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A generalized approach is described for evaluating arbitrary functions of

position in reciprocal space. This is a generalization which subsumes a whole

range of calculations that form a part of almost every crystallographic software

application. Examples include scaling of structure factors, the calculation of

structure-factor statistics, and some simple likelihood calculations for a single

parameter. The generalized approach has a number of advantages: all these

calculations may now be performed by a single software routine which need only

be debugged and optimized once; the existing approach of dividing reciprocal

space into resolution shells with discontinuities at the boundaries is no longer

necessary; the implementation provided makes employing the new functionality

extremely simple and concise. The calculation is split into three standard

components, for which a number of implementations are provided for different

tasks. A `basis function' describes some function of position in reciprocal space,

the shape of which is determined by a small number of parameters. A `target

function' describes the property for which a functional representation is

required, for example hjFj2i. An `evaluator' takes a basis and target function and

optimizes the parameters of the basis function to ®t the target function. Ideally

the components should be usable in any combination.

1. Background

Most crystallographic computations depend at some level on

statistical properties of either the observations or quantities

derived from the observations. This generally involves the

calculation of statistical properties of an ensemble of re¯ec-

tions. Depending on the task, this ensemble may include all

the re¯ections for which data are available, or some subset

which may be chosen at random [for example, in the calcu-

lation of the free R factor (BruÈ nger, 1993)], or systematically

on the basis of position in reciprocal space.

The most common example of a calculation using a

systematically chosen subset of the data is the calculation of a

property over all the re¯ections in a resolution range, as

de®ned by a spherical shell of a given thickness in reciprocal

space. This division is useful because the properties of the

diffraction pattern commonly vary as a function of resolution,

owing to both the atomic shape (which when averaged over all

the atoms in a structure is likely to approach spherical

symmetry), and the distribution of interatomic vectors (which

also approaches spherical symmetry when averaged). The

division of reciprocal space into concentric resolution shells,

such that each re¯ection falls into one shell, is commonly

referred to as `binning', and each shell is referred to as a

`resolution bin'.

The above assumptions concerning spherical symmetry

form a partial basis for Wilson's distribution of structure-

factor intensities (Wilson, 1949), which describes the expected

mean observed intensity as a function of resolution, given

some value for the mean thermal motion of the atoms in the

structure. This work was extended by Blessing et al. (1996) to

include a term for the standard deviation of the thermal

parameters. To compare this theoretical distribution with the

observed data from a real structure, the data are divided into

resolution bins and the mean intensity computed over all the

re¯ections in each bin. The mean intensity may then be plotted

against the mean resolution of the re¯ections in the bin to

form a distribution of mean intensity as a function of resolu-

tion. This curve might then be used to compute the mean

thermal motion of the atoms (Wilson, 1949), or to calculate

normalized structure factors for use in a direct-methods

calculation, such as that of Germain et al. (1970).

This approach has some weaknesses. The division of reci-

procal space into discrete shells leads to discontinuities across

the bin boundaries, and the resolution bins have a smoothing

effect which eliminates any variation across the width of the

bin. The former may be addressed (incorrectly) by inter-

polation between bin centres, but the latter is more proble-

matic. To obtain a smoothly varying estimate of a property as a

function of resolution, a large number of bins may be required,

which means that a small number of re¯ections will contribute

to each bin, giving rise to statistical noise. This is a particular

problem in cross-validation calculations, where only a small

test set of re¯ections may be available (Dodson et al., 1996).
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An alternative approach is to ®t some simple function of

resolution to the desired property. For example, Tronrud

(1997) uses a function composed of two Gaussians to ®t the

error in calculated structure factors arising from the omission

of the bulk solvent density from the model. Read and

Murshudov (Read, 2002; Murshudov et al., 1997) use a four-

parameter function of resolution to ®t the variation of �a as a

function of resolution. The problem with these approaches is

that the functional form of the curve must be of a sensible

form for the particular statistical property, and that a

substantial amount of code must be written to implement the

function, its derivatives, and a minimizer to determine the

optimal values of the parameters.

Zelinka (1998) suggested using a standard family of func-

tions of varying complexity to ®t arbitrary statistical proper-

ties, in the same way that polynomials of different orders are

used to ®t a graph to different degrees of accuracy. However,

whether a family of functions exists which is suitable for all

crystallographic tasks has yet to be seen.

