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Abstract

Agents with standard, time-separable preferences do not care about the temporal distribution

of risk. This is a strong assumption. For example, it seems plausible that a consumer may �nd

persistent shocks to consumption less desirable than uncorrelated �uctuations. Such a consumer

is said to exhibit temporal risk aversion. This paper examines the implications of temporal risk

aversion for asset prices. The innovation is to work with expected utility preferences that (i)

are not time-separable, (ii) exhibit temporal risk aversion, (iii) separate risk aversion from the

intertemporal elasticity of substitution, (iv) separate short-run from long-run risk aversion and

(v) yield stationary asset pricing implications in the context of an endowment economy. Closed

form solutions are derived for the equity premium and the risk free rate. The equity premium

depends only on a parameter indexing long-run risk aversion. The risk-free rate instead depends

primarily on a separate parameter indexing the desire to smooth consumption over time and

the rate of time preference.
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1 Introduction

Agents with standard, time-separable preferences do not care about the temporal distribution of

risk. This is a strong assumption. For example, it seems plausible that in reality a consumer

may �nd persistent shocks to consumption less desirable than uncorrelated �uctuations. Such a

consumer is said to exhibit temporal risk aversion. This type of risk aversion is lacking from standard

preferences, because, with additive separability, expected utility is independent of the correlation of

consumption in two di¤erent time periods. However, other than mathematical convenience, there

is no compelling reason for assuming that temporal risk aversion is exactly zero and that consumers

do not care about the temporal distribution of risk.

This paper works with an alternative speci�cation for preferences to investigate the implica-

tions of temporal risk aversion for asset prices. Allowing for temporal risk aversion is achieved by

abandoning time-separability, while staying within the expected utility framework. This has two

additional and closely related consequences. First, a separation of risk aversion from the intertem-

poral elasticity of substitution is attained. As is well known, with standard preferences the two

are tightly linked, yet separating them can be crucial in explaining asset prices. Second, relative

risk aversion can depend on the duration of the consumption gamble and this leads to notions of

short-run and long-run risk aversion. This is also central to understanding the asset pricing impli-

cations. In particular, for the economy studied here, the equity premium is found to depend only

on long-run risk aversion.

The preferences are specialized so as to yield stationary asset returns. To study the asset pricing

implications, the present paper focuses on an endowment economy with i:i:d: consumption growth.

For this case, closed form solutions are derived for the risk-free rate and the equity premium. The

risk-free rate depends primarily on a parameter indexing the desire to smooth consumption and the

rate of time preference. By contrast, as mentioned, the equity premium depends only the coe¢ cient

of long-run relative risk aversion, which is equal to a separate preference parameter.

The rest of this paper is organized as follows. The next section brie�y covers the basics of

temporal risk aversion. After that, the paper will present and discuss the preferences studied

here, derive the pricing kernel for the endowment economy and, �nally, present some asset pricing

implications. Some of the related literature is discussed throughout the paper.
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2 Temporal risk aversion

Following Richard (1975), temporal risk aversion can be de�ned in the following way.1 Consider a

consumer who lives for two periods and is faced with a choice between two consumption gambles.

In the �rst gamble, consumption in the two periods is either (clow; clow) or, with equal probability,

(chigh; chigh), where chigh > clow. The second gamble results in either (clow; chigh) or (chigh; clow),

again with equal probability 0.5. If the consumer prefers the second lottery to the �rst for all

values of clow and chigh > clow, then the consumer is considered to be temporally risk averse. If

the �rst lottery is preferred, then the consumer is said to be temporally risk loving, while temporal

risk neutrality applies in the case of indi¤erence. An equivalent de�nition of temporal risk aversion

replaces the second, preferred gamble by independent draws in each period. That is, consumption

is uncorrelated over time and, in each period, is either clow or chigh, with equal probability. The

equivalence of the de�nitions follows directly from the additive properties of expected utility. A

straightforward extension of the de�nition to T periods is presented in Richard (1975).2

It seems reasonable to regard the second gamble as less risky - there is no risk of a �lifetime of

misery�due to permanently low consumption (or less risk of that outcome, in the case of the second

de�nition). In contrast, any consumer with time-separable preferences is indi¤erent between these

two gambles and so is temporally risk neutral, because the serial correlation of consumption does

not matter for expected utility under additive separability. (With time-separability expected utility

is E[u(c1) + v(c2)] which is trivially equal to Eu(c1) + Ev(c2).)

Richard (1975) shows that a consumer with a twice di¤erentiable utility function U(c1; c2) is

temporally risk averse if and only if the cross-partial derivative is negative, i.e. if and only if

U12 �
@2U(c1; c2)

@c1@c2
� 0

Strict temporal risk aversion holds if the inequality is strict. Temporal risk seeking is equivalent to

a positive cross-partial derivative, and temporal risk neutrality to a value of zero. Thus, a utility

1See also Bommier (2003), Epstein and Tanny (1980) and Ingersoll (1987, p 43-44). Temporal risk aversion is

sometimes also referred to as correlation aversion (Bommier and Epstein and Tanny) or as multivariate risk aversion

(Richard), though it is distinct from multivariate risk aversion in the sense of Kihlstrom and Mirman (1974). The

next section brie�y discusses the relation wth the latter concept, for the type of preferences studied in this paper.
2For the T period case, a distinction can be made between pairwise temporal risk aversion (which is speci�c to

two particular periods) and a global concept of temporal risk aversion. See Richard (1975).
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function exhibits temporal risk neutrality if and only if it is additively separable.

