L DTp=DELTA Tp				
DL=DELTA L				TND=NOISE DIODE				
	TL=TEMP CONTR OF L				DTND=DELTA NOISE DIODE			
Y=Y FACTOR					LOAD TE			
DYL=DELTA Y	FACTO	R.LINEARIT	Y		EDELTA			
DYN=DELTA Y,							R FRED	
DYG=DELTA Y,							n INEW	

• • •

Fig. 1. Supercalc 4 computer program NOISE2ND printout of the measured noise temperature and errors of a low-noise amplifier using a load, noise diode, and cooled attenuator at 0.001 GHz (dc).

	300	TND=	1000	Tp=	2	f,GHz=	32	
 DT=	1	DTND=	50	DTp=	.1	Y=	2.1136	
DYLDB,A=	01	DIDB.A=	.01	B.MHZ=	50	DYG=	.01	
DYLDB,R=	01	DIDB.B=	.03	T.SEC=	1	L=	100	
0100,0-				•				
RESULTS		-"Te erro	or (DTe)				
	.78635			.10794		DYG	.328408	
DT	.00100			.16455			1.84206	
DTND	.44899		DYN	.00482		RMS	.983130	
CALCULATI	ONS							
L.DB=		Y,DB=						
•			DELTA C	ALCULAT	IONS			
			L+DL,DB		T+DT=			
			20.61		300.1		1050	
			L+DL=					
			115.08					
Ton=	1.3294		1.3294		1.3294		1.32935	
•	1.3161		1.3178		1.3161		1.31606	
TnR=	2.9923		2.6002		2.9933		2.99233	
T=	4.3084		3.9180	1	4.3094		4.30838	
TND=	10		8.6896	•	10		10.5	
Te=	4.6715		3.8852	2	4.6705		5.12050	
DELTA CA		ONS, CONT						
	Tp+DTp=		Y+DYL.C)B=	Y(1+2*D)	(N)=	Y(1+2*DYG)=	
	2.1		3.2927		2.1142		2.15587	
			Y+DY=	=				
			2.1344	•				
Tpn=	1.4384		1.3294	•	1.3294		1.32935	
	1.4240		1.316	1	1.3161		1.31606	
	2.9923		2.992	3	2.9923		2.99233	
	4.4163		4.308	4	4.3084		4.30838	
TND=	10)	10	D	10		10	
Te=	4.5636	b	4.507	0	4.6667		4.34309	
DEFINITI	ONS				Tpn=Tp	CORRECT	ED FOR FREQ	
Te=LNA NOISE TEMP				TP=PHY TEMP OF L				
L=ATTEN LOSS				DTp=DELTA Tp				
	DL=DELTA L				TND=NOISE DIODE			
	DL=DELIA L TL≠TEMP CONTR OF L				DTND=DELTA NOISE DIODE			
Y=Y FACT		-			T=LOAD TEMP			
		CTOR, LINE	ARITY		DT=DELT	AT		
DYN=DFI 1	AY.R		NOISE	(T,B)	Tn=T CO	RRECTED	FOR FREQ	
DYG=DEL1	TAY.R	ADIOMETER	GAIN D	ELTA G	TnR=Tn	AT REF		

Fig. 2. Supercalc 4 computer program NOISE2ND printout of the measured noise temperature and errors of a low-noise amplifier using a load, noise diode, and cooled attenuator at 32 GHz.