In this work, a generalized method is described for ®tting an

arbitrary statistical property with an arbitrary function,

without the use of resolution bins. The method is suf®ciently

general to subsume all the approaches described above, and a

number of tasks not handled by previous work. This approach

may be implemented in a modular fashion using object-

oriented programming techniques in such a way that any

functional form may be used to ®t any statistical property, and

a new statistical property, a new functional form, or even a

new minimizer may be added with a minimum of effort.

Implementation details are given for several functional

forms, including a smooth spline function with particularly

desirable properties, and for statistical properties including

the Nth moment of the structure-factor magnitudes and the �a

function (Read, 1986).

2. A general resolution function evaluator

2.1. Theory

A general resolution function evaluator would allow an

arbitrary functional form to be used to represent an arbitrary

statistical property of the data. In order to achieve this result

using generic reusable components, the problem is divided

into three parts. These are as follows.

(i) The `basis' function. This describes the functional form

of the function to be determined, parameterized on a small

number of parameters.

(ii) The `target' function. This describes the statistical

property to be ®t by the basis function. It is de®ned such that

its value decreases as the ®t of the basis function to the desired

statistical property improves.

(iii) The resolution function evaluator. This component

takes a basis function and a target function and varies the

parameters of the basis function to minimize the value of the

target function.

These components are described in more detail in the

following sections.

2.1.1. The `basis' function. The basis function de®nes a

value as a function of resolution, or more generally as a

function of position in reciprocal space. The function is

parameterized on a small number of parameters (typically

between 2 and 100). The basis function is therefore a function

of both the Miller index h and the parameters pi, i = 1 . . . np,

where np is the number of parameters:

fh � f �h; p1; . . . ; pnp
�: �1�

In order for the minimizer to function ef®ciently, it is also

useful to implement the ®rst two derivatives of the basis

function with respect to the parameters

f 0h;i �
@f

@pi

����
p1;...;pnp

�2�

and

f 00h;i;j �
@2f

@pi@pj

����
p1;...;pnp

: �3�

The derivatives may be calculated analytically, or by automatic

differentiation (see, for example, Griewank et al., 1996), or

numerically.

Note that in the common case where f is a function of

resolution rather than of general position in reciprocal space,

h becomes |h|, computed using either the reciprocal-space

metric tensor or a lookup table.

2.1.2. The `target' function. The target function is a func-

tion which is computed over all the re¯ections and which is

minimized by the form of the basis function that gives the best

®t to the statistical property for which a functional form is

required. Typically, the target function will take the form of a

least-squares residual or negative log-likelihood.

In the general case, the target function is a function of all

the re¯ections simultaneously; however, in most practical

cases the target function can be written as a sum over all the

re¯ections of some function involving that re¯ection alone. In

this case, the target function can be written as

R �
X

h

rh; �4�

where rh is a function of the data associated with the Miller

index h and of the value of the basis function for that Miller

index. For example, if the target function depends on the

observed magnitudes, then

rh � r jF�h�j; fh

� �
: �5�

The derivatives of rh with respect to the value of the basis

function for that re¯ection alone may be calculated for use in

the minimizer:

r0h �
dr

dfh

����
fh

�6�

and

r00h �
d2r

df 2
h

����
fh

: �7�



Again, the derivatives may be determined analytically, by

automatic differentiation, or numerically.

In some cases, there may be limitations on the valid values

of the basis function for a particular target function. `Bumpers'

may be implemented by having the target function routine

return `not-a-number' (NaN) in this case. The minimizer will

use this information to adjust the values of the parameters

accordingly.

2.1.3. The resolution function evaluator. The resolution

function evaluator takes any basis function and target function

and varies the parameters of the basis function to determine

the functional form that minimizes the value of the target

function. It therefore also requires a list of re¯ections over

which the target function is to be evaluated.

In order to optimize the parameters, a Newton±Raphson

calculation is performed. This depends on having the ®rst two

derivatives of the target function with respect to the para-

meters, i.e. @R=@pi and @2R=@pi@pj

Using equations (2) and (6), and the chain rule, the ®rst

derivative is obtained as follows:

@R

@pi

�
X

h

@rh

@pi

�8�

�
X

h

@rh

@fh

@fh

@pi

�9�

�
X

h

r0hf 0h;i: �10�

The second derivative is obtained in the same manner:

@2R

@pi@pj

�
X

h

@2rh

@pi@pj

�11�

�
X

h

@2rh

@f 2

@f

@pi

@f

@pj

� @rh

@fh

@2fh

@pi@pj

�12�

�
X

h

r00hf 0h;if
0

h;j � r0hf 00h;i;j: �13�

The Newton±Raphson calculation proceeds by iteratively

updating the parameters of the basis function using shifts

given by:

�pi � ÿ
@2R

@pi@pj

� �ÿ1
@R

@pi

� �
: �14�

Note that if R is a quadratic function of the parameters, then

the calculation converges in a single cycle. This occurs when rh

is a quadratic function of fh and fh is linearly dependent on the

parameters pi.

