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ABSTRACT 

Sufficient conditions for non-negativity of the second variation in 

singular and nonsingular control problems are presented; these condi- 

tions a re  in the form of equalities and differential inequalities. 

problem examples illustrate the use of the new conditions. The relation- 

ships of the new conditions to existing necessary conditions of optimality 

for singular and nonsingular problems a r e  discussed. When applied to 

nonsingular control problems, it is shown that the conditions a re  suffi- 

cient to ensure the boundedness of the solution of the well-known matrix 

Riccati differential equation; these conditions a r e  less  stringent than 

Control 

thos e known he r etofor e. 



I. Preliminaries 

1. Introduction 

Singular control problems occur often in engineering; for example, 

i n  the aerospece industry a number of important problems a r e  singular 

[l], [2]. 

optimal control problems a r e  common [3]. 

have prompted researchers to inquire into the mathematical properties 

of singular a r c s  [4]-[20]. 

necessary condition of optimality for singular arcs .  

generalized subsequently by Robbins [5], Tait [6], Kelley et a1 [7] and 

Goh [8], and i s  now commonly known as the generalized Legendre-Clebsch 

condition (or Kelley's condition). 

of optimality for singular a r c s  was derived and was shown to be non- 

equivalent to the generalized Legendre-Clebsch condition. For  want of 

an alternative, we shall refer to this condition as Jacobson's condition. 

Mathematical economics is another field in which singular 

These and other examples 

Circa 1964, Kelley [4] discovered a new 

This condition was 

In [9] an additional necessary condition 

In this paper we present sufficient conditions for non-negativity of 

the second variation in singular control problems; in strengthened form 

these conditions (equalities and inequalities) are sufficient for a weak 

relative minimum. 

of optimality a r e  derived easily from the new conditions. We show that 

the conditions a r e  applicable to totally singular, partially singulart and 

nonsingular control functions. Moreover, when applied to nonsingular 

problems, sufficient conditions for the boundedness of the solution of 

Both Kelley's and Jacobson's necessary conditions 

the well-known matrix Riccati differential equation a r e  obtained; these 

are less  stringent than those known heretofore [Zl], [26]. 

Defined in Section I. 3. 
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Control problems without terminal constraints a r e  considered 

first ;  the results a r e  then generalized to the case where constraints on 

the terminal states a r e  present. It turns out that the presence of t e r -  

minal constraints does not complicate unduly the derivation. 

2. Problem Formulation 

We shall consider the class of control problems where the 

dynamical system is described by the ordinary differential equations : 

k = f(x, u, t )  ; x(to) = xo (1 1 

f(x, u, t )  = f+x, t) t fu(x, t)u 

where, (except for Section V): 

(2) 

The performance of the system is measured by the cost functional: 

and the terminal states must satisfy 

WX(tf),tf) = 0 - (4) 

The control function u(- ) is required to  satisfy the following constraint: 

U ( ' )  E u (5) 

where the set U i s  defined by: 

Here, x is an  n-dimensional state vector and u is a n  m-dimensional 

control vector. 

f is an n x m matrix function of x at time t j  the functions L and F a r e  

scalar.  

f l  is an n-dimensional vector function of x at  time t and 

U 

The terminal constraint function tc/ is an  s-dimensional column 

vector function of x(tf) at tf. The functions f, L, F and a r e  assumed 

to  be three times continuously differentiable in  each argument. 

time tf is assumed to be given explicitly. 

The final 
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The control problem is: determine the control function u(- ) which 

satisfies (4) and (5) and minimizes V(x o' to) * 

3.  Totally and Partially Singular Problems 

It can be shown that, along an optimal trajectory, the following 

necessary conditions (Pontryagin's Principle) hold: 

where 
- - 
u = arg  min H(x, u, X, t) 

ueu 

and 

( 9 )  
T 

H(x, u,X, t )  = L(x, t )  t X f(x, u, t )  . 
Here, ;(. ), ;(a ) denote the candidate state and control functions and X ( -  ) 

denotes an  n-vector of Lagrange multiplier functions of time. 

In general the optimal control function (for the class of problems 

formulated in  Section I. 2) consist of bang-bang sub-arcs and singular 

sub-arcsf A bang-bang a r c  is one along which the controls lie on the 

boundary of U and H 

of switch times where the components of < change sign). 

(x, X, t) # 0 ; i = 1, . . . , m (except at  a finite number 
U. 
1 

A singular a r c  [17] i s  one along which 

for a finite time interval.-$ Note that this implies that, on a singular a rc ,  

H is independent of the control u. 

'Arc' and 'sub-arc' a r e  used synonymously. 

