(

chmcal

ent, ha appréve for prub icre
' ;mq sa.Ie' its disbr f:), tion is unﬁlmtted. Re? oddctvqn in
RN

|whole or in partiis 1; ) tted by’ the

2 oy




Office of Naval Research
Contract N00014-67-A-0298~-0006

NR-372-012

National Aeronautics and Space Administration

Grant NGR 22-007-068

SUFFICIENT CONDITIONS FOR NON-NEGATIVITY OF THE
SECOND VARIATION IN SINGULAR AND NONSINGULAR
CONTROL PROBLEMS
By

D. H. Jacobson

Technical Report No. 596

This document has been approved for public release
and sale; its distribution is unlimited. Reproduction in
whole or in part is permitted by the U. S. Government.

August 1969

The research reported in this document was made possible through
support extended the Division of Engineering and Applied Physics,
Harvard University by the U. S. Army Research Office, the U. S.
Air Force Office of Scientific Research and the U. S. Office of
Naval Research under the Joint Services Electronics Program by
Contracts N00014-67-A-0298-0006, 0005, and 0008 and bythe National
Aeronautics and Space Administration under Grant NGR 22-007-068.

Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts



SUFFICIENT CONDITIONS FOR NON-NEGATIVITY OF THE
SECOND VARIATION IN SINGULAR AND NONSINGULAR

CONTROL PROBLEMS

By
D. H. Jacobson
Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts

ABSTRACT

Sufficient conditions for non-negativity of the second variation in
singular and nonsingular control problems are presented; these condi-
tions are in the form of equalities and differential inequalities. Control
problem examples illustrate the use of the new conditions. The relation-
ships of the new conditions to existing necessary conditions of optimality
for singular and nonsingular problems are discussed. When applied to
nonsingular control problems, it is shown that the conditions are suffi-
cient to ensure the boundedness of the solution of the well-known matrix
Riccati differential equation; these conditions are less stringent than

those known heretofore.



I. Preliminaries

1. Introduction

Singular control problems occur often in engineering; for example,
in the aerospece industry a number of important problems are singular
[1], [2]). Mathematical economics is another field in which singular
optimal control problems are common [3]. These and other examples
have prompted researchers to inquire into the mathematical properties
of singular arcs [4]-[20]. Circa 1964, Kelley [4] discovered a new
necessary condition of optimality for singular arcs. This condition was
generalized subsequently by Robbins [5], Tait [6], Kelley et al [7] and
Goh [8], and is now commonly known as the generalized Legendre-Clebsch
condition (or Kelley's condition). In [9] an additional necessary condition
of optimality for singular arcs was derived and was shown to be non-
equivalent to the generalized Legendre-~Clebsch condition. For want of
an alternative, we shall refer to this condition as Jacobson's condition.

In this paper we present sufficient conditions for non~negativity of
the second variation in singular control problems; in strengthened form
these conditions (equalities and inequalities) are sufficient for a weak
relative minimum. Both Kelley's and Jacobson's necessary conditions
of optimality are derived easily from the new conditions. We show that
the conditions are applicable to totally singular, partially singular+ and
nonsingular control functions. Moreover, when applied to nonsingular
problems, sufficient conditions for the boundedness of the solution of
the well-known matrix Riccati differential equation are obtained; these

are less stringent than those known heretofore [21], [26].

+ Defined in Section 1. 3.
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Control problems without terminal constraints are considered
first; the results are then generalized to the case where constraints on
the terminal states are present. It turns out that the presence of ter-
minal constraints does not complicate unduly the derivation.

2. Problem Formulation

We shall consider the class of control problems where the
dynamical system is described by the ordinary differential equations:
x = f(x,u,t) 3 x(t ) =x (1)
where, (except for Section V):

f(x,u,t) = fl(x, t) + fu(x, tiu (2)

The performance of the system is measured by the cost functional:

t
f

V(xo, to) = S; L(x, t)dt + F(x(tf), tf) (3)
o

and the terminal states must satisfy
¥ (X(tf), tf) =0 . (4)
The control function u(-) is required to satisfy the following constraint:
u(-) €U (5)
where the set U is defined by:

U={u():|u®] s Ltelt,t]; i=1,...,m} . (6)

Here, x is an n-dimensional state vector and u is an m-dimensional
control vector. fl is an n~-dimensional vector function of x at time t and
fu is an n x m matrix function of x at time t; the functions L and F are
scalar. The terminal constraint function ¥ is an s-dimensional column
vector function of x(tf) at t.. The functions f, L, F and ¥ are assumed
to be three times continuously differential‘ale in each argument. The final

time t, is assumed to be given explicitly.
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The control problem is: determine the control function u(-) which
satisfies (4) and (5) and minimizes V(xo, to).