3 Preferences

Preferences are ordered by

U =W
�
u�1

�PT
t=0 �

tu(ct)
��

(1)

with � > 0. W and u are strictly monotone real-valued functions and W is also increasing. The

transformation W is irrelevant in the absence of uncertainty. In a stochastic setting, it is assumed

that the consumer evaluates uncertain consumption streams in accordance with the von Neumann-

Morgenstern axioms, so that the consumer maximizes expected utility. At time t, the consumer

maximizes Et[U ]. Because the preference ordering U(c0; c1; :::; cT ) is the same in each period, these

preferences are time-consistent.

As a consequence of time-consistency, past choices will matter for decisions over current and

future consumption, except for some special cases (such as additive separability). This feature is

not unusual in the literature on consumption-based asset pricing: it is also present in models with

habit or durability in consumption. A recent paper by Kihlstrom (2007) focuses on the alternative

case that the consumer ignores past consumption in U . With that approach, current choices are

independent of past choices, but that also implies that the preferences are dynamically inconsistent.3

Time-separable preferences (and therefore temporal risk neutrality) can be obtained as a special

case by setting W = u. Otherwise, assuming that W and u are both twice di¤erentiable and

checking the cross-partial derivative, it is easy to show that U is temporally risk averse (loving) if

Wu�1 is concave (convex). Further algebra shows that this is in turn equivalent to W being more

(less) risk averse than u in the sense of Arrow and Pratt. That is, the following statements are

equivalent:

(i) U is temporally risk averse (loving);

(ii) Wu�1 is concave (convex); and

3Bommier and Rochet (2006) and Eden (2008) examine preferences similar to the ones used here. Bommier and

Rochet�s focus is on the e¤ect of the planning horizon on risk aversion and portfolio choice that emerges without

time-separability. Eden also examines risk aversion, as well as asset pricing implications in a two period setup.
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(iii) �W
00(x)

W 0(x) � (�)�u
00(x)

u0(x) , for x = u
�1(��tu(ct)).

As the second statement suggests, this approach follows naturally from Kihlstrom and Mirman�s

(1974) analysis of risk aversion with multiple goods.

To obtain stationary asset pricing implications in the context of a growth economy, (1) is

specialized to iso-elastic functional forms: u(c) = (1� 
)�1c1�
 and W (x) = (1� �)�1x1��. Then

U = 1

1� �

�PT
t=0 �

tc1�
t

�(1��)=(1�
)
(2)

In a deterministic setting, � is irrelevant for choices and the desire for consumption smoothing is

fully determined by 
, with the intertemporal elasticity of substitution equal to 1=
. If � = 
,

then U specializes to additively separable utility with constant relative risk aversion 
 = � (and

temporal risk aversion equal to zero). If � exceeds 
, then the consumer is temporally risk averse.

The latter is the case we will focus on.

To illustrate the role of the parameter �, suppose consumption is constant over time and equal

to �c (so that U = constant � �c1��), then � is the coe¢ cient of relative risk aversion with respect

to gambles over �c, i.e. lifetime consumption gambles. For this reason, I will refer to � as long-run

(relative) risk aversion.

3.1 Long-run risk aversion

To further understand the role of long-run risk aversion �, it useful to de�ne a lifetime consumption

gamble as a lottery that changes consumption in each period by a common factor 1+~", where ~" is a

random variable that has zero mean and is orthogonal to the initial consumption process. Formally,

let fctgTt=0 be a given stochastic process for consumption without the gamble. With the gamble,

consumption is

~ct � ct(1 + ~") for all t

where ~" � �1 is independent of the stochastic process fctgTt=0. Without the gamble, (unconditional)

expected utility is

EU = E[ 1

1� �(�
T
t=0�

tc1�
t )(1��)=(1�
)]

With the gamble, expected utility is

E ~U � E[ 1

1� �(�
T
t=0�

t~c1�
t )(1��)=(1�
)] = E[(1 + ~")1��]EU
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(using independence). Hence, regardless of the properties of the initial consumption process, �

is the coe¢ cient of relative risk aversion for lifetime consumption gambles. Following the analysis

in Pratt (1964), it is straightforward to show that the highest risk premium that the consumer is

willing to pay, as a fraction of consumption in each period, to avoid the risk ~" is approximately

(�=2)V ar(~"). As in Pratt, if higher moments are bounded, the error in the approximation is of

smaller order than the variance of ~", so that the approximation is good when this variance is small.

3.2 Short-run risk aversion

It is more common to consider risk aversion with respect to one period consumption gambles.