Fo r  simplicity, we shall consider all the controls to be singular 
simultaneously. If this is not the case, no conceptual difficulties ar ise .  
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In the sequal we shall make use of the following definitions: 

Defn. 1 : A totally singular control function is one along which (1  0) 

holds for all t E [to,tf]. 

Defn. 2: A partially singular control function is one along which (10) 

holds f o r  k sub-intervals of length T * i = 1, .  . . , k and where i’ 
k 

11. Totally Singular Control Functions, Unconstrained Terminal State 

1 .  Existing Necessary Conditions of Optimality 

In [7] Kelley et a1 show that the following (generalized Legendre- 

Clebsch) condition is necessary for the optimality of a singular a r c :  

Hu(T,X, t)]  3 0 

where the q-th time derivative of HU i s  the f i rs t  to contain explicitly the 

control u. 

this result; see [”I. 
dition was discovered [9]. 

Kelley et a1 used special control variations in order to derive 

Recently an  additional (Jacobson’s) necessary con- 

In order for a singular a r c  to be optimal it 

is necessary that 

t Z H  1 f t f u Q f u ”  T 0 
’z fu Hxu ux u 

where 

-Q = Hxx t fTQ X t Qf x ?  - Q(tf) = F xx (G(tf), tf) (13)  

The partial derivatives f H H and f a r e  all evaluated along the 

singular arc ;(- ) ?  ;(e ). 

control using the technique of Differential .Dynamic Programming [ 221; 

in  that paper, Q(t) is shown to be the second partial  derivative of V(x, t) 

with respect to x obtained whilst keepingu(. ) = ;(e). 

u’ xu’ ux X 

In [9] the above condition is derived for a scalar  

An alternative 
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derivation, using the Lagrange multiplier rule, is given in the Appendix 

of this paper. 

Of course, in  addition to conditions (11) and (12), Pontryagin's 

Principle must be satisfied. 

2. Second Variation (6 V) 2 

An expression for the second variation is [23]: 

G2V = tf { 2 1 6x T H 6x t 6uTH 6x)dt t -$ 6xTFxx6x 1 
xx ux 

0 4. 

Lf 

subject to the differential equation: 

6k = f 6x t f 6u ; 6x(to) = 0 . 
X U 

In order  for the singular (stationary) solution to be minimizing it i s  

necessary that 

G2V 3 0 

for all 6u(.)  sufficiently small  to justify the second order expansion of 

V, and such that 
- 
U ( ' )  t 6u(.) E U  . 

Both Kelley's and Jacobson's conditions a r e  necessary for (16) to hold; 

see [7] and the Appendix of this paper. In Section 11.4 we present suffi- 

cient conditions for (16) to hold. Note that the auxiliary minimization 

problem (14), (15) cannot be solved routinely because i t  is singular. 

3. 2 Adjoining Linearized System to 6 V 

We now adjoin (1 5) to (14) using a vector Lagrange multiplier 

function of time h ( t ) :  
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T Integrating 61 6% by parts,  we obtain: 

xx ux X U 

tf 1 6zT = i?6xTH 6 x  t 6uTH 6x t 6LT[f 6x +. f 
0 

Let us now choose 

1 
h ( t )  = ZP(t)GX ( 2 0 )  

where P( t )  i s  an n x n symmetricS, time varying, matrix. The second 

variation becomes : 

tf 1 T '  6% = { z  6x (P t H t fTP t Pf )Ox t 6uT(H t fTP)6x}dt x x x  X ux u 
0 

sub j e ct to : 

6;r = f 6x t f 6u ; 6x(to) = 0 . 
X U 

2 2A Note that 6 V = 6 V, i f  (22) holds. 

2 4. Sufficient Conditions for Non-negativity of 6 V 

As remarked in Section 11.2, the auxiliary problem (14), (1 5) o r  

(21),  (22) cannot be solved routinely owing to the fact that it i s  singular. 

Our new approach to the problem is to choose a bounded matrix function 

P(*)  such that: 

t There is no loss of generality in choosing P to be symmetric; this is 
so since i f  P were chosen to be unsymmetric, P t PT would appear in 
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T H ux t f P = O  u vt f [tO,tf1 

Here, P(t) i s  an n x n symmetric matrix function of time and H 

m x n so that there a r e  cases where (23) can be solved by choosing 

appropriate values for some of the elements of P. 

cording to (23) we annihilate the coefficients of the mixed 6u6x terms 

in (21) .  The remaining terms a r e  quadratic forms in 6x(t) and 6x(t ). 

is ux 

By choosing P ac- 

f 
Clearly, sufficient conditions for 6 2.1 V = 6 2 V 2 0 a r e  that (23) hold and 

P t H  t f T P t P f  = M ( t ) > -  0 xx x X 

and 

Equality (23) together with inequalities (24) and (25) constitute sufficient 
2 conditions for 6 V >- 0, V 6x(’ ). 