3. Totally and Partially Singular Problems

It can be shown that, along an optimal trajectory, the following

necessary conditions (Pontryagin's Principle) hold:

. - - T

A=H (&N 5 M= F_(xle, t) + ¥ 1y (7)
where

U = arg min H(x, u, \, t) (8)

uelU
and
T
H(X’ u, )";t) = L(x: t) + A f(x, u, t) . (9)

Here, ;(- ), G(-) denote the candidate state and control functions and A(-)
denotes an n-vector of Lagrange multiplier functions of time.

In general the optimal control function (for the class of problems
formulated in Section I. 2) consist of bang-bang sub-arcs and singular
sub—arcs?l' A bang-bang arc‘ is one along which the controls lie on the
boundary of U and Hu.&’)\’t) £0; i=1,...,m (except at a finite number
of switch times where1 the components of u change sign).

A singular arc [17] is one along which

H (xM\t)=0 ; i=1,...,m (10)
i

for a finite time interval.* Note that this implies that, on a singular arc,

H is independent of the control u.

-]- IArc' and 'sub-arc' are used synonymously.

-+ For simplicity, we shall consider all the controls to be singular
simultaneously. If this is not the case, no conceptual difficulties arise.
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In the sequal we shall make use of the following definitions:
Defn. 1: A totally singular control function is one along which (10)
holds for allt € [to’tf]'
Defn. 2: A partially singular control function is one along which (10)

holds for k sub-~intervals of length Ti; i=1,...,k and where

T, <(t;-t,).

oI

i=1

II. Totally Singular Control Functions, Unconstrained Terminal State

1. Existing Necessary Conditions of Optimality

In [7] Kelley et al show that the following (generalized Legendre-

Clebsch) condition is necessary for the optimality of a singular arc:

2q

d —

(-1)2 -—;’u[———d 7 Ha 2, 0] = 0 (11)
t

where the q~th time derivative of Hu is the first to contain explicitly the

control u. Kelley et al used special control variations in order to derive
this result; see [7]. Recently an additional (Jacobson's) necessary con-

dition was discovered [9]. In order for a singular arc to be optimal it

is necessary that

LTy 4ly ¢ +4%qf 2 0 (12)
2uxu 2 Tuxu u u
where
. - | ) B
Q=H_+1Q+Qf ; Qt)=F_(xt)t) (13)

The partial derivatives fu, H Hux and fX are all evaluated along the

xu’
singular arc x(-), u(-). In [9] the above condition is derived for a scalar
control using the technique of Differential Dynamic Programming [22];

in that paper, Q(t) is shown to be the second partial derivative of V(x,t)

with respect to x obtained whilst keeping u(-) = u(-). An alternative
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derivation, using the Lagrange multiplier rule, is given in the Appendix
of this paper.

Of course, in addition to conditions (11) and (12), Pontryagin's
Principle must be satisfied.

2. Second Variation (62_‘\[)

An expression for the second variation is [23]:

t
f
6%V = 5 {%6XTH Ox + OuTH_ Ox}at + =0x F_ Ox (14)
¢ <X ux 2 XX
O

te

subject to the differential equation:

0x = fxéx + fuﬁu ; 5x(to) =0 . (15)
In order for the singular (stationary) solution to be minimizing it is
necessary that

8%V = o (16)
for all Ou(-) sufficiently small to justify the second order expansion of
V, and such that

u(-) + Ou(-) e U . (17)
Both Kelley's and Jacobson's conditions are necessary for (16) to hold;
see [7] and the Appendix of this paper. In Section II. 4 we present suffi-
cient conditions for (16) to hold. Note that the auxiliary minimization
problem (14), (15) cannot be solved routinely because it is singular.

3. Adjoining Linearized System to 52V

We now adjoin (15) to (14) using a vector Lagrange multiplier
function of time OA(t):

t
5% =S {36xTH_Ox+0u"H_ 0x + OAT[f Ox + £ Ou - Ox]}at
t xX ux X u
o]
' %5XTFXX5X (18)

te
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Integrating on T ox by parts, we obtain:

t

~ f
6%% = S' {30xTH_ 6%+ 6u H_0x + O\T[£ 0x + £ u]
t XX ux X u
O
+ oA Tox}at + [-1-5 Tr ox-aTo ] 1
5 0x"F_ Ox x . (19)
te
Let us now choose
ON(t) = 5 P(t)0x (20)

where P(t)isannxn symmetric+, time varying, matrix. The second

variation becomes:

t
R £ :
624 = g {30x (P+H_ +1 P +Pf )0x+0ul(H + £ P)0x}dt
t XX X X ux u
o]
+ [%GXTFxxéx - %GXTPGX] (21)
te
subject to:
0x = fxéx +£0u ;  Ox(t)=0 . (22)

Note that 62V = 629, if (22) holds.