If the target function returns `NaN', indicating that a

bumper has been hit, then the Newton±Raphson step is halved

until a valid value is found. A similar procedure is undertaken

if the Newton±Raphson step leads to an increase in the value

of the target function, unless the dot product of the step and

gradient is negative, in which case a gradient step and line

search are used instead.

2.2. Implementation

A sample implementation of these ideas has been devel-

oped using object-oriented programming techniques as part of

the Clipper libraries (Cowtan, 2002), a set of object oriented

libraries for the storage and manipulation of all types of

crystallographic data. The resulting interface is simple and

ef®cient, with only three C++ instructions being required to

optimize the parameters of any basis function using any target

function, as follows: one instruction instantiates the chosen

basis function; one instruction instantiates the chosen target

function; the ®nal instruction calls the evaluator to perform

the optimization.

3. Example basis functions

Four basis functions will be considered to illustrate how basis

functions may be de®ned and to test the effectiveness of some

simple functional forms. These include a Gaussian function of

resolution, an anisotropic Gaussian function, a simple `binner'

which emulates a traditional resolution-bin approach, and a

smooth spline function.

3.1. A Gaussian basis function

A Gaussian basis function has only two parameters and so is

useful for modelling a property when very few data are

available. It is also used in determining the mean temperature

factor of the atoms in a structure by ®nding the Gaussian

coef®cients required to ®t the observed intensity distribution

to the theoretical scattering factors for stationary atoms. The

equations are as follows:

fh � exp�ÿp1s� p0�; �15�

f 0h;i � �ÿs�ifh �16�

f 00h;i;j � �ÿs�i�j
fh; �17�

where s = |h|24 sin2 �=�2.

Note that the signs of the parameters are chosen such that

for the most common cases the parameters will be positive.

The parameter numbering now starts at zero, in line with

modern programming practice.

When computing an overall scale and temperature factor,

the temperature factor is given by B = 4p1, and the intensity

scale factor by S = log�p0�.

3.2. An anisotropic Gaussian basis function

An anisotropic Gaussian basis function is commonly used to

account for anisotropy in the X-ray scattering, which may arise

from genuine anisotropy in the atomic motion and disorder, or

other effects such as absorption. The basis function has seven

parameters: one for scaling and six for the anisotropic coef-

®cients.

For convenience, the equations are de®ned using a set of

intermediate coef®cients, ci:

J. Appl. Cryst. (2002). 35, 655±663 Kevin Cowtan � Functions of position in reciprocal space 657

research papers



research papers

658 Kevin Cowtan � Functions of position in reciprocal space J. Appl. Cryst. (2002). 35, 655±663

fh � exp ÿ
X6

i�0

cipi

 !
; �18�

f 0h;i � ÿcifh; �19�

f 00h;i;j � cicjfh; �20�
where c0 =ÿ1, c1 =ÿ�h � a��2, c2 =ÿ�h � b��2, c3 =ÿ�h � c��2, c4

= ÿ2�h � a���h � b��, c5 = ÿ2�h � a���h � c��, c6 =

ÿ2�h � b���h � c��, where a�,b�, c� are the vector representa-

tions of the reciprocal cell axes. Parameters 1±6 may be

converted to anisotropic U values by a scale factor of 2�2.

3.3. A `binner' basis function

A basis function can easily be constructed to emulate a

traditional `binner'. This is useful for comparison purposes;

however, some minor improvements have also been made

over common existing practices.

Traditionally, reciprocal space would be divided into sphe-

rical shells, with boundaries determined by raising |h| to some

power p, and dividing the range of |h|p into nbin equal divisions,

where p is some power that allows the number of re¯ections

per bin to vary as a function of resolution, and nbin is the

number of bins. If p = 3, then the number of re¯ections per bin

will be roughly constant if the data are complete. Some

calculations bene®t from a different distribution, for example

the �a calculation bene®ts from having more re¯ections in the

higher resolution bins where �a is usually lower and less well

determined (Read, 1986).