Although with time-separable, iso-elastic utility there is no di¤erence with between this and the

long-run concept, with the preferences postulated in (2) there generally is. For this reason, I will

use the term short-run risk aversion to refer to risk aversion with respect to one period consumption

gambles. To characterize short-run risk aversion, the marginal utility of consumption during period

t is:
@U
@ct

= (xT )
��tc�
t (3)

with

xT �
TP
t=0
�tc1�
t

and

� � (
 � �)=(1� 
)

Di¤erentiating again with respect to ct and using the result, we obtain for the coe¢ cient of short-run

relative risk aversion:4

�ct@2EtU=(@ct)2
@EtU=@ct

= 
 + (�� 
)Et[x
��1
T ]

Et[x�T ]
�tc1�
t (4)

Short-run risk aversion is the sum of two terms. If the consumer is temporally risk neutral (the

time-separable case, with � = 
), the second term is zero and short-run risk aversion is equal to


, the standard coe¢ cient of relative risk aversion, which is also the inverse of the intertemporal

elasticity of substitution. If the consumer is temporally risk averse (� > 
), then the second term

increases short-run risk aversion beyond 
.

4The expectation operator is due to the fact that future consumption (dated t+ 1 onward) may be stochastic.
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In that case, it is also clear from equation (4) that short-run relative risk aversion is generally

not constant. To gain insight into this, let us �rst consider the case that future consumption is

known at time t. Then

�ct@2EtU=(@ct)2
@EtU=@ct

= 
 + (�� 
) �tc1�
t

�Ts=0�
sc1�
s

Thus, short-run risk aversion lies strictly between 
 and �. If discounted felicity in the current

period, �tc1�
t , is a small fraction of lifetime felicity, �Ts=0�
sc1�
s , then short-run relative risk

aversion in the current period is quite close to 
. This will typically be the case when the horizon T

is large. For example, if consumption is constant over time and � = 1, then short-run risk aversion

is 
 + (�� 
)=(T + 1).

The case of stochastic future consumption will be analyzed in more detail after the presentation

the endowment economy. It will be shown for that economy that, under certain conditions, short-

run risk aversion converges to 
 as T goes to in�nity.

3.3 Discussion

With the intertemporal elasticity of substitution (IES) equal to 1=
, and long-run risk aversion equal

to �, these preferences separate, to some degree, consumption smoothing from risk aversion. This

contrasts sharply with time-separable preferences for which, as mentioned, the IES is the inverse

of the coe¢ cient of relative risk aversion. Epstein-Zin-Weil preferences also provide a separation

between the two concepts (see Epstein and Zin (1989) and Weil (1989)). The key di¤erence with the

approach taken here is that Epstein-Zin-Weil preferences are non-expected utility preferences. They

do not satisfy the axioms of von Neumann and Morgenstern for consumption gambles extending over

multiple periods. As discussed by Epstein and Zin, this is manifested by an associated preference

for early or late resolution of uncertainty. An open question is to what extent the accomplishments

of Epstein-Zin-Weil preferences in the asset pricing literature are due to the fact that they lie

outside the traditional expected utility framework.5 For example, is the preference for early or late

resolution of uncertainty crucial? Or is it �just�the separation of risk aversion from consumption

smoothing that matters? As illustrated by the preferences used here, by introducing temporal risk
5Some examples of work in asset pricing which fruitfully employs Epstein-Zin-Weil preferences include Bansal and

Yaron (2004), Gomes and Michaelides (2008), Hansen, Heaton and Li (2008), Kandel and Stambaugh (1991), Piazzesi

and Schneider (2006), Routledge and Zin (2003) and Tallarini (2000).
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aversion, it is possible to have that separation without leaving the expected utility framework and,

as a consequence, without relying on any preference for early or late resolution of uncertainty. In

this sense, the approach taken here is also a smaller departure from the standard time-separable

preferences.

4 The Pricing Kernel

Suppose that the consumer reduces consumption in period t by 1 unit, purchases an asset with

gross return Rt+1 and then uses the proceeds to increase consumption in period t+1. Equilibrium

asset prices have to be such that for the consumer the net marginal e¤ect of this action on expected

utility is zero. This perturbation argument implies the following Euler equation:

Et[@U=@ct] = Et[(@U=@ct+1)Rt+1] (5)

Using equation (3) and the law of iterated expectations, the following version of the intertemporal

marginal rate of substitution is a valid pricing kernel:6

MT
t+1 =

Et+1[@U=@ct+1]
Et[@U=@ct]

= �

�
ct+1
ct

��
 Et+1 �x�T �
Et
�
x�T
� (6)

The �rst two factors equal the pricing kernel for the time-separable case (� = 
); the third factor

di¤ers from one only if � 6= 
 and news about future consumption (dated t + 1 and onward) is

revealed between t and t + 1. (Recall that � = (
 � �)=(1 � 
) and xT =
PT
t=0 �

tc1�
t .) Thus,

temporal risk aversion introduces a new, forward-looking factor to the pricing kernel.