4, Sufficient Conditions for Non-negativity of GZV

As remarked in Section II. 2, the auxiliary problem (14), (15) or
(21), (22) cannot be solved routinely owing to the fact that it is singular.
Our new approach to the problem is to choose a bounded matrix function

P(-) such that:

+ There is no loss of generality in choosing P to be symmetric; this is
so since if P were chosen to be unsymmetric, P + PT would appear in
place of P in (21). ;
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Ty o
H +{P=0 Vt € [to,tf] (23)

Here, P(t) is an n x n symmetric matrix function of time and H _is
m x n so that there are cases where (23) can be solved by choosing
appropriate values for some of the elements of P. By choosing P ac-
cording to (23) we annihilate the coefficients of the mixed 0ulx terms
in (21). The remaining terms are quadratic forms in 0x(t) and 5x(tf).

. . \ s 2N 2. >
Clearly, sufficient conditions for 0°V = 0V 2 0 are that (23) hold and

P+H +£IP +Pf = M(t) = 0 (24)
XX X X
and
~P(ty) + Fxx(E(tf),tf) = G(t) = 0 (25)

Equality (23) together with inequalities (24) and (25) constitute sufficient
conditions for 52V 2 0, V 0x(").

5. Sufficient Conditions for Optimality

Sufficient conditions for a weak relative minimum are obtained by
strengthening (24) and (25):

P+H +fIP+Pf
XX X X

M(t) >0 Vt € [to,tf] (26)

~P(t,) + FXX(§(tf),tf) = G(t) > 0 (27)

A
To see this, note that if (23), (26) and (27) hold, then 52V =0if0x(*)=0
almost everywhere including tf. However, if 0x(-) = 0 almost everywhere
including t, then by our assumptions on L. and F -~ see Section .2 -~ we

have that the total change in cost is:

AV

t t
£ £
y L(x + 0x,t)dt ~ S L{x, t)dt + F(x(ty) + Ox(ty), t,)
t, t‘0
- F(;(tf)} tf)

=0 (28)



%4 =0 == av=0 . (29)
Thus we can always choose 0x(-) ;( 0 sufficiently small so that 52’\} is
the dominant term in the expansion for AV; hence we have sufficiency.
Example: Hux =0, Hxx >0, Fxx > 0. In this case, ls(t) =P(t) =0
YVt e [to, tf], and G(tf) = 0, satisfies (23), (26), (27).
Note: If the dynamical equations (1) are linear and L and F are quadratic,
then (23), (24) and (25) are sufficient conditions for optimality because

all variations higher than the second vanish identically.

Example:
X, =% x,{(0)=0
1~ *2 1 (30)
XZ =1 X
1
V = +2 L 2)at 31
(2 [+ axpx, b gt (31)
[u] <1 . (32)

Here, u(-) = 0 is a totally singular control which satisfies Pontryagin's

Principle. We have that:

Hux =0 (33)
F=0 (34)
and
1 2
H__= (35)
XX 2 1

Note that Hxx is not positive semi~definite. Equation (23) yields:
Plz(t) = Pzz(t) =0 H teg [0’ 1] (36)

so that the left-hand side of (24) becomes:



+ + (37)

and the left-hand side of (25) becomes:

-P. . (t)) 0
11V f (38)
0 0

Inequalities (24) and (25) are satisfied if we choose
P, =0
11
(39)
Ppp=-2

and since the system dynamics are linear, and the cost quadratic, u(-)=0
is optimal.

6. Relationship to Existing Necessary Conditions

Both Kelley's [7] and Jacobson's [9] conditions can be derived
from (23), (24), (25).

a) Jacobson's Condition

Let
Q+P=P , (40)
where Q and P are both n x n, symmetric matrix functions of time,

then, from (23),

H +£Q+fDP=0 (41)
ux u 0
so that
1.T = 1 T, . Ts.. _
FEH +0Qf +PL) + S(H +£0Q+ 1P =0 (42)

From (24) and (40),

; . _ T —_— . —_ }
-P-Q= Hxx + fx Q+P)+(Q+ P)fx M(t) (43)
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and from (25) and (40)

-Q(t,) - 'ﬁ(tf) + Fxx(;(tf),tf) - Glt) = 0 (44)
Now set

Qlt) = F__(x(ty),t,) (45)
and

“Q=H_ +{0Q+0f (46)
so that

‘r?(tf) = ~Glt) (47)
and

B = M) + P +Pf_ (48)

Now, since
M(t) Z 0 Vte [to,tf] and G(t,) Z 0 (49)
we have that

P(t) S o0 vt e[t ,t] (50)

Using inequality (50) in (42), we obtain

LTy v ly ¢ +6Tar 20 . (51)
2u"xu 2ux'u u u

Inequality (51) together with (45) and (46) comprise Jacobson's necessary
condition.

b) Kelley's Condition (generalized Legendre~Clebsch)