5. Sufficient Conditions for  Optimality 

Sufficient conditions for a weak relative minimum a re  obtained by 

strengthening (24) and (25): 

P t H  xx t f T P  x t P f  X = M(t) > O  v t  E [t0,tfl (26) 

2* 
To see this, note that i f  (23), (26) and (27) hold, then 6 V = 0 i f  6x(.) = 0 

almost everywhere including tf. 

including t 

have that the total change in cost is: 

However, if 6x( - )  = 0 almost everywhere 

then by our assumptions on L and F - -  see Section I. 2 - -  we f’ 

= o  
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i. e . ,  

(29)  
2* 6 V = O = = = + A V = O  . 

2A Thus we can always choose 6x(. ) # 0 sufficiently small so that 6 V is 

the dominant term in the expansion for A V ;  hence we have sufficiency. 

Example: H = 0, Hxx > 0, Fxx > 0. 

Vt E [to,tf], and G(tf) = 0, satisfies (23),  (26), (27). 

__. Note: If the dynamical equations ( 1 )  are linear and L and F a r e  quadratic, 

then (23), (24) and (25) a r e  sufficient conditions for  optimality because 

In this case, P(t) = P(t)  = 0 ux 

all variations higher than the second vanish identically. 

Example : 

k2 = u Xz(O) = 0 

1 
V = Io ( i x f  + 2x1x2 t zx2)dt  1 2  

IUI 4 1 (32) 

Here, ;(-) = 0 is a totally singular control which satisfies Pontryagin's 

Principle. We have that: 

H = O  ux 

F = O  

and 

xx = [: :] 
Note that Hxx is not positive semi-definite. Equation (23) yields: 

P12(t) = Pzz(t)  = 0 j t e [o, 11 

so  that the left-hand side of (24) becomes: 

(33) 

(34) 

(35) 
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p13 t [: :] 0 

-pl 1 0 

and the left-hand side of (25) becomes: 

rP1rf) 3 

(37) 

Inequalities (24) and (25) a r e  satisfied if  we choose 

(39) } - 

P l l  = 0 

Pll  = -2 

and since the system dynamics a r e  linear, and the cost quadratic, u(* ) = 0 

is optimal. 

6 .  Relationship to Existing Necessary Conditions 

Both Kelley's [7] and Jacobson's [9] conditions can be derived 

from (23) ,  (24), (25). 

a )  Jacobson's Condition 

Let 

Q t F = P  , (40) 

where Q and 

then, from (23) ,  

a r e  both n x n, symmetric matr ix  functions of time, 

(41 ) 
H t f  T Q t f T F = O  

ux u U 

so that 

(42) t Qfu t Ffu) t z(Hux 1 t fTQ t fTF) f  = 0 z fu (Hxu U u u  

-P - h = H 

From (24) and (40), 

- 
i- fT(Q ti?) t (Q t F)f X - M(t) (43) xx x 
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and from (25) and (40) 

-Q(tf) - i?(tf) t F xx (G(tf), tf) - G(tf) = 0 

Now set 

and 

-Q = Hxx t fTQ X t Qf X 

so that 

and 
- 

-P = -M(t) t fTF t Ff 
X X 

Now, since 

M(t) 3 0 Yt E [to,tf] and G(tf) 3 0 

we have that 
- 
P( t )  4 0 vt (E [to, tf] 

Using inequality (50) in (42), we obtain 

fTH t ZHuxfu 1 t f:Qf 3 0 . 
z u  xu U 

(47) 

(48) 

(49) 

Inequality (51) together with (45) and (46) comprise Jacobson's necessary 

condition. 

b ) K e 11 ev ' s C ondi t i  on ( gene r ali z e d Le g e nd r e - C leb s ch) 

Differentiating (23) with respect to time yields: 

t f T P  t Pf t iTP - fU(Hxx - M) = 0 . 'T T '  T 
HUx u U ux u X X 

t f P t f P = 0 = H 

(52) 

Post multiplying (52) by fu and adding its transpose, we obtain 

H f t fTH t fTPf  t fTPi - 2fTH f - 2f T T  f Pfu u x u  u ux u u u u u x x u  u x  

- 2fTPf f t 2f:Mfu = 0 u x u  (53) 
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Using 

T H = - f P  ux U 

in ( 5 3 ) :  