The goal is now to obtain a convenient expression for this new factor. It will be possible to

do this for an economy with a long horizon, T . Formally, I will consider a sequence of economies

indexed by T and then derive a result characterizing the limit of the pricing kernel as T approaches

in�nity.7 Focusing on the in�nite horizon case in this way will also have the advantage that the

pricing kernel will not depend on on the �time remaining�, T � t, as a state variable, which would

have the undesirable consequence of generating nonstationary asset returns.
6By the law of iterated expectations, (5) is equivelent to Et[@U=@ct] = Et[Et+1[(@U=@ct+1)Rt+1]], so that

Et[(Et+1[@U=@ct+1]=Et[@U=@ct])Rt+1] = 1, or Et[MT
t+1Rt+1] = 1. The superscript T is included as the horizon

T will be varied below.
7That is, formally, we will examine limT!1(argmaxE[U(c0; :::; cT )]) rather than

argmax(E[limT!1 U(c0; :::; cT )]).
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It is convenient to split up xT into realized and future terms:

xT =
tP
s=0

�sc1�
s +
TP

s=t+1
�sc1�
s = �tc1�
t (zt + f

t+1
T ) (7)

where the second step introduces a convenient normalization, with

zt �
�ts=0�

sc1�
s

�tc1�
t

� 1 and f t+1
T �

�Ts=t+1�
sc1�
s

�tc1�
t

(8)

Denoting the growth rate of consumption by gt � ct=ct�1, zt evolves according to

zt+1 = zt=(�g
1�

t+1 ) + 1

or, with � � ��1E[g
�1t ] and "t+1 � zt(��1g
�1t+1 � �); we have

zt+1 = �zt + 1 + "t+1

Now suppose that

gt � ct=ct�1 is i:i:d:

With that assumption, Et["t+1] = 0. zt is then a stationary stochastic process (more precisely,

non-explosive, due to the initial condition z0 = 1) if and only if

� � ��1E[g
�1t ] < 1 (9)

At the same time

f t+1T =
PT�(t+1)
s=0

Qs
v=0 �g

1�

t+1+v (10)

so, exploiting the i:i:d: assumption,

Et[f
t+1
T ] =

PT�(t+1)
s=0

�
E[�g1�
t ]

�s+1
=
�E[g1�
t ]f1� (�E[g1�
t ])T�tg

1� �E[g1�
t ]

To obtain stationary asset return implications, we will be interested in the case where T is large.

Since �E[g1�
t ] > �(1=E[g
�1t ]) = 1=�, if � < 1, then Et[f t+1T ] diverges as T grows. Thus, loosely

speaking, if � < 1 and T is large, then, zt is small relative to Et[f t+1T ] for all t, except when t is

very close to T .

In contrast, if � > 1 (more precisely, if �E[g1�
t ] < 1), then Et[f t+1T ] remains bounded for

arbitrarily large T . At the same time, zt grows exponentially as time passes. Thus, even if T is
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very large, after a few periods, zt is likely to be large relative to Et[f t+1T ], as the former diverges in

expectation and the latter does not, if � > 1. This suggests that, at that point in time,

Et+1
�
x�T
�

Et
�
x�T
� =

Et+1
�
(1 + f t+1T =zt)

�
�

Et
�
(1 + f t+1T =zt)�

� � 1

1
= 1

It is apparent from this and expression (6) that the pricing kernel will approach the standard

CRRA time-separable one as time passes, if T is large and � > 1. Intuitively, temporal risk

aversion gradually becomes irrelevant, as it is the early periods of consumption that matter the

most for lifetime utility in this case.

Since I am interested in temporal risk aversion, and since in any case the asset pricing impli-

cations of the standard preferences are well understood, I will focus on the alternative case that

� < 1. Note that if � � 1 this is realistic only if 
 < 1, i.e. if the intertemporal elasticity of

substitution exceeds unity. Intuitively, � < 1 means that, unless t is close to T , the future is more

important than the past for current decisions.

Epstein and Zin (1989) have critiqued the kind of preferences postulated in (2) by pointing out

that, if � < 1 and without growth, the dependence of the marginal utility of current consumption

on past consumption is greater as the past becomes more distant. However, this is not true under

condition (9) (� < 1). This condition can be satis�ed even with a constant consumption pro�le,

provided � � 1; with growth � may be less than 1 provided 
 < 1. Interestingly, the parameter

restriction under which temporal risk aversion turns out to have novel asset pricing implications

also addresses the critique of Epstein and Zin.