Differentiating (23) with respect to time yields:

H +fP+fP=0=H +fP-f(H +fP+Pf -M)=0.
ux u u ux u u XX p. < X

(52)
Post multiplying (52) by fu and adding its transpose, we obtain
H f +fiH +f Pf +f.Pf = 2f'H_f - 2f f{1Pf
uxu ‘u ux ‘u u  u u uxxu u'x u

- 26YPf £+ 26Mf_ =0 (53)
u X u jvi u
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Using
H =-fip (54)
ux u
in (53):
H f +f'H -fH -H f -2fH f +26 {1
ux u 11 ux u xXu ux u U xXx u I X Xu
+2H f£ +2f'Mf =0 (55)
ux xu 1 u
Rearranging (53),
26 3 f +2H (££ -£)+2(£5¢F - £N)H
u XX 1 ux xXxu u u X u X
d a ,.T T
+ S (H £+ S (EH ) = -26) M (56)
However, we have that
M(t) = 0 Vit € [to,tf] (57)
so that
TH f +H (££ -f)+ (£ - f0)H
u XX 1u ux xXxu u u x u xXu
1d 1.7 <
+ 2 dt (Huxfu) + 2 (fu qu) 0 (58)
Now, the left-hand side of (58) is just
2
5 | d
ER g (59)
du dtz u
so that
2
- _§_ _S.i.... =
(-1 ; H_ 0 (60)

This is Kelley's first necessary condition. If this is met with equality,
i.e.,

T
£ M(t)E = 0 (61)
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then (56) is again differentiated with respect to time and (54) and (56)

are substituted in. This yields Kelley's second condition, viz.,

4
D |4 >
du dt4 Hu 0 (62)

The generalized condition
2

_pae | 4% =
Di5e | jZa B 70 (63)

is obtained by further differentiations.
Note: In Section II. 5, we gave sufficient conditions for optimality; a
requirement was that

M(t) > 0 Vt € [to,tf] (64)

However, this condition cannot hold unless q = 1 (see (56); if ¢ > 1, then

fEMfu = 0, contradicting (64)).

III. Totally Singular Control Functions, Constrained Terminal State

1. Second-Variation (52V*)

We shall allow the terminal constraint
W (x(t,), t) = 0 (65)
where ¥ is an s-dimensional vector function. As before, t; is assumed
to be given explicitly.
If ¥ is adjoined to the cost functional by Lagrange multipliers

v [23], the second variation is:

t
f
1
52V>"< = S; {%GxTHxxﬁx + 5uTHux5x}dt + -z-ﬁxT(F + lelJ xx)bx

e]

(66)

t

f
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subject to+
Ok = fxéx + fu5u ; 5x(to) =0 (67)
and+

ll/xﬁx =0 (68)
ts

2. Adjoining Linearized System to 52V*

As in Section II, we adjoin (67) to (66) by a Lagrange multiplier

function ON(-). We integrate the term 5XT55( by parts and set
o\ = TP(t)ox . (69)

We obtain finally:

t

£ .

62y =§ {%6XT(P FH _ +£'P + Pf )0x + Oul(H _ + 1 P)0x}dt
t XX X X ux u

O

1. T T
+ 26x (F  +v zlzxx P)0x (70)
te
subject to %UXGX(tf) = 0.

If l,UX has rank s, then s components of Gx(tf) ~~ referred to as

5xs(tf) -~ can be solved for in terms of the remaining n - s components,

§Xn~s(tf); for example:+

_A_'l

Sy L
Ox™(t) = -A

Azﬁxn's(tf) (71)

where

n
—

sPlaia1=v, (72)
&> &)
s (n-s)

4 More precisely, we have that (x + 0x')* = £(x + 0x', 7 + Ou, t) and
\//(?E(tf) + 5x'(tf),tf) = 0. However, expansions of these which are of

higher-order than the first do not influence 6%v=.

+ If A1 is singular, then differently partitioned IPX and 5x(tf) must be used.
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so that
- nes ] [y ]
-1 {t,) A1
A1 Azﬁx f Al A2 . s
5x(tf) = | ===~ = 0x (tf) = Z0x (tf)
5 n-s
TR B (73)
where Z is n x (n - s).
We now eliminate the constraint
lpxﬁx’ =0 (74)

te

from (70) by using (73) in the boundary terms of GZV*:

t
ok .
5% = S {30xT(P + H__ +£ P + P£)0x + Sul (H__+ £ P)dx}dt
t XX X X ux u

¢}

1 - -
b0 ZTE, VY - Pz} L (7s)

t
- f
3. Sufficient Conditions for Non-negativity of 52V '

Sufficient conditions for 52'\7‘ 2 0 are (by analogy with Section II. 4):

T

H +£{P=0 (76)
ux u
Vt € [to,tf]
P+H +£fIP+Pf =Mkt = 0 (77)
XX X X
and
T T _ _ >
ZUF_ +v zI/XX P)z| =G(t) >0 . (78)
te

Note that if s = 0 (no terminal constraints),

RN
Z =nI I (79)

and (76)-(78) reduce to (23)-(25).
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4., Sufficient Conditions for Optimality

By strengthening the inequalities in (77) and (78) we obtain

5%¥ > 0 Vox(-) £ 0 (80)
with
52"\7 = 0 if O0x(-) = 0 almost everywhere, including te. (81)

The argument of Section II. 5 can be used here to show that (80), (81)
imply optimality (weak relative minimum).