H f t f T H  - iTH - H - 2fTH f t 2f T T  f Hxu 
u x u  u ux u xu ux u u x x u  u x  

t 2H f f t 2fTMf u u  = 0 ux x u 

Rearranging ( 5 3 ) ,  

-2fTH f t 2H (f f - k ) t z(fufx  T T - fU)Hxu 'T 
u xx u u x x u  u 

t d ( H  f )  t - ( f  d T  H ) = -2fuMfU T 
dt u x u  dt u xu 

However, we have that 

M(t) 3 0 Yt E [to,tf] 

so  that 
m m m .rn 

1 1  1 -flH f t H (f f - f ) t (fufx - fU)Hxu u x x u  ux x u  u 

Now, the left-hand side of (58) is just 

dt 

(54) 

(55) 

(59) 

so that 

This is Kelley's f irst  necessary condition. If this is met with equality, 

i. e . ,  
fuM(t)fu T = 0 
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then (56) is again differentiated with respect to t ime and (54) and (56) 

a r e  substituted in. This yields Kelley's second condition, viz. , 

a [ ~ H ~ ]  dt 3 0 

The generalized condition 

L 

is obtained by further differentiations. 

CL Note: In Section 11.5, we gave sufficient conditions for optimality; a 

requirement was that 

M(t) > 0 V t  E [to,tfl 

However, this condition cannot hold unless q = 1 (see (56); i f  q > 1 ,  then 

fuMfU = 0, contradicting (64) ). T 

III. Totally Singular Control Functions, Constrained Terminal State 
2 1 .  Second-Variation ( 6  V*l 

We shall allow the terminal constraint 

where $' is an  s-dimensional vector function. 

to be given explicitly. 

As before, t i s  assumed f 

If $4' is adjoined to the cost functional by Lagrange multipliers 

Y [23], the second variation is: 
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subject to t 

and t 
6x = f 6x t f 6u ; 6x(to) = 0 X U 

~ x 6 x l  tf ' = O 

2 

As in Section 11, we adjoin (67) to (66) by a Lagrange multiplier 

2. Adjoining Linearized System to 6 VX< 

T furiction 6X(. ). We integrate the t e r m  6h 6k by parts and set  

6x = zP(t)Gx 1 . (69) 

We obtain finally: 

tf 1 T '  G2V* = { z 6 x  (P t H xx t fTP x 4- Pf X )6x t 6uT(H ux + fTP)6x}dt 

0 

tf 
I 

subject to qx6x(tf)  = 0. 

If II/, has rank s, then s components of 6x(tf) -- referred to a s  

6xS(tf) -- can be solved for in te rms  of the remaining n - s components, 

sXn-"(t ) ;  for example: .t 
f 

6xs(tf) = - A ; ~ A ~ ~ ~ ~ - ~  (tf)  (71) 

where 

t More precisely, we have that (x + 6x1). = f(G 4- 6x1,u t 6u, t) and 
IC/(Ti(tf) t 6x'(tf), tf) = 0. 
higher-order than the first do not influence 6 V*. 

If Al is singular, then differently partitioned qX and 6x(tf) must be used. 

However, expansions of these which a r e  of 
2 
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so that 

6,(tf) = Î ;".":"f~ - - - - - - - - - 

6,"' (t f )  

where 2 i s  n x ( n -  s). 

We now eliminate the constraint 

1c1x6x1 tf = O 

6xn-ytf) = z6x n- s (tf) 

(73) 
I 

(74) 

2 from (70) by using (73) in the boundary te rms  of 6 V*: 

tf 1 T '  6% = { Z ~ X  (P t H xx t f T P  x t Pf X )6x t 6uT(HUx t fTP)6x}dt U 

0 

1 n-s 2: T t y T qxx - P)Z}6xn-sJ  * (75) 
f z ( 6 x  1 {z  Wxx 

tf 2-, Sufficient Conditions for Non-negativity of 6 V 3. 
2-4 Sufficient conditions for 6 V 2 0 a r e  (by analogy with Section 11.4): 

T H t f P = O  ux u 

vt Q [to, tfl 

P t H t f T P  t Pf = M(t) 3 0 xx x X 

(76) 

(77) 

Note that i f  s = 0 (no terminal constraints.), 

n 
z = ~ $ I  M 

and (76)-(78) reduce to (23 ) - (25 ) .  
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4. Sufficient Conditions for Optimality 

By strengthening the inequalities in (77) and (78) we obtain 

s2y > 0 V6X(. ) # 0 (8 0 )  

with 

(81) 
2- 6 V = 0 if 6x(.) = 0 almost everywhere, including tf. 

The argument of Section 11. 5 can be used here to show that (80), (81) 

imply optimality (weak relative minimum). 