A better approach allows the problem of incomplete data to

be handled. Instead of using the resolution of the re¯ection,

the ordinal number of the re¯ection in a list sorted by reso-

lution is used. This may be calculated quickly without

performing a full sort by calculating a cumulative histogram of

the number of re¯ections as a function of resolution. This may

then be used to look up the ordinal from the resolution, using

linear interpolation. A power law may also be incorporated in

the lookup table. The range of the resulting value may then be

divided into equal steps to obtain a bin number for any

re¯ection.

Let nbin be the number of bins and b(h) be the bin number

for the Miller index h calculated as described above. Then the

basis function is calculated as follows:

fh � pb�h�; �21�

f 0h;i � ��i; b�h��; �22�

f 00h;i;j � 0; �23�
where ��i; j� = 1 if i = j, and 0 otherwise.

Note that the binner basis function is linearly dependent on

the parameters, and so the matrix of curvatures is the null

matrix. The basis function also has compact support, i.e. the

value of each parameter is only determined by a small subset

of the data.

3.4. A spline basis function

The binner basis function is simple and linear, but suffers

from the same problems of discontinuity and insensitivity to

variations within the bin as traditional `binner' methods. These

limitations can be overcome by using a spline function, i.e. a

smooth curve, the shape of which is determined by a number

of `control points'.

The quadratic B-spline (Grosse & Hobby, 1994; Cowtan,

1998) is particularly suited to this purpose, since the resulting

curve is smooth and continuous, and linearly dependent on the

values of the parameters.

The quadratic B-spline is calculated as follows. A set of bin

boundaries are calculated using a power law of the re¯ection

ordinal as for the binner above. This time both the bin number

b(h) and the fractional position within the bin �b(h) must be

calculated for each Miller index. �b(h) is represented in the

rangeÿ0.5 < �b(h)� 0.5, being the position in the bin relative

to the bin centre.

The equations for the basis function are then as follows:

fh � 0:5��b�h� ÿ 0:5�2pb�h�ÿ1 � �0:75ÿ�b�h�2�pb�h�
� 0:5��b�h� � 0:5�2pb�h��1; �24�

f 0h;bÿ1 � 0:5��b�h� ÿ 0:5�2;

f 0h;b � �0:75ÿ�b�h�2�; �25�

f 0h;b�1 � 0:5��b�h� � 0:5�2;

f 00h;i;j � 0; �26�
where all other f 0h;i are zero. The endpoints of the spline, when

b = 0 or b = nbin ÿ 1 require special treatment. For these

points, the parameter beyond the end of the spline is consid-

ered to be identical to the endmost value. The derivatives are

adjusted accordingly. This has the additional bene®t of forcing

the gradient of the spline to zero at the origin and the high

resolution limit.

Note that as with the binner basis function, the spline basis

function is linear and has compact support.

4. Example target functions

Three target functions will be described: one to calculate the

nth moment of the structure-factor magnitudes, one to

calculate a scale factor for the estimation of normalized

structure factors, and the other for the maximum-likelihood

re®nement of �a.

4.1. Target for moments of the structure-factor magnitudes

To de®ne a target function to determine any moment of the

structure-factor magnitudes (or any other values) as a function

of resolution or position in reciprocal space, a least-squares

residual is constructed which minimizes the sum of the squares

of the differences between the basis function for each re¯ec-

tion and the required power of the corresponding structure

factor.



When calculating moments of structure magnitudes, it is

common to use magnitudes which have already been adjusted

by removal of the symmetry enhancement factor, i.e. jFadj�h�j2
= jF�h�j2="�h�, where "�h� is given by the number of symmetry

operators divided by the number of symmetry-equivalent

copies of the re¯ection in the hemisphere.

Let n be the required moment of the structure-factor

magnitudes. Then the equations for the target function are as

follows:

rh �
�
fh ÿ jFadj�h�jn

�2
; �27�

r0h � 2
�
fh ÿ jFadj�h�jn

�
; �28�

r00h � 2: �29�
At the minimum of the target function, the gradient term r0h
will be equal to zero. If the basis function fh is a simple binner,

then this equation reduces to the equation for the nth moment

of a set of structure-factor magnitudes.