Note: As in the case of unconstrained terminal states these strengthened
conditions can hold only if the singular arc is first-order (i.e., the
generalized Legendre-Clebsch condition holds with strict inequality for
q=1).

5. Relationship to Existing Necessary Conditions

As in Section II. 6 it is easy to show that satisfaction of (76)-(78)
implies that Kelley's condition is satisfied. Jacobson's condition for
problems with constrained terminal state is more complex than for the
unconstrained case; see [9]. We shall not derive this condition here,
from (76)-(78).

6. Comment on Problems with Constrained Terminal State

When deriving necessary conditions of optimality for problems with
terminal constraints by constructing variations of the control function,
one is faced with the task of showing that the chosen variation is indeed
admissible [7], [9]. This is a formidable task even if the linearized
dynamical system is assumed to be completely controllable and ”bx is
assumed to have rank s.+ We remark that the approach taken in this

paper does not require arguments of the type referred to above. We need

+ These are common assumptions [23].
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only assume that it is possible to satisfy ll/(x(tf), t;) = 0, and that lllx
has rank s at ;(tf), t. We do not have to ‘construct explicitly admissible

control variations.

IV. Partially Singular Control Functions+

1. First and Second Variation (0V* + GZV*)

As defined in Section I. 3, a partially singular control function
may have both singular and nonsingular portions (i.e., sub-intervals
of singular and bang-bang control). Along nonsingular arcs Hu £0,
and the condition (Pontryagin's)

min H(x, u, \, t) (82)
ueU

must hold (this is trivially satisfied along a singular arc). In this case

the sum of the first and second variations is:

t
f
ove + 6%vx = ((uTou + J0xTH_6x+ 0uTH_ Ojar
t u XX ux

(o)

+ %GXT(FXX Fvly  )bx (83)

XX
g
subject to
0x = fxﬁx + fu5u 5 5x(to) =0 (84)
and
széx =0 (85)
g
In order to enforce (85) (and ll/(x(tf), tf) =-0), we have

u(*) + Ou(-) € U, (86)

+ In this section we treat the constrained terminal state problem; the
unconstrained problem is a special case.
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where

U,=0N1U, (87)
and

U, ={u() Y (x(tg), t) = 0, % = £(x,u,t); x(t,) = xo} (88)
Note that by (82),-

Hg5u 20 , U()+0u()eU, (89)

with equality holding along singular arcs and at switch times of the
bang-bang control arcs. If there are no singular arcs and no switchings
of the control (i.e., ]Hu] £0, Vte [to, te] so that u(-) = const. =+ 1 or -1)
then Pontryagin's Principle is sufficient for optimality because the
second-order terms in (83) can be made insignificant (i.e., dominated

by H:fﬁu) for ||Ou(-)|| sufficiently small. In the case where bang-bang
arcs are present (i.e. where u(t) switches between its upper and lower
bounds) one can, by placing a control variation in the immediate vacinity
of a switch point, cause Hgﬁu to contribute less to the change in cost

OvV® + GZV* than the second variation terms.

Clearly, sufficient conditions for 52V* Z 0 are (76)-(78) and suffi-
cient conditions of optimality are these in strengthened form. Less |
restrictive sufficient conditions for purely bang-bang control functions
have been given previously [24], [25]. However, in this section, we
allow partially singular (i.e., 'partially bang-bang') control functions

and thus embrace a wider class of problems than in [24] and [25].

V. Problems Nonlinear in Control

1. Introduction

In the last section we indicated that our approach to sufficiency is

independent of whether the control function is totally singular or partially
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singular or, in the purely bang-bang case, nonsingular. In this section
we study the more general nonsingular problem where the control u
appears nonlinearly in f and L. We show that our approach is indeed
applicable and give examples to illustrate our results. As a byproduct
of the analysis, we obtain sufficient conditions for the boundedness of
the solution of a certain matrix Riccati differential equation; these are
less restrictive conditions than those obtained heretofore [21], [26].