- Note: As in the case of unconstrained terminal states these strengthened 

conditions can hold only i f  the singular a r c  i s  first-order (i. e . ,  the 

generalized Legendre-Clebsch condition holds with strict  inequality fo r  

q =  1 ) .  

5. Relationship to Existing Necessary Conditions 

As in Section 11. 6 it is easy to show that satisfaction of (76)-(78) 

implies that Kelley's condition i s  satisfied. 

problems with constrained terminal state i s  more complex than for  the 

unconstrained case; see [ 9 ] .  

from (76)-(78). 

6. 

Jacobson's condition for 

We shall not derive this condition here, 

Comment on Problems with Constrained Terminal State 

When deriving necessary conditions of optimality for problems with 

terminal constraints by constructing variations of the control function, 

one i s  faced with the task of showing that the chosen variation i s  indeed 

admissible [7], [ 9 ] .  

dynamical system i s  assumed to be completely controllable and q X  i s  

assumed to have rank s . t  We remark that the approach taken in this 

paper does not require arguments of the type referred to above. 

This i s  a formidable task even if the linearized 

We need 

t These a r e  common assumptions [23]. 
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only assume that it is possible to satisfy @(x(tf), tf)  = 0, and that q x  
has rank s at x(tf), tf. 

control variations. 

We do have to ‘construct explicitly admissible 

IV. Partially Singular Control Functions t 
2 1 .  First and Second Variation ( 6 W  t 6 V:LC) 

As defined in Section I. 3, a partially singular control function 

may have both singular and nonsingular portions (i. e . ,  sub-intervals 

of singular and bang-bang control). Along nonsingular a r c s  Hu # 0, 

and the condition (Pontryagin’s) 

min H(G, u, X, t)  
ueu 

must hold (this is trivially satisfied along a singular a rc ) .  In this case 

the sum of the first and second variations is:  

tf 
I 

subject to 

6;r = f 6x t f 6u j 6x(t ) = 0 
X U 0 

and 

~ x 6 x l  tf = O 

In order to enforce (85) (and q (x(tf), tf) = 0), we have 
- 
u ( * )  t 6u(.) E u2 

t In this section we t reat  the constrained terminal state problem; the 
unconstrained problem is a special case. 
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where 

u2 = u n u1 
and 

u1 3 {U('  ) : J/ (X( t f ) ,  tf) = 0, x = f(x, u, t); x(t ) = xo) 
0 

Note that by (82), 

- 
HT6u 3 0 , u ( * )  t 6u( - )  E U2 

U 

with equality holding along singular a r c s  and at switch times of the 

bang-bang control a r c s .  

of the control (i. e . ,  {Hul # 0, Vt E [to, tf] so that u(.) = const. = t 1 o r  -1) 

then Pontryagin's Principle is sufficient for  optimality because the 

second-order terms in (83) can be made insignificant (i. e . ,  dominated 

by H 6u) for II6u(.) 11 sufficiently small. In the case where bang-bang 

a r c s  a r e  present (i. e. where u(t) switches between i ts  upper and lower 

bounds) one can, by placing a control variation in the immediate vacinity 

of a switch point, cause H 6u to contribute less to the change in cost 

2 6 W  t 6 V* than the second variation terms.  

If there a r e  no singular a r c s  and no switchings 

T 
U 

T 
U 

2 Clearly, sufficient conditions for 6 V k  3 0 a r e  (76)-(78) and suffi- 

cient conditions of optimality a r e  these in strengthened form. 

restrictive sufficient conditions for purely bang-bang control functions 

have been given previously [24], [25]. 

allow partially singular (i. e. , 'partially bang-bang ') control functions 

and thus embrace a wider class of problems than in [24] and [25]. 

Less 

However, in this section, we 

V. Problems Nonlinear in Control 

1. Introduction 

In the last section we indicated that our approach to  sufficiency is 

independent of whether the control function is totally singular o r  partially 
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singular or ,  in the purely bang-bang case, nonsingular. In this section 

we study the more general nonsingular problem where the control u 

appears nonlinearly in f and L. We show that our approach is indeed 

applicable and give examples to illustrate our results. As a byproduct 

of the analysis, we obtain sufficient conditions for the boundedness of 

the solution of a certain matrix Riccati differential equation; these a r e  

less  restrictive conditions than those obtained heretofore [21], [26]. 