Since this target function is a quadratic function of the basis

functions, then if the basis function is linear, the target func-

tion will be a quadratic function of the basis function para-

meters. In this case, the Newton±Raphson calculation will

converge in a single cycle and the whole calculation will not be

signi®cantly more demanding than a conventional calculation

using resolution bins.

4.2. Target for data scaling

Normalized structure factors, or E's, are commonly calcu-

lated by scaling the data in resolution shells to ®t the identity

hjE�h�j2i = 1. When performing a calculation in resolution

shells, this may be achieved by simply dividing all the adjusted

magnitudes in that shell by the mean of the squared adjusted

magnitude in that shell, which could be calculated using the

target function described above. However, when using more

complex basis functions, this approach is invalid, as the func-

tional ®t to the reciprocal of a function is different to the

reciprocal of the functional ®t to that function. Therefore, a

different target function is needed for this problem. The

appropriate form of the target function is as follows:

rh �
�
fhjFadj�h�j2 ÿ 1:0

�2
=jFadj�h�j2; �30�

r0h � 2
�
fhjFadj�h�j2 ÿ 1:0

�
; �31�

r00h � 2jFadj�h�j2: �32�
The same target function, with 1.0 replaced by the expected

scattering intensity as a function of resolution, can be used in

conjunction with a Gaussian basis function to determine the

overall temperature factor of a data set.

4.3. Target for ra refinement

The variable �a is used to estimate what fraction of a

calculated normalized structure factor Ec�h� is correct, given a

set of observed structure-factor magnitudes jEo�h�j. This

information may then be used to calculate phase probability

distributions and map coef®cients.

A �a target may be implemented by de®ning a target

function which is the negative of the log-likelihood function,

using the likelihood expression of Murshudov et al. (1997,

equation 17 therein), or Read (1986, equation A1 therein).

Minimizing this function corresponds to maximizing the

overall likelihood.

It is possible to choose the variable to be ®t by the basis

function in any way that is convenient to the problem. While it

has been traditional to re®ne �a directly, Read (2002)

suggested an alternative approach: the basis function is

instead used to de®ne the value !a = �a=�1ÿ �2
a�. The like-

lihood as a function of this parameter is closer to quadratic,

and so convergence is better and the expressions are simpler.

In addition, !a is only bounded at zero rather than between

zero and one, reducing the need for the `bumpers' described in

xx2.1.2 and 2.1.3. Re®nement of both �a and !a will be

considered; the extension to other parameterizations is trivial.

The target function and its derivatives with respect to !a

were derived from the work of Murshudov et al. (1997), using

the assumption that all occurrences of |E|2 will average out to

1. This assumption is strictly valid as long as the basis function

is linear and the same basis function is used for normalization

and �a evaluation; this has been con®rmed in practice.

Omitting a constant and scale factor, the log-likelihood and

its derivatives with respect to !a are as follow. For centric

re¯ections:

LLKh �
1

1ÿ �2
a

� 1

2 log�1ÿ �2
a�
ÿ log�cosh�X=2��; �33�

@LLKh

@!a

� �a ÿ jEojjEcj tanh�X=2�; �34�

@2LLKh

@!2
a

� �1ÿ �
2
a�2

�1� �2
a�
ÿ jEoj2jEcj2�1ÿ tanh�X=2�2�; �35�

where �a = ��4!2
a � 1�1=2 ÿ 1�=2!a and X = 2jEojjEcj!a.

For acentric re¯ections:

LLKh �
2

1ÿ �2
a

� log�1ÿ �2
a� ÿ log�I0�X��; �36�

@LLKh

@!a

� 2�a ÿ 2jEojjEcj sim�X�; �37�

@2LLKh

@!2
a

� 2
�1ÿ �2

a�2
�1� �2

a�
ÿ 4jEoj2jEcj2

@�sim�X��
@X

; �38�

where sim(X) = I1�X�=I0�X�.
To form the target function to re®ne a basis function ®t to

!a, these expressions are used directly:

rh � LLKh; �39�

r0h �
@LLKh

@!a

; �40�
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r00h �
@2LLKh

@!2
a

: �41�

This target function can be reliably used to calculate !a and

therefore �a in resolution shells by using the binner-emulator

basis function. Convergence is extremely good; thus the

initialization step used by Read (1986) to initialize �a to some

sensible value in each resolution shell is not required.