Using (7), the new factor in the pricing kernel can be written as

Et+1
�
x�T
�

Et
�
x�T
� = (�g1�
t+1 )

�Et+1
�
(zt+1 + f

t+2
T )�

�
Et
�
(zt + f

t+1
T )�

� (11)

Intuitively, and informally, for large T , and with � < 1, we expect Et
�
(zt + f

t+1
T )�

�
and Et+1

�
(zt+1 + f

t+2
T )�

�
to depend very little on zt and zt+1, respectively, since in this case f diverges in expectation, while

z does not. (The i:i:d: assumption implies that f has no predictability.) Thus, it is natural to

expect that as T goes to in�nity, Et+1
�
(zt+1 + f

t+2
T )�

�
=Et

�
(zt + f

t+1
T )�

�
approaches a constant,

independent of zt and zt+1. Assume for a moment that this is true and call the limit �. Then

lim
T!1

Et+1
�
x�T
�

Et
�
x�T
� = (�g1�
t+1 )

�� = ��g
��t+1 �
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Assume further for a moment that there are no issues with interchanging limit and expectation

operators. Then taking Et of both sides yields a simple expression for �:

lim
T!1

Et

"
Et+1

�
x�T
�

Et
�
x�T
� # = 1 = Et h��g
��t+1

i
� =) � =

1

��Et[g

��
t+1 ]

Of course, here Et[g

��
t+1 ] may be replaced by E[g


��
t+1 ] since g is i:i:d:

If this informal line of reasoning is correct, then substituting this limiting value into (6) yields

a very simple expression for the limiting pricing kernel - see equation (13) below. The following

proposition, the main result of the paper, shows that under certain conditions this argument can

indeed be formalized.

Theorem 1 If � = 
��
1�
 < 0, ln gt � i:i:d: N(�; �

2) for gt � ct=ct�1 and

ln� + (1� 
)� > (0:5� �)(1� 
)2�2 (12)

then the limiting pricing kernel is

M�
t+1 � lim

T!1
MT
t+1 =

�g��t+1
Et[g


��
t+1 ]

(13)

Proof. See Appendix 1.

Remark 1: � < 0 requires that either 
 < 1 and 
 < �, or 
 > 1 and � < 
. If (realistically)

� > 0, then, given assumption (12), only the �rst possibility is consistent with � � 1. As mentioned,


 < � implies positive temporal risk aversion.

Remark 2: condition (12) implies � < 1 (since � < 0 and ln� = ln(��1E[g
�1]) = �(ln� +

(1� 
)�) + 0:5(1� 
)2�2 < 0 by (12)).

The proof employs the mean value theorem and the re�ection principle for Brownian motion

to show that the history of past consumption, summarized in zt, is asymptotically unimportant

in Et[x�T ]=(�
tc1�
t )� = Et

�
(zt + f

t+1
T )�

�
. Then, the dominated convergence theorem is used to

to interchange the limit and expectations operators. The conditions stated in the theorem are

su¢ cient. I suspect that they are not all necessary, but I have not shown this (except for the

conditions outlined in footnote 13 and the following trivial case).
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It is worth pointing out that if � = 
, so that the utility function is time-separable, then

equation (13) specializes to the standard pricing kernel for time-separable utility with constant

relative risk aversion: M�
t+1 = �g

�

t+1.

An increase in long-run risk aversion � makes marginal utility, and therefore the pricing kernel,

more responsive to realized growth rates, but without having a big impact on its expected value

due to the correction 1=E[g
��t+1 ]. (In the special case 
 = 0, the impact is exactly zero; for positive

but small 
 the impact is small, as will be shown more explicitly below.) This is important for the

asset pricing implications, since, loosely speaking, the equity premium depends on the volatility of

the pricing kernel, while the risk free rate depends on its conditional mean.

The following proposition characterizes short-run risk aversion in this economy:

Theorem 2 Under the conditions stated in theorem 1, short-run risk aversion converges to 
:

lim
T!1

�ct@2EtU=(@ct)2
@EtU=@ct

= 


Proof. See Appendix 2.

Thus, for this stochastic economy, a similar result applies as for the deterministic case: when

the horizon T is large, short-run risk aversion is close to 
. In this sense, the separation between

the intertemporal elasticity of substitution and short-run risk aversion vanishes in the limit. This

separation remains, however, for long-run risk aversion, which is always equal to �. The next

section shows how this a¤ects asset prices.

5 Asset Prices

Using the expression for the limiting pricing kernel in (13), pricing assets is straightforward, using

the optimality condition Et[M�
t+1R

i
t+1] = 1, where R

i
t+1 is the gross realized return to any tradeable

asset, between period t and t + 1. In what follows it is assumed that the conditions to theorem 1

are satis�ed. This is consistent with temporal risk aversion (� > 
) only if 
 is less than 1, so that

the intertemporal elasticity of substitution exceeds unity (and short-run risk aversion is less than

1 in the limit).

It should be stated at the outset that, with i:i:d: consumption growth and the asymptotic

irrelevance of past consumption to the pricing kernel (see (13)), the model will imply constant
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values for the risk-free rate and the equity premium. This is also true for for standard preferences

combined with i:i:d: consumption growth.

5.1 Risk-free rate

Denote the risk-free one period real interest rate between period t and t+1 by RFt . In the limiting

economy,

RFt = 1=Et[M
�
t+1] = �

�1Et[g

��
t+1 ]=Et[g

��
t+1]

Exploiting lognormality, this yields

RFt = �
�1 exp(
�� 
(�� 0:5
)�2)

Note that for the time-separable case (� = 
) this simpli�es to the standard result: RF;tst =

��1 exp(
�� 0:5
2�2) (ts is used to indicate the time-separable case). The general result can also

be written as

RFt = R
F;ts
t exp(�(�� 
)
�2)

Recall that temporal risk aversion obtains when � > 
. Thus, for a given value of 
 < 1, intro-

ducing more temporal risk aversion lowers the risk free rate. It is tempting to link this with the

precautionary savings motive, but more careful analysis is needed to make a precise claim.