We shall consider the following nonlinear optimal control problem: 

x = f(x,u,t)  ; x(t 0 ) = x 0 (90) 

Here i t  is assumed, for  simplicity, that there a r e  no constraints on 

the control u o r  on the terminal state x(t ), though this in no way limits 

the wider applicability of the analysis (see Section V. 5 for constrained 

f 

terminal state). In this case the second variation is:  

tf 1 T T 1 T  G2V = (26"  H xx 6x t 6u H UX 6x t Z 6 u  Huu6u}dt 

0 

6x I 1 T  t z 6 x  F xx 
tf 
I 

subject to 

6;, = f 6x 3. f 6u ; 6x(to) = 0 
X U 

Here, 

H (t) 0 Vt  E [to,tf] uu 

(93) 

t 94) 

is a well-known necessary condition (Legendre-Clebsch) of optimality. 

For  the problem to be nonsingular, str ict  inequality must hold, i. e . ,  
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H uu (t) > 0 'dt E [tO?tfI * ( 9 5 )  

A known necessary condition of optimality -t [26] (which together with 

(95) and Pontryagin's Principle forms sufficient conditions of optimality) 

is that the solution to the following matr ix  Riccati differential equation 

be bounded for t E: [to, tf]: 

T T -1 t f S) H (H + fTS) ; t fTS t Sf - (HUx uu ux u -& = H xx x X 

tf 
s(tf) = Fxxl 

Sufficient conditions for the boundedness of S(*) a re  known to be [21], [26]. 

2. Sufficient Conditions for Optimality 

Equation (93)  can be adjoined to (92) using a vector Lagrange 

multiplier function of time ah( . ) .  If, a s  before, we let 

61 = zP(t)Gx 1 

then, the second variation becomes: 
/ 

tf 1 T '  6% = ( 2 6 "  (P t H t fTP t P f  X )6x t 6uT(H ux t fTP)6x u xx x 
0 

1 T  t ~ 6 u  HUU 6u)dt t ~ 6 x  (Fxx - P)6x1 . 

tf 
I 

(99) 

Classically known as the 'no-conjugate-point condition' [27]. 
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2A Clearly, 6 V a 0 i f  we can choose P( t )  (which has bounded elements) 

so that 

T H ux t f P = O  u v t  E [to, tfl 

T P t H t f P t Pf = M(t) a 0 Vt E [to, tf] xx x X 

Moreover, because of (95), we have that 

6% 3 kNz[ 6u(. )] V6U( * ) (103) 

where N i s  a suitable norm on 6u(* ) and k > 0. 

that 6 V is stronply positive and, by a theorem of Gelfand and Fomin 

[27, p. 1001, this is sufficient for ;(- ) to be a minimizing control func- 

Equality (103) indicates 
2A 

tion (weak relative minimum). Thus conditions (1 00)-( 102) a r e  sufficient 

for optimality in this nonsingular problem. As an immediate consequence 

we have the following result: Conditions (100)-(102) imply that the matrix 

Riccati equation (96) has a bounded solution in the interval [to, tf] (because 

the boundedness of S(- ) is a necessary condition of optimality). These 

conditions a re ,  in general, considerably weaker than (97), a s  the following 

example illustrates. 

Example : 

1 
1 2  1 2  1 2  

(2x1  t 2~ x t z x Z  t T U  )dt 1 2  0 

Here, 
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These values do not satisfy conditions (97). However, from Section 11. 5, 

and 

Pll - 1  

satisfy (100)-(102), so that the stationary solution to this problem, 

obtained from Pontryagin's Principle, is optimal. Note that in this 

particular case the checking of ( 1  00)-( 102) is considerably easier than 

integrating the matrix Riccati differential equation to see whether o r  

not i ts  solution i s  bounded in the interval [O, 11. 
3 .  Derivation of Riccati Equation 

The Riccati differential equation (96) can be derived directly from 

(100)-(102) a s  follows: From (100) and (101), 

T T -1 
-P = Hxx t f T P  t Pf - M(t) - (HUx t f u P )  H (H t fTP) . 

X X uu ux u 

Let 

P = F t S  , 
then 

T -  - 
-P - S = Hxx t f (P t S) t (F t S)f - M(t) 

X X 

( 1  11) 
T -  T -1 T -  - [H t fu(P t S)] Huu[HUx f fu(p i- S)l ux 

T -  T T -1 = H t f (P t S) t ('fs t S)f - M(t) - (HUx t fuS) H uu (HUxtf:S) x x x  X 

T T -1 T- - t f s) H f P - Pf H - ~ H  t fTs) - CHUX u uu u u uu ux u 

- - 1  T- - P f H  f P u u u u  
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Using (100) and (110) in the last three te rms  of (112) we obtain: 

T T -1 - 
-P - S =Hxx  t fT(S t F) t ('is t S)fx - (HUx t f S) H uu (H ux t fTS)  u 

-1 T- tPf H f P - M(t) u u u u  

Now choose 

-1 T- - 
-P = - M ( t ) t f T F t f 5 f  tFf H f P . 