Unfortunately, this approach is not always reliable when using

the spline basis function, because the large dynamic range of

!a leads to oscillations when attempting to ®t a smooth basis

function.

To form the target function to re®ne a basis function ®t to

�a, the derivatives are adjusted accordingly:

rh � LLKh; �42�

r0h �
@LLKh

@!a

@!a

@�a

; �43�

r00h �
@2LLKh

@!2
a

@!a

@�a

� �2

� @LLKh

@!a

@2!a

@�2
a

: �44�

This function behaves in a similar manner to the original

approach of Read (1986) when used in resolution shells. It can

be used with a spline basis function and leads to a sensible

result in some cases, but convergence is generally poor and

often fails completely.

Further work is required to ®nd a universal combination of

smooth basis function and target function for �a evaluation.

The problems seem to arise because �a is very poorly de®ned

for small batches of re¯ections, so any smooth function of

resolution will try and ®t sharp ¯uctuations in �a across small

ranges of resolution. The traditional calculation in resolution

shells imposes an arti®cial smoothing effect which eliminates

this problem.

5. Selection of initial values for parameters

Initial values are required from which to start the re®nement

of the basis-function parameters. A sensible choice of these

parameters depends on the combination of basis and target

function to be used. However, in the case of a linear basis

function and quadratic target function, any starting values

lead to convergence in a single cycle, so it is normal to start

with all the parameters at zero.

In the general case, an elegant method is available to

remove the effect of the choice of basis function. A new data

list is generated, containing a ¯oating-point value for each

re¯ection, initialized to some suitable value. The selected basis

function is then used to ®t this function, using the ®rst-moment

target function (which converges in a single cycle from any

starting point). The resulting parameters may be used to

initialize the subsequent calculation.

In the case of �a calculation, Read (1986) demonstrated that

�a may be estimated from the square-root of the correlation

between the observed and calculated squared magnitudes.

This in turn may be calculated by using the resolution function

evaluator to calculate the required moments of jEoj,jEcj and

jEojjEcj as a function of resolution. However, if the !a target

function for �a is used, convergence is suf®ciently good that it

is suf®cient to start the calculation with !a�jhj� = 1.0.

6. Optimization

Optimization of this approach allows computational ef®-

ciencies that are comparable with a traditional calculation in

resolution shells. The optimization is performed by imple-

menting `hints' in each basis and target function which allow

the evaluator to avoid any unnecessary steps. The hints are as

follows.

(i) Each basis function can specify the number of signi®cant

diagonals in the upper triangle of its curvature matrix. For the

`binner' basis function, this value is 1, indicating a diagonal

matrix; for the `spline' basis function, this value is 3, indicating

a pentadiagonal matrix. Only the non-zero values are then

used in constructing the curvature matrix for the target

function.

(ii) Each basis function can specify whether it is `LINEAR',

indicating that the value of the function is linearly dependent

on the parameters, or `GENERAL'.

(iii) Each target function can specify whether it is

`QUADRATIC', indicating that the value of the function is

quadratically dependent on the value of the basis function for

any re¯ection, or `GENERAL'.

If the basis function is `LINEAR' and the target function is

`QUADRATIC', then the Newton±Raphson calculation is

guaranteed to converge in a single step, and so any further

calculation can be omitted.

7. Results

The `Clipper' implementation was used to demonstrate this

approach. The convenience of the method is clear, with only

three lines of C++ code required for each calculation. In the

examples considered below, the possible bene®ts of ®tting

continuous functions of position in reciprocal space will be

examined.

7.1. Structure-factor statistics

The variation in the mean scattering intensity as a function

of resolution, hjFj2i, is commonly calculated as the basis of a

Wilson plot, or as part of a scaling calculation (but see x4.2). It

is interesting to see how the ®t of this function may be

improved by ®tting a function to the data, as opposed to

calculating averages over resolution shells.

To test the effect of different basis functions, each basis

function was used with the `moments' target (x4.1) to ®t the

data. In the cases of basis functions with variable numbers of

parameters (i.e. the binner and spline), the number of para-

meters was varied over the range 1±25.