We shall consider the following nonlinear optimal control problem:

x = f(x,u,t) x(to) =X (90)
t

f
V(xo, to) = g L(x,u, t)dt + F(x(tf), tf) (91)
t

o

Here it is assumed, for simplicity, that there are no constraints on
the control u or on the terminal state x(tf), though this in no way limits
the wider applicability of the analysis (see Section V.5 for constrained

terminal state). In this case the second variation is:

t
i
52V = 51 {%GXTH Ox + 5uTH 0x + %5uTH Ou}dt
¢ XX ux uu

o
1 T
+'2-6x FXX6X (92)
b

subject to

0% = fxﬁx + fuau ; 6X(to) = 0 (93)
Here,

=
I—qu(t) 0 Vit € [to,tf] (94)

is a well-known necessary condition (Legendre~Clebsch) of optimality.

For the problem to be nonsingular, strict inequality must hold, i.e.,
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Huu(t) >0 Vt € [to, tf] . (95)

A known necessary condition of optimality+ [26] (which together with
(95) and Pontryagin's Principle forms sufficient conditions of optimality)
is that the solution to the following matrix Riccati differential equation
be bounded for t € [t_,t]:

T

S=H +fls+sf ~(H _ +is) Ty}
XX X X ux u u

T
u(Hux + fu S) ;

S(tg) = F__ . (96)

te

Sufficient conditions for the boundedness of S(-) are known to be [21], [26].

H -H HIH 20 vt e[t ,t]
XX XU uu  ux o’ 'f
2 =
F_ (x(tg,t) = 0 (97)
-1
H (t)>0 Vt € [to, tf]

2. Sufficient Conditions for Optimality

Equation (93) can be adjoined to (92) using a vector Lagrange

multiplier function of time ON(-). If, as before, we let
O\ = 2 P(t)0x (98)

then, the second variation becomes:

‘ t
£ :
6%V = § {$6xT(P+H__+{.P +Pf )0x + Sul(H  + £1P)0x
t XX X xX ux u
(o]

1 i |
+ EﬁuTHuuﬁu}dt + 7<5xT(}?XX - P)ox| . (99)

te

+ Classically known as the 'no-conjugate-point condition' [27].
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2A
Clearly, 0"V 2 0 if we can choose P(t) (which has bounded elements)

so that
H _+{P=0 Vte [t ,t] (100)
P +Hxx+f§P +Pfx= M(t) = 0 Yt e[to,tf] (101)
-P(t) + FXX(SZ(tf),tf) = Glt) = 0 (102)

Moreover, because of (95), we have that

6%% = kNZ[6u(.)] Vou(- ) (103)
where N is a suitable norm on Ou(-) and k > 0. Equality (103) indicates

that 52\/} is strongly positive and, by a theorem of Gelfand and Fomin

[27, p. 100], this is sufficient for u(-) to be a minimizing control func-
tion (weak relative minimum). Thus conditions (100)-(102) are sufficient
for optimality in this nonsingular problem. As an immediate consequence
we have the following result: Conditions (100)-(102) imply that the matrix
Riccati equation (96) has a bounded solution in the interval [to, tf] (because
the boundedness of S(-) is a necessary condition of optimality). These
conditions are, in general, considerably weaker than (97), as the following

example illustrates.

Example:

*1 7%

(104)
X, =u
1 .
1 2 1 2 1 2

V = o (Ex1 + ZXIXZ + 5%, + u )dt (105)

Here,
1 2
H =0 H = F=0 (106)
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These values do not satisfy conditions (97). However, from Section II. 5,

we have that:

Piolt) = Pyy(t) = 0= P (t) Vt e [to, tf] (107)
and

P11 s -1 (108)
satisfy (100)-(102), so that the stationary solution to this problem,
obtained from Pontryagin's Principle, is optimal. Note that in this
particular case the checking of (100)-(102) is considerably easier than
integrating the matrix Riccati differential equation to see whether or
not its solution is bounded in the interval [0, 1].

3. Derivation of Riccati Equation

The Riccati differential equation (96) can be derived directly from

(100)-(102) as follows: From (100) and (101),

P =H +£fP+Pf -Mt)-H_+£P)Tu E +i'P)
XX x X ux u uu ux u
(109)
Let
P=P+S , (110)
then
B-S=H +£(P+S)+ (B +8)E - M)
XX X x
Trs . cigTooml T =
- [HuX +1 (P + S)] Huu[HuX +i (P + S)] (111)
“H +iB+s)+B+S)E -M@t) - (H_+i5)Tu @ +:Ls)
XX X X ux u uu ux u
~m + )T B - Bru i+ £5s)
ux u uua u U uu ux u
-t u lTE (112)
u uu u
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Using (100) and (110) in the last three terms of (112) we obtain:

=L T = L S _ To Tp,-1 T
P-S=H +f(S+P)+(P+8)f -(H _+f£ 5 H_ (H +i:5)