X X u u u u  

From (1 02) and (1 l o ) ,  we have that 

Choose, 

Now we have that P(t) is bounded in the interval [to, tf]. 

from the fact that (-P) satisfies a Riccati equation for which conditions 

This follows 

(97) hold, viz. ,  

G(tf) a 0 

Using these results in (113) and (115), we obtain finally: 

(118) 

T T -1 t f S) H (H t fTS) t fTS t Sf - (HUx xx x X U uu ux u -S = H 

Wf) = Fxx(atf) ,  t f )  

which is the Riccati equation (96). Now since (100)-(102) a r e  satisfied 

by a matrix function P(. ) which has bounded elements, and since, by (1 17), 

P(*)  i s  bounded, we have from (110) the result that S(0) is bounded. 
- 
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4. Another Example 

1 
V = Io ( - z x l  1 2  t 2xz 2 t z u  1 2  )dt 

Here, 

H = O  ux 

H xx = [: 3 , F = O  . 

These values do not satisfy conditions (97). Conditions (100)-(102) 

become 

and 

Let us choose P l l ( t f )  = 0; this satisfies (124). 

'trt E [to,tf]. 

F r o m  (122), P (t)  = Pz2(t)  = 0, 12 

If we choose: 

Pll = 2 and Pl1(0) = -2  I 

then (123) becomes 
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Inequality (126) holds Vt  q [0, 11. 

Pontryagin's Principle is optimal, and the Riccati equation associated 

with the above control problem has a bounded solution. 

Thus the solution obtained from 

5. Constrained Terminal State 

From Sections III. 3 and V. 2, sufficient conditions for optimality 

a re :  

T H t f P = O  ux u 

P t H t fTP t Pf = M'(t) 3 o J xx x X 

T t vT$' xx - P ) Z l  = Gf(tf)  3 0 (Fxx 

tf 
I 

- and (Leg endr e - C le b s ch) 

H uu (t) > 0 vt E [to, tfl 

Example : 

1 kl = x2 X l ( 0 )  = Xl0  ; X l ( l )  = 0 

x2 = u X2(O) = Xzo ; xz( l )  = 0 

1 
1 2  1 2  1 2  

( - z x l  t z x 2  t z u  )dt 

Here, 

H = O  ux 

H = ~~ 

1 , F=O, H uu xx 

In this case, because n = s = 2, condition (129) disappears. As before, 

we have that 

5 1  = 0 (135) T H t f  P=[P12 ux u 
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Condition (128) becomes: 

Choosing P (0) = -1 and Pll = 2, the left-hand side of (136) becomes: 11 

-1 t 2t 

1 3 
which is 3 0 Vt e [0, 11, s o  that the stationary solution obtained from 

(137) 

Pontryagin's Principle is optimal. Note that the above sufficiency condi- 

tions a re ,  in this case, easier to check than the usual sufficiency condi- 

tions for nonsingular, constrained terminal state problems [23]. 

the presence of the terminal constraints actually makes the choice of P 

Moreover, 

and P ( t  ) easier (if in this example there were no terminal constraints, 

Inequality (1 29) would be violated by our above choice of P1 1( 0) and P1 ). 

f 

VI. Applicability of the New Conditions 

If the conditions 

H t f L P = O  ux u 

T P t H t fxP t P f  = M1(t) 3 0 xx X 

z T (Fxx f v T qxx - P ) Z /  = G'(tf) 3 0 

tf 

(1 39) 

cannot be satisfied, then no conclusion can be drawn regarding the nature 

(optimality or  nonoptimality) of the stationary control function. 

because the above conditions are sufficient (but probably not necessary). 

This is 
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Example : 

k = U  x(to) = 0 

IuI 1 

1 
1 2 dt - ~a (tf)x (tf) (143) 

C lea r ly , 
- 
U ( ' )  = 0 (144) 

is a stationary solution for the above problem. 

F 

Here, HUx = 0, Hxx = 1, 

= -a(tf) and P i s  scalar so that (100) determines xx 

P( t )  = 0 vt e [0,1] . (145) 

Condition (1 01) becomes 

1 3 0  (146) 

and condition (1 02) becomes 

- s a 0  . 
Clearly, (101) i s  satisfied and (102) is satisfied i f  

a(tf) 0 

but i s  violated if 

U ( t f )  > 0 . (149) 

However, application of Jacobson's necessary condition [9] to this problem 

shows that i f  a(tf) > 0, the stationary solution (144) is fi minimizing. 

The above example suggests the following sufficient condition for 

nonoptimality of a singular control function. 