The quality of the estimate of hjFj2i was tested by using a

full cross-validation calculation (BruÈ nger, 1993) with 20 free

sets; i.e. the data were divided into 20 sets. Each set was chosen



as a free set in turn, and the remaining 19 sets used to calculate

the resolution function. The match between the resulting

resolution function and the data was then tested using the

following free-R-factor like quantity:

Rfree �
P

h2free wh

�jF�h�j2 ÿ f �h��2P
h2free wh

�jF�h�j2�2
; �45�

where wh corrects for the calculation over a reciprocal asym-

metric unit only. (Similar results were also obtained by

calculating a correlation over F or E values.) The calculation

was repeated for each free set in turn, and the resulting

statistics combined to reduce the impact of noise on the

results.

The test data came from the GerE data (Ducros et al., 2001)

distributed with the CCP4 suite (Collaborative Computational

Project, Number 4, 1994). The data were truncated to 3.0 AÊ

resolution for the purposes of these calculations.

The values of the cross-validated residuals are shown in Fig.

1 for the Gaussian basis function, and as a function of the

number of parameters for the binner and spline basis func-

tions. Two lines are shown each for the binner and spline

functions, the ®rst with a linear distribution of bins or control

points (i.e. equal numbers of re¯ections per bin), and the

second for a quadratic distribution of bins or control points

(i.e. more bins at low resolution and more re¯ections per bin at

high resolution).

Note that the spline basis function is always better than the

binner. Also, the quadratic distribution of bins or control

points is dramatically better than the linear distribution,

because it provides a better model of the low-resolution

region of the diffraction pattern where there are fewer

re¯ections and the mean intensity varies most rapidly. (The

quadratic distribution is not always practical, since many

calculations will require some ®xed minimum observation/

parameter ratio over the whole data set.) A Gaussian provides

the best ®t when only two parameters are available, but a

binner or spline with a quadratic distribution of control points

is better than the exponential polynomial function for four

parameters.

The graph shows some other interesting features. The

optimal number of spline control points when they are linearly

spaced is 22. When the control points are quadratically spaced,

the optimum number is only 10. Beyond these numbers, the

free residual increases, indicating that over-®tting is occurring.

The results for the corresponding binner vary erratically with

the number of parameters, as the bin boundaries move into or

out of phase with the features of the Wilson plot.

Since the features of the Wilson plot for a protein are to a

®rst approximation independent of the structure (Cowtan,

1998), it seems likely that there is an optimal distribution of

control points where the positions of the control points are

adjusted to the features of the Wilson plot.

The corresponding plot of hjFj2i as a function of resolution,

showing some examples of the spline and binner estimates, is

shown in Fig. 2. Note that beyond 10 control points, the

features of the spline curve do not change signi®cantly.

7.2. Anisotropic scaling

To test the anisotropic Gaussian basis function, the basis

function was used with the modi®ed scaling function described

at the end of x4.2 to calculate an overall anisotropic displa-

cement parameter (Uaniso) for a model.

The test data were provided by synthetic structure factors

calculated from the well known P1 lysozyme data (Walsh et al.,

1998). To isolate the effects of anisotropic variation in the

diffraction pattern due to the effects of sampling in reciprocal

space from the overall anisotropy, two sets of structure factors

were calculated, using ®rst the true Uaniso for each atom, and

secondly the modi®ed U 0aniso, which differed from the true

values by the addition of a constant anisotropic factor to the

values for each atom. The mean squared form factors were

®tted to the squared magnitude data over the resolution range

3.5±1.5 AÊ , and the results divided by two to give an overall

Uaniso.
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Figure 1
Cross-validated residual between jFj2 and hjFj2i as a function of the
number of parameters for six basis functions: binner with linear
resolution scale; spline with linear resolution scale; binner with quadratic
resolution scale; spline with quadratic resolution scale; Gaussian;
exponential polynomial.

Figure 2
Graph of hjFj2i against resolution using binner with 10 bins and splines
with 5, 10 and 15 control points.
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The results are tabulated in Table 1. The difference between

the overall Uaniso for the initial and modi®ed structures closely

corresponds to the change applied to the atomic Uaniso.

7.3. ra estimation

The use of the spline basis function in the estimation of �a

was also investigated. The stability problems that occur with

the current parameterization and optimizer limited the ¯ex-

ibility of these tests. A range of synthetic test data sets were

generated, for some of which the calculation of the spline ®t to

�a did not converge. A representative example for which

convergence was achieved was selected for further examina-

tion.