= =1 T—
+PLH £ P - M(t) (113)
Now choose
P --Mt)+{P+Pt +PLH D (114)
X X u uu u
From (102) and (110), we have that
-BP(t,) - = =
Plt) - S(t)+F__=G(t) =0 . (115)
Choose,
‘P‘(tf) = -G(t,) (116)

Now we have that P(t) is bounded in the interval [to, tf]. This follows
from the fact that (-P) satisfies a Riccati equation for which conditions
(97) hold, viz.,

M(t) = 0 Vt e[t ,t

-1
H () >0 (117)
G(tf) 20

Using these results in (113) and (115), we obtain finally:
S5=H +fis+sf ~m_ +is)Tulm  +1Ls)
XX X X ux u uart ux o u
(118)
S(t) = F__(x(t,), t,)
which is the Riccati equation (96). Now since (100)-(102) are satisfied

by a matrix function P(-) which has bounded elements, and since, by (117),

f;(-) is bounded, we have from (110) the result that S(-) is bounded.
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4. Another Example

kp = %p ;o ox(0) =%
. (119)
X, = u R XZ(O) = %5
1
1 2 2 1 2
V = . (——z-x1 + 2x2 + >u ydt (120)
Here,
H =20
ux
(121)
-1 0
H = , F=0
XX - 0 4
These values do not satisfy conditions (97). Conditions (100)-(102)
become
[Pz Pppl=0 (122)
P 0 o P “1 0
11 + L =9 (123)
0 0 P11 0 0 4
and
-P. . (1) O
11 >0 (124)
0 0

Liet us choose Pll(tf) = 0; this satisfies (124). From (122), Plz(t) = Pzz(t) =0,
vt e[t ,t]. If we choose:
P, =2 and P,(0) = -2 (125)

then (123) becomes

1 -2 + 2t

v
o

(126)
-2+ 2t 4
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Inequality (126) holds ¥Vt € [0,1]. Thus the solution obtained from
Pontryagin's Principle is optimal, and the Riccati equation associated
with the above control problem has a bounded solution.

5. Constrained Terminal State

From Sections III. 3 and V.2, sufficient conditions for optimality

are.
H +iP=0 Vt e[t t] (127)
ux ‘u o’ f
P+H_ +£P+Pf =MI(t) > 0 (128)
XX X X
T T _ _ >
Z°(F_ +v ”bxx P)Z| =G'(t) > 0 (129)
b
and (Legendre-Clebsch)
H () >0 Vt e [to, tf] (130)
Example:
X, =X x.(0) = x ; %x,(1) =0
1 2 1 10 ? 1 (131)
X, = u XZ(O) = X5 ; xz(l) =0
1
2,1 2 1 2
V = . (-5x] t3x; +3u")dt (132)
Here,
H =0 (133)
-1 0
H = , F=0, H =1 (134)

In this case, because n = s = 2, condition (129) disappears. As before,

we have that

T _ _
H +f{P=[P, Pyl=0 (135)
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Condition (128) becomes:

P11 0 0 Pll -1 0

+ +
0 0 P 0 0 1

\%
o

(136)
11

Choosing P11(0) = -1 and P11 = 2, the left-hand side of (136) becomes:

1 -1 4+ 2t

(137)
-1 + 2t 1

which is # 0 Vt € [0, 1], so that the stationary solution obtained from
Pontryagin's Principle is optimal. Note that the above sufficiency condi-
tions are, in this case, easier to check than the usual sufficiency condi-
tions for nonsingular, constrained terminal state problems [23]. Moreover,

the presence of the terminal constraints actually makes the choice of P

and P(tf) easier (if in this example there were no terminal constraints,

Inequality {129) would be violated by our above choice of P11(°) and Pll)'
VI. Applicability of the New Conditions
If the conditions
H +£P=0 YVt e[t ,t.] (138)
ux u o’ 'f
P+H _+fP+Pf =MI(t) >0 (139)
XX X %
T T _ P >
Z (FXX +v l‘bxx P)Z| =G't) = 0 (120)
t

cannot be satisfied, then no conclusion can be drawn regarding the nature
(optimality or nonoptimality) of the stationary control function. This is

because the above conditions are sufficient (but probably not necessary).
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Example:

Xx=u x(to) =0 (141)

[u] S 1 (142)

1

V = SO Zx%at - za (t)x(t,) (143)
Clearly,

u-)=0 (144)
is a stationary solution for the above problem. Here, Hux =0, Hxx =1,
Fxx = -a(tf) and P is scalar so that (100) determines

P(t) =0 vt €[0,1] . (145)

Condition (101) becomes

120 (146)
and condition (102) becomes

-S =0 . (147)
Clearly, (10l) is satisfied and (102) is satisfied if

“(tf) S0 (148)
but is violated if

alt) >0 . (149)
However, application of Jacobson's necessary condition [9] to this problem
shows that if o,(tf) > 0, the stationary solution (144) is not minimizing.