The constant short-rate implies a �at real term structure. That is, real yields on all long bonds

are constant and equal to the short rate. Again, this is also true for standard preferences with i:i:d:

consumption growth.

5.2 Consumption claim

Lucas (1978) and Mehra and Prescott (1985) de�ne equity as a claim to aggregate consumption.

Deriving the expected return to such a consumption claim using M�
t+1 is standard. The resulting

�consumption equity premium�is:

E[RCt+1=R
F
t ]� 1 = exp[��2]� 1 � ��2 (14)

As can be seen, the risk premium depends only long-run risk aversion. For the preferences used

here, temporal risk aversion implies that long-run risk aversion exceeds short-run risk aversion. In

this sense, therefore, temporal risk aversion increases the risk premium on a consumption claim.

13



5.3 Equity

Extending the formulation by Abel (1999), equity is modelled as a claim to dividends equal to

dt = n
tc�t "t in period t. The parameter � is a modeling device that closely approximates the e¤ect

of leverage on returns (see Abel (1999)), with positive leverage corresponding to � > 1. "t is a shock

which assumed to be uncorrelated with consumption and is distributed i:i:d:(1; �2"). It is included

because in the data dividend volatility exceeds consumption volatility and because the dividend

and consumption growth rates are imperfectly correlated. Finally, n > 0 is a convenient way of

considering the e¤ect of the duration of the equity claim. n = 1 or n = exp(�(��1)��0:5(��1)2�2)

are standard choices. The resulting equity premium is:

E[RSt+1=R
F
t ]� 1 = exp[���2]� 1 � ���2 (15)

As �nance theory predicts, nonsystematic risk (") is not priced. Interpreting ��1 as leverage yields

the same result as a straightforward application of Modigliani and Miller�s (1958) Proposition II.

Because the model has a no term premium (due to i:i:d: consumption growth), the risk premium

is independent of the duration parameter n. As for the consumption claim, long-run risk aversion

is the only preference parameter that matters for the equity premium. Since the equity premium

is increasing in long-run risk aversion, temporal risk aversion increases the equity premium.

Why does the equity premium depend on long-run risk aversion, as opposed the short-run

concept? The intuition for this result is that the risk in this economy stems from the i:i:d: shocks

to the growth rate of consumption (and therefore dividends). These innovations act as permanent

shocks to the level of consumption. A positive innovation to the growth rate raises consumption in

all remaining periods by the same ratio. It is therefore similar to the lifetime consumption gamble

discussed in section 3.1. Loosely speaking, it is also more similar the lottery that the consumer

dislikes in the de�nition of temporal risk aversion than the alternative (see section 2).

This result is not driven by the fact that equity is a long-lived claim, as it holds even for a

very short-duration equity claim (small n) and even, it can be shown, for a one period equity strip.

Rather, it is due to the fact that the economic risk inherent in equity is �long-run risk�to the level

of consumption.
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5.4 Numerical examples

As Mehra and Prescott (1985) and others have shown, it is di¢ cult for standard models with

time-separable preferences to account for the 6% equity premium and the low risk-free rate with

conventional levels for risk aversion.8 In this subsection, I examine whether it is easier to do so

with temporal risk aversion. I use the values calculated by Mehra and Prescott for the mean and

standard deviation of the growth rate of real per capita consumption of nondurables and services:

� = 0:018 and � = 0:036. Following Abel (1999) and Bansal and Yaron (2004), I set the leverage

parameter at � = 3. The average U.S. equity premium reported by Mehra and Prescott is 6:2%

per annum, and the average real risk-free rate is 0:80%.

First, I ask what equity premium the model can generate subject to matching the risk-free rate

exactly and subject to the parameter restrictions needed for theorem 1 to hold (most importantly,

condition (12)). Under those restrictions, the model can account for about half the equity premium

(3:2%). Parameter values that accomplish this are, for example, � = 8, 
 = 0:75 and � = 0:998.

That is, with risk aversion ranging from 0:75 for the short run to 8 for the long run, the model

can match the risk-free rate and about half the equity premium. Note that with 
 = 0:75 the

intertemporal elasticity of substitution is 1=0:75 t 1:3. Incidentally, the predicted equity premium

is well within two standard deviations of the historical average. For comparison, with time-separable

preferences the result is an equity premium of only 0:2%.9 This is the well-know equity premium

puzzle.