VII. Sufficient Conditions for Nonoptimality of a Singular Control Function 

The second variation for the unconstrained terminal state problem 

is: 
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tf 1 T '  { 266" (P t Hxx t fTP t Pf )6x t 6uT(H t fTP)6x}dt 
X X ux u 

0 

tf 

1 T  t z 6 x  (Fxx 

If it is possible to choose P(t) j  t [to, tf] such that: 

P t H t fTP t Pf = M"(t) 0 xx x X 

and 

-P(tf) t Fxx(G(tf), tf) = G"(tf) 0 

and 
1 T  1 -f H t - H  f t f T P f  < O  2 u  xu 2 u x u  u u 

(150 

then the singular control i s  nonoptimal. 

The first two conditions cause the quadratic forms in 6x and 

6x(t ) in (1 50) to be nonpositive. If a rectangular pulse variation 6u(. ) 

of height r)  and duration AT i s  introduced, then the dominant te rm (for 

r )  and AT sufficiently small) of 

f 

$" GuT(Hux t fTPf6x U dt 

0 

is 

So that i f  

T t l H  f t f  Pf 2 0  zfuHxu 2 u x u  u u 

then 

S 2 G  < 0 

(154) 

and the singular control i s  not minimizing. 
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Example : 

X = U  ? x(0) = 0 

1 
V = Jo -!jxZdt - x 2 (t,) 

In this case,  conditions (151) and (152) become 

P t l S O  ---“.PSl 

-P(t,) - 2 0 3 P(tf) 

and 

-f  1 T  H 4-H f t f T p f  
2 u xu u x u  u u 

Choose, 

P = -1 and P(tf) = -2  

2 - 2  

= P  

then conditions (1 51)-( 153) a r e  satisfied and the singular a r c  is nonoptimal. 

VIII. Conclusion 

In this paper sufficient conditions a r e  presented for the second 

variation to be non-negative in both singular and nonsingular control 

problems. 

mality for singular problems and the no-conjugate-point condition for 

nonsingular problems a r e  implied by the new conditions. 

tive examples demonstrate the usefulness of the new conditions. 

cient condition of optimality for singular problems is obtained by 

strengthening the inequality conditions; it is shown that these strengthened 

conditions can only be satisfied by first-order singular problems. 

It is demonstrated that known necessary conditions of opti- 

Simple illustra- 

A suffi- 

When applied to the nonsingular control problem, the new conditions 

yield less restrictive sufficient conditions for the boundednes s of the solution 
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of the matrix Riccati differential equation than were known heretofore; 

this result appears to be useful in its own right. 

The derivations presented a re  carried out for the case of u an 

n-vector, and s-vector constraints on the terminal state a r e  permitted. 

Throughout, the final time t is assumed to be given explicitly; the 

generalization of the conditions to the case where t is given implicitly 

is straightforward but tedious. 

f 

f 

The appendix contains a Lagrange multiplier derivation of a neces- 

sary condition of optimality for singular control problems which was 

derived previously using Differential Dynamic Programming [ 9 ] .  
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Appendix A: Lagrange Multiplier Derivation of Jacobson's Necessary 

Condition of Optimality for Singular Problems (No Terminal Constraints). 

The 

subject to 

second variation is  : 

(A. 1) 
6% = s, tf { 2 1 6x T H 6x t 6uTHUx6x)dt t 6xTFxx6xl 

xx 

tf 
0 

Adjoining (A. 2) to (A. 1) with Lagrange multiplier 

(where Q is an n x n symmetric matrix function of time) and integrating 

by parts, we obtain 

tf 1 T '  6% = s, { Z ~ X  ( Q t  H t fTQ t Qf )6x t 6uT(H t fTQ)6x)dt xx x X ux u 
0 

1 T  
t 2 6 ~  (F xx - Q)6x( . 

tf 
I 

Now, choose 

-Q = Hxx t fTQ X t Qf x ,  Q(tf) = Fxx(x(tf), tf) (A. 5) 

then, 

* tf 
6'9 = it 6uT(HUx t fTQ)6xdt 

U 
0 

Introduce a variation 6u(. ) which is  zero everywhere except, say, in  the 

interval [ t l , t l  t AT] where 

tl and tl t AT E [to,tf] , (A. 7) 

and which has constant magnitude r )  (note that E(. ) t 6u(. ) e U). 
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The dominant te rm of (A. 6) produced by this variation is seen 

easily to be 

2 From (A.8),  for non-negative 6 V, we must have 

1 T  1 T 
~f u H xu tZHUxfU t fuQfu 3 0 . 

This inequality, together with (A. 5) comprise the necessary condition 

of optimality obtained (for the case of scalar  control), using Differential 

Dynamic Programming, in [SI. 
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