The above example suggests the following sufficient condition for

nonoptimality of a singular control function.

VII. Sufficient Conditions for Nonoptimality of a Singular Control Function

The second variation for the unconstrained terminal state problem

is:
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t
£ .
A
5% = S {36x (P +H__+£ P +Pf)0x+0ul(H +1 P)bx}at
t XX X : X ux u
6]
1, T
+ 5 0x (F_ - P)d0x . (150
ts

If it is possible to choose P(t); t € [to’tf] such that:

P+H +fIP+Pf =M"t)< 0 (151)
XX X X
and
-P(t,) + Fxx&(tf),tf) = G"ty) <0 (152)
and
LeTu +ium ¢ +£%Ps <o (153)
2'uxu 27Tuxu u” u

then the singular control is nonoptimal.

The first two conditions cause the quadratic forms in 0x and
5x(tf) in (150) to be nonpositive. If a rectangular pulse variation Ou(-)
of height n and duration AT is introduced, then the dominant term (for

n and AT sufficiently small) of

t
£
S' Sul(H  + £IP)bxat (154)
¢ ux u
O
is
1 T, 1,T 1 T 2
sn (5 H _ +ZH f + fquu]n(AT) (155)
So that if
ZiTH +lu 5 +6Tps <o (156)
u xu 2 ux'u u’ u
then
6%% <0 (157)

and the singular control is not minimizing.
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%= u ; x(0) = 0 (158)

V = S' %—xzdt - xz(tf) (159)
0

In this case, conditions (151) and (152) become

P+1<0 —>P S 1 (160)
-P(t) - 2 S 0 == P(t) > -2 (161)
and
%fTH +tH f +£pf =P (162)
u Xu ux ua u u
Choose,
P=-1 and Plt) = -2 (163)

then conditions (151)-(153) are satisfied and the singular arc is nonoptimal.

VIII. Conclusion

In this paper sufficient conditions are presented for the second
variation to be non-negative in both singular and nonsingular control
problems. It is demonstrated that'known necessary conditions of opti-
mality for singular problems and the no-conjugate=-point condition for
nonsingular problems are implied by the new conditions. Simple illustra-
tive examples demonstrate the usefulness of the new conditions. A suffi-
cient condition of optimality for singular problems is obtained by
strengthening the inequality conditions; it is shown that these strengthened
conditions can only be satisfied by first-order singular problems.

When applied to the nonsingular control problem, the new conditions

yield less restrictive sufficient conditions for the boundedness of the solution



-29-

of the matrix Riccati differential equation than were known heretofore;
this result appears to be useful in its own right.

The derivations presented are carried out for the case of u an
n-vector, and s-vector constraints on the terminal state are permitted.
Throughout, the final time te is assumed to be given explicitly; the
generalization of the conditions to the case where tf is given implicitly
is straightforward but tedious.

The appendix contains a Lagrange multiplier derivation of a neces~-
sary condition of optimality for singular control problems which was

derived previously using Differential Dynamic Programming [9].
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Appendix A: Lagrange Multiplier Derivation of Jacobson's Necessary

Condition of Optimality for Singular Problems (No Terminal Constraints).

The second variation is:

t
f ,
6%y = g {306xTH_0x + buTH_Ox}dt+30x F__bx (A.1)
t XX ux XX
(o]

t

subject to

0% = fxéx + fuéu ; Gx(to) =0 . (A. 2)
Adjoining (A.2) to (A. 1) with Lagrange multiplier
o\ = 3Q(t)0x (A. 3)

(where Q is an n x n symmetric matrix function of time) and integrating

by parts, we obtain

t
R £ .
627 = g {26xT(Q+H__+ 110 +Qf )0x + Oul(H__+ £.Q)0x}dt
t XX X X ux u

o
1. T
+ 20 (F - Q)0x| . (A. 4)
b
Now, choose
.~ T . ) _
-Q = HXX + ;EXQ + Qfx 5 Q(tf) = Fxx(x(tf), tf) (A.5)
then,
Y
6%% = S 5uT(H + fTQ)éxdt (A. 6)
¢ ux u
o

Introduce a variation Ou(-) which is zero everywhere except, say, in the

interval [1:1,t1 + AT] where
tyandt; + AT et ,t] (A7)

and which has constant magnitude n (note that u(-) + Ou(-) e U).
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The dominant term of (A. 6) produced by this variation is seen

easily to be

1 T,1.T 1 T 2
s [z£ H +5H £ +{ Qf In(aT) (A.8)

From (A.8), for non-negative GZV, we must have

1T 1 Tos =
sEH +zH f +£Qf 20 . (A.9)

This inequality, together with (A. 5) comprise the necessary condition

of optimality obtained (for the case of scalar contrdl), using Differential

Dynamic Programming, in [9].
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