INPUT							
T2= 30					f,Ghz=		
	1 DT1=				Y≖		
DYLDB,A= .0	1 DLDB,A=	.01	B,MHZ=	50	DYG=	.01	
DYLDB,B= .0	1 DLDB,8=	.03	T,SEC=	1	L=	10	
RESULTS	1				•••••		
DL .4133	5	DTP	.00900			.434972	
DT2 .0062			.26228		SUM	1.29495	
DT1 .1627.	3	DYN	.00635		RMS	.674902	
CALCULATIONS -							
L,DB= 10	0 Y,DB= 4	.1400	DYN=	.00014	hf/k=	.000048	
NOMINAL							
	L+	DL,DB=	: T7	2+DT2=	T	1+DT1=	
		10.31		300.1		81	
		L+DL=					
	1	0.740					
TL= 1.8	3 1	.8138		1.8		1.8	
TLn= 1.8000) 1	.8138	1	1.8000		.79998	
T2nR= 30.000) 2	27.933	3	30.010		50.0000	
T2 31.800		9.747		31.810		1.8000	
TinR= 8.0000		.4489		3.0000		3.10000	
T1 9.8000		.2626		2.8000		.89997	
Te= 4.0001		.5867		.0063		.83732	
DELTA CALCULATI	ONS, CONT				••••••	•••••	
Tp+DTp=	•	DYL,DB	= Y(1+2*DYN	i)= Y(1+2*DYG)=	
2.01		. 1914		2.5949		.64608	
		Y+DY=					
		.6251					
TL= 1.809		1.8		1.8		1.8	
TLn= 1.8090		.8000	1	.8000	1	.79998	
T2nR= 30.000		0.000		0.000		0.0000	
T2 31.809	_	1.800		1.800		1.8000	
TinR= 8.0000	-	.0000		.0000		.00000	
T1 9.8090		.8000	_	.8000		.79997	
Te= 3.9911		.7378		.9937		.56508	
DEFINITIONS							
Te=LNA NOISE TEN	MP		Τœ	-DWY TE			
LEATTEN LOSS				TP=PHY TEMP OF L DTP=DELTA TP			
DL=DELTA L				•			
TL=TEMP CONTR OF L				T1=COLD LOAD TEMP DT1=DELTA T1			
Y=Y FACTOR	L						
DYL=DELTA Y FACT	TOD I INFARIT	v		T2=HOT LOAD TEMP			
				DT2=DELTA T2			
DYN=DELTA Y, RADIOMETER NOISE (T, DYG=DELTA Y, RADIOMETER GAIN DELT						₹ FREQ	
DIGEDELIA I, NAU	DIUMETER UNI	N DELI	AGIN	₹=Tn AI	REF		

Fig. 3. Supercalc 4 computer program NOISE2LD printout of the measured noise temperature and errors of a low-noise amplifier using two loads and a cooled attenuator at 0.001 GHz (dc).

INPUT							·····	
T2=		T1=	80	Tp=	2	f,Ghz=		
DT2= DYLDB,A=	.1	DT1=	1	DTp=	.01	¥=	2.5942	
DYLDB,A=	.01	DLDB,A=	.01	B,MHZ=	50	DYG=	.01	
DYLDB,B=	.01	DLDB,B=	.03	T,SEC=	1	L=	10	
RESULTS			TE (error (DTE)			
DL .	41400			.00857			.434968	
DT2 .	00627		DYL	.26228			1.29516	
DT1 .	16272		DYN	.00635		RMS	.675288	
CALCULATIO	NS							
L,DB=	10	Y,DB=	4.1400	DYN=	.00014	hf/k=	1.536	
-	MINAL				IONS			
		L	+DL,DB	=	T2+DT2=		T1+DT1=	
			10.31		300.1		81	
			L+DL=					
			10.740					
Tpn= 1	.3294		1.3294		1.3294		1.32935	
TLn= 1	. 1964		1.2056		1.1964		1.19642	
T2nR= 2	9.923		27.862		29.933		29.9233	
T2= 3	1.120		29.067		31.130		31.1197	
TinR= 7	.9234		7.3776	,	7.9234		8.02344	
T1= 9	.1199		8.5832		9.1199		9.21986	
Te= 4	.6801		4.2660	1	4.6863		4.51733	
DELTA CALC	ULATIC							
Tp	y+D⊺p=						Y(1+2*DYG)	
	2.01		4.1914		2.5949		2.64608	
			Y+DY=					
			2.6251				4 3003r	
⊺pn≓ í			1.3294		1.3294		1.32935	
TLn= 1			1.1964		1.1964		1.19642	
T2nR=			29.923		29.923		29.9233	
	51.128		31.120		31.120		31.1197	
T1nR=			7.9234		7.9234		7.92345	
	2.1284		9.1199		9.1199		9.11986	
Te= 4	4.6715		4.4178	b	4.6737		4.24508	
DEFINITIO	IS						ED FOR FREG	
Te=LNA NOISE TEMP				TP=PHY TEMP OF L				
L=ATTEN L	oss				DTp=DEL	•		
DL=DELTA L				T1=COLD LOAD TEMP				
TL=TEMP C	ONTR O	FL			DT1=DEL			
Y=Y FACTO	R				T2=HOT LOAD TEMP			
DYL=DELTA Y FACTOR,LINEARITY					DT2=DELTA T2			
		DIOMETER					FOR FREQ	
DYG=DELTA	Y, RA	DIOMETER	GAIN D	ELTA G	TnR=Tn	AT REF		

Fig. 4. Supercalc 4 computer program NOISE2LD printout of the measured noise temperature and errors of a low-noise amplifier using two loads and a cooled attenuator at 32 GHz.