Alternatively, one can ask how close the model can get to matching the risk-free rate while

replicating the point estimate of the equity premium. Using equation (15), to match the equity

premium exactly, long-run risk aversion must equal � = 15:5. However, that value results in a

risk-free rate that is too low, because, as mentioned, temporal risk aversion lowers the risk-free

rate. Assuming a high rate of time preference (a low �) would help, but this is ruled out by the

parameter restriction to the theorem (12). Under that restriction and with � = 15:5, the model

can generate a risk-free rate that is about 1 percentage point below the historical average. For

example, with permissible parameter values � = 15:5, 
 = 0:5 and � = 1:001, the risk-free rate is

RFt = �0:19%.10

8Kandel and Stambaugh (1991) provide a challange to the view that high risk aversion is unreasonable.
9Here I follow Mehra and Prescott in requiring 
 � 10 and � � 1. Leverage is maintained at � = 3.
10 Interestingly, if one uses aggregate real consumption growth, rather than per capita, to calibrate � and �, then
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The low risk-free rate contrasts sharply with the case of time-separable preferences, for which

high levels of risk aversion imply counterfactually high values for the risk-free rate.11 For example,

setting 
 = 15:5 to match the equity premium results in a risk-free rate near 13% with standard

preferences, if � � 1. The reason is that with time separability high risk aversion implies a strong

desire for consumption smoothing, which in the presence of growth results in a high interest rate

in equilibrium.

More important is that the preferences with temporal risk aversion can generate sizable risk

premia without su¤ering from what can be called the �Lucas-Murphy critique�. As Robert Lucas

(1990) has observed,12 two countries that di¤er in their growth rate (�) by 1 percent, di¤er in their

interest rate by 
 percent, where 
 is the reciprocal of the intertemporal elasticity of substitution

(assuming the same preferences and variance of consumption growth). With time separable prefer-

ences 
 is also risk aversion, so then levels of risk aversion in excess of 4, in Lucas�estimate, would

then imply counterfactually large di¤erences in real interest rates across countries (think of South

Korea and the U.S.). In his 2003 presidential address, Lucas revisits this argument and concludes

that the IES should in fact be close to one. The preferences used in this paper can combine higher

long-run risk aversion with a relatively high intertemporal elasticity of substitution (i.e. a low 
),

thus avoiding the prediction of enormous cross-country real interest rate di¤erentials.

6 Conclusion

The starting point of this paper has been the idea that consumers may care about the temporal

distribution of risk; in particular, they may �nd persistent shocks to consumption less desirable than

uncorrelated �uctuations. I have formulated expected utility preferences that exhibit such temporal

risk aversion and studied their asset pricing implications. I found that temporal risk aversion leads

naturally to a separation of risk aversion from the intertemporal elasticity of substitution, as well as

a distinction between short-run and long-run risk aversion. For an endowment economy with i:i:d:

the model can simultaneously match the equity premium and the risk-free rate. The model abstracts from population

growth.
11Except for very high values of relative risk aversion, when the precautionary e¤ect dominates. Recall that

RFt = �
�1 exp(�
�0:5
2�2) in the time-separable case. At those very high levels of risk aversion, the quadratic term

can approximately cancel with the linear term. However, the �Lucas-Murphy critique�(explained below) still applies.
12Lucas credits Kevin Murphy for making this observation.
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consumption growth, I derived a simple expression for the limiting pricing kernel, which yields

stationary implications for asset returns. In that economy, closed form solutions show that the

equity premium depends only on a parameter indexing long-run risk aversion, while the risk-free

rate instead depends primarily on a separate parameter indexing the desire to smooth consumption

over time and the rate of time preference. Quantitatively, the model improves upon the ability of

standard preferences to simultaneously account for the historical averages of the equity premium

and the risk-free rate.

At least two open questions remain. First, is the pricing kernel valid under a wider set of

conditions than for which it has been derived here? And, second, what additional asset pricing

implications of temporal risk aversion are there for the case of non-i:i:d: consumption growth? For

example, it seems interesting to investigate the e¤ect of long-run risk (Bansal and Yaron (2004))

in the presence of temporal risk aversion. I leave these questions for future research.

Appendix 1. Proof of Theorem 1

De�ne

��(z; �) � E[(z + f1� )�jz] (16)

Using (7), (10) and the assumption that gt is i:i:d:,

Et+1[x
�
T ] = (�

t+1c1�
t+1 )
���(zt+1; T � t� 1) (17)

so that, introducing a convenient normalization,

Et+1[x
�
T ]

(�t+1c1�
t+1 )
���(1; T � t� 1)

=
��(zt+1; T � t� 1)
��(1; T � t� 1)

Lemma 1, shown and demonstrated below, shows that zt+1 is asymptotically irrelevant to this

expression. Speci�cally, equation (22) of the lemma implies that lim�!1
��(zt+1;�)

��(1;�)
= 1. Hence,

lim
T!1

Et+1[x
�
T ]

(�t+1c1�
t+1 )
���(1; T � t� 1)

= 1 (18)

Next, since Et[x�T ] = Et[Et+1[x
�
T ]], we have, using (17) and a slightly di¤erent normalization,

Et[x
�
T ]

(�tc1�
t )���(1; T � t� 1)
= Et

"
~g�t+1

��(zt+1; T � t� 1)
��(1; T � t� 1)