The GerE data set, from the previous section, was used in

the tests. The re®ned model was used to calculate a set of

`ideal' phases, using REFMAC version 5 with the bulk-solvent

correction enabled (Murshudov et al., 1997). Then the solvent

atoms and 20% of the protein atoms were removed, and the

remaining atoms were randomized by adding an independent

random coordinate error of 0.5 AÊ to each atom. (While

unrealistic, this is consistent with the assumptions of the �a

calculation.) New structure-factor magnitudes and phases

were then calculated for the truncated model, again using

REFMAC.

The �a calculation was then performed, both using resolu-

tion shells and the resolution spline function for both the

scaling and the �a evaluation. Each calculation was performed

both for 6 and for 12 parameters (i.e. resolution bins or control

points). (Note that for these test data both the �a and !a target

functions converged and produced almost identical results.)

Figures-of-merit for the synthetic phases were calculated

using the �a estimates obtained by the various methods in the

same way as Read (1986), except that a different estimate of

�a is available for every single re¯ection. These ®gures-of-

merit were compared with the actual value of the cosine of the

phase error versus the re®ned structure by calculating a linear

regression of FOM (from �a) against cos��'�. The results are

given in Table 2.

The ideal values are m = 1 and c = 0; these are not achieved

owing to the limitations of the protein model. It can be seen

that with 12 parameters, both methods perform similarly.

When the number of parameters is reduced to 6, the spline

continues to give very similar results, but the results of the

binner are degraded.

Maps calculated using ®gures-of-merit derived from the

various �a estimates are visually indistinguishable, and the

differences in correlations with a true map are not signi®cant.

However, the initial indications suggest that the approach is

valid.

8. Future development

There are a number of other ways in which this approach may

be developed, as follow.

(i) More sophisticated minimization procedures, employing,

for example, singular value decomposition, may improve

convergence when handling likelihood functions. Alter-

natively, re-parameterizing the problem may be effective.

Once this is solved, the problem of calculating �a from small

cross-validation test sets may be investigated.

(ii) New basis functions and target functions can be added.

For a speci®c task, these may be added as part of an appli-

cation, but there may be other functions that are of general

use to many applications which should be added to the library.

(iii) The technique may be extended to handle target

functions in which the re¯ections are not independent. These

can be computed in the current scheme if the second deriva-

tive matrix of the target function R is diagonal dominant, in

which case the calculation described here will work as a

diagonal approximation to the full Newton±Raphson calcu-

lation.

(iv) The technique may be extended to handle functions of

several variables. For example, Murshudov (2002) suggests the

separate re®nement of �a and D as part of an improved

likelihood calculation for re®nement and map calculation.

9. Conclusions

A general scheme has been described for evaluating statistical

properties of the data as a function of position in reciprocal

space. This generalizes a wide range of existing calculations.

As a result, all of those calculations may now be performed by

a single set of routines, requiring a minimum amount of

problem-speci®c code. This increases productivity for the

developer and reduces support overhead. The application

interface is particularly convenient and concise. The generality

of the approach also allows the use of more sophisticated

functions of position in reciprocal space, for which the reso-

lution spline function seems particularly suitable.

The method has been demonstrated for the calculation of a

simple structure-factor statistic, for which superior results

were obtained through the use of smooth basis functions. The

same code has been demonstrated for �a estimation, although

Table 1
Overall Uaniso for true and modi®ed lysozyme models between 35 AÊ and
15 AÊ .

The difference in Uaniso closely ®ts the change to the model.

U11 U22 U33 U12 U13 U23

Overall Uaniso

(true model)
0.1009 0.0988 0.1202 0.0020 0.0019 0.0063

Overall U 0aniso

(modi®ed model)
0.1972 0.0963 0.1678 0.0517 0.0268 0.0053

Difference Uaniso ÿ U 0aniso 0.0963 ÿ0.0025 0.0476 0.0497 0.0250 ÿ0.0010
Applied shift 0.1000 0.0000 0.0500 0.0500 0.0250 0.0000

Table 2
Linear regression coef®cients m=c ®tting FOM = m cos��'� + c, for
binner and spline calculations with 6 and 12 parameters.

m/c Binner Spline

6 parameters 0.829/0.072 0.848/0.060
12 parameters 0.847/0.059 0.850/0.056



currently this is only reliable when using the `binner' emulator

and so the only bene®t is convenience. It is hoped that this

limitation will eventually be removed by the use of alternative

parameterizations or optimization methods.

The author would like to thanks R. Read and G. Murshudov

for their helpful suggestions in the implementation of the �a

target function. This work was funded by The Royal Society

grant number 003R05674.
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