Wang-Sheeley-Arge (WSA) Model – CCMC Collaborations

Nick Arge

Space Vehicles Directorate

Air Force Research Laboratory

WSA-CCMC Interactions

Model Description: The *Wang-Sheeley-Arge* (WSA) model is a combined *empirical* and *physics-based* representation of the quasi-steady global solar wind flow that can be used to predict *ambient* solar wind *speed* and interplanetary magnetic *field polarity* at Earth.

- Submitted a request in May 2004 asking that the WSA model be considered for inclusion at the CCMC.
- Asked by Michael Hesse in Jan. 2005 to begin porting the WSA to the CCMC at my earliest convenience.
- Visited the CCMC in March 2005 to finalize installation.
 - Described the model in detail to the CCMC staff and answered questions.
 - Assisted the CCMC staff with installing and testing the code.
 - Automated the running of the code.
 - Nearly all objectives were accomplished in 2 days.
 - A lot of prep-work was required ahead of time!
 - The CCMC staff followed up with occasional questions.
 - Over all, the CCMC have been very helpful, patient, and courteous!
- Areas for improvement:
 - Get updates on what's happening.
 - Notification as to when the model will be available for public use.

Coupled PFSS+ Schatten Current Model

Plot courtesy Sarah McGregor (BU/CISM)

WSA Model Output

Predicted Solar Wind Speed at 5.0 R_{\odot} (New Empirical Relationship)

Where:

- $f_{\rm s}$ = Magnetic field expansion factor.
- θ_{b} = Minimum angular distance that an open field footpoint lies from nearest coronal hole boundary (i.e., Angular depth inside a coronal hole)

Predictions & Observations:Near Solar Minimum

Predictions & Observations:Near Solar Maximum

IMF Polarity Predictions & Observations

Solar Wind Speed and IMF Polarity in the Ecliptic Driven by Daily Updated Photospheric Field Maps

IMF directed radially *away* from Sun.

IMF directed radially *toward* from Sun.

Predictions & Observations

Solar Wind Speed Predictions & Observations

Boston University Validation of WSA (Owens et al., JGR 2005)

- Validated 8 years of WSA predictions
- Mean Squared Error (MSE)
 - 3 day old magnetograms give optimal prediction
 - No systematic time lag
 - Skill scores low on average (<10%)

MSE(A) < MSE(B) (Same for correlation coefficients)

Courtesy Matt Owens (BU/CISM)

Event-Based Approach: (High Speed Events)

Contingency tables

		Observed	
		HSE	No HSE
	HSE	166	36
Model	No HSE	64	-

- Event-based approach: high speed enhancements (HSE):
 - Captures more than 72% of the observed HSE events
 - Most of the false HSEs are small
 - Missed HSEs: are small events or transients
 - Timing of HSEs shows no offset. Slight underestimation of magnitude of fastest events – probably due to transients

Courtesy Matt Owens (BU/CISM)

Monopole Moments in Synoptic Maps

Modeling Results With & Without Polar Field Corrections Applied

Solar Wind Speed Predictions (WSA Model) and Observations

Poles NOT Corrected

Poles Corrected

Time Evolution of Photospheric & Coronal Features

WSA Coronal - ENLIL MHD Solar Wind Model Coupling

PFSS+SCS MODEL (R = 21.5 R_{\odot})

Solar Wind Speed

ENLIL MHD Solar Wind Model

Ecliptic (top) & meridional (bottom) slices through 3D MHD numerical simulation volume for CR1896.

Simulated (gray) and observed (dots) solar wind speed at Earth. Simulated speed for 5° above (dashed) and below (dash-dot) ecliptic plane.

Summary

- 1) WSA model provided to the CCMC in March 2005.
- 2) Ambient solar wind speed and IMF polarity can be predicted at L1 with the use of a coupled PFSS+SCS model and an empirical velocity relationship that is a function of
 - Magnetic field expansion factor (f_s) and the
 - Angular distance between an open field footpoint and its nearest coronal hole boundary (θ_{b}).
- 3) Quality control of the input magnetic data is essential for improving the predictive success of the model.
- 4) Model validated using 8 years (~1 solar cycle) of predictions & the results are VERY encouraging.
 - It is important to have a good understanding of the physical system being modeled.
 What are you trying to predict? How do you validate?
 - How does the quality of the input data affect model predictions?
 - BIG JOB!
- 5) CISM is using the WSA model as it's baseline solar/solar wind model.
- 6) Joint AFRL-CISM effort to couple the WSA+ENLIL model.
 - Relatively quick running, coupled hybrid code.
 - Useful as both a forecasting tool and a basic research model.