#
(19)
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where I have introduced the following notation:

~gt � �g1�
t

Note that ~g�t+1 is an integrable random variable (speci�cally, exploiting the lognormal distribution

Et[j~g�t+1j] = Et[~g
�
t+1] = �� exp((
 � �)� + 0:5(
 � �)2�2) < 1). Moreover, since zt+1 � 1 by

de�nition (see (8)) and since � < 0,

0 <
��(zt+1; T � t� 1)
��(1; T � t� 1)

� 1

Thus, ~g�t+1
��(zt+1;T�t�1)
��(1;T�t�1) is a sequence (in T ) of integrable random variables with a well-de�ned

limit. The limit follows again from lemma 1, which implies

lim
T!1

 
~g�t+1

��(zt+1; T � t� 1)
��(1; T � t� 1)

!
= ~g�t+1

Hence, we can apply the dominated convergence theorem to this sequence:

lim
T!1

Et

"
~g�t+1

��(zt+1; T � t� 1)
��(1; T � t� 1)

#
= Et

"
lim
T!1

 
~g�t+1

��(zt+1; T � t� 1)
��(1; T � t� 1)

!#
= Et

h
~g�t+1

i
(20)

Combining equations (18), (19) and (20) yields

lim
T!1

Et+1[x
�
T ]

Et[x�T ]
= lim
T!1

0B@
Et+1[x�T ]

(�t+1c1�
t+1 )
���(1;T�t�1)

Et[x�T ]

(�tc1�
t )���(1;T�t�1)

(�t+1c1�
t+1 )
�

(�tc1�
t )�

1CA =
~g�t+1

Et
�
~g�t+1

� = g
��t+1

Et[g

��
t+1 ]

(21)

Finally, combining this with equation (6),

lim
T!1

MT
t+1 =

�g��t+1
Et[g


��
t+1 ]

which is the result stated in the theorem, equation (13). As mentioned, here Et[g

��
t+1 ] may be

replaced by E[g
��t+1 ] since g is i:i:d. Thus, it only remains to be shown that the following lemma is

in fact true:

Lemma 1 Under the conditions of theorem 1, for all z and z0 � 1,

lim
�!1

��(z0; �)

��(z; �)
= 1 (22)

and

lim
�!1

���1(z; �)

��(z; �)
= 0 (23)
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Proof of lemma 1. The proof proceeds in several steps.

1. [Upper bound on �] First, recall the de�nition

~gt � �g1�
t

Note that

ln ~gt � i:i:d:N(~�; ~�2) with ~� � ln� + (1� 
)� and ~� � j1� 
j�

We can write, in this notation,

��(z; �) = E[fz +��t=1�tv=1~gv)g�]

Since � < 0, and exploiting the i:i:d: assumption,

��(z; �) � E[f��v=1~gvg�] = (E[~g�])� = exp[(~�� + 0:5�2~�2)� ] (24)

Because assumption (12) implies that ~�+0:5�~�2 > 0 and since ��(z; �) > 0 and � < 0, lim�!1 ��(z; �) =

0. Thus, both the numerator and the denominator of �
�(z0;�)
��(z;�)

approach zero as � !1.

2. [Applying the mean value theorem] To proceed, di¤erentiate � with respect to z:

@��(z; �)=@z = �E[(z + f1� )
��1jz] = ����1(z; �)

z and z0 are arbitrary numbers weakly larger than 1, but without loss of generality, we can let

z0 � z (we can always relabel them since lim
�!1

��(z0;�)
��(z;�)

= 1 is equivalent to lim
�!1

��(z;�)

��(z0;�)
= 1.) By the

mean value theorem, for any � , there exists a �� 2 [z; z0], such that

��(z0; �) = ��(z; �) + (@��(�� ; �)=@z)(z
0 � z)

Combining these two equations,

��(z0; �)

��(z; �)
= 1 +

���1(�� ; �)

��(z; �)
�(z0 � z) (25)

Now, since z � �� and as ���1(z; �) is decreasing in z,

���1(�� ; �)

��(z; �)
� ���1(z; �)

��(z; �)

The goal now is to show that lim
�!1

���1(z;�)
��(z;�)

= 0. Since ���1(�� ;�)
��(z;�)

> 0, this would imply that

lim
�!1

���1(�� ;�)
��(z;�)

= 0 and, therefore, by (25), lim
�!1

��(z0;�)
��(z;�)

= 1.
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3. [Lower bound on �]13 To bound the ratio ���1(z; �)=��(z; �) from above, a lower bound for

��(z; �) is needed in addition to the upper bound. Using the notation from step 1, we can write

��(z; �) = E[fz+��t=1 exp(�tv=1 ln ~gv)g�]. Since ln ~gt � i:i:d:N(~�; ~�2), �tv=1 ln ~gv
d
= ~�t+ ~�St, where

St is the running sum of independent standard normals: St � �tv=1Xv where Xv are i:i:d: N(0; 1)

random variables. (The notation d
= stands for �is equal in distribution to�.) Thus,

��(z; �) = E[fz +��t=1 exp(~�t+ ~�St)g�]

Now,

��t=1 exp(~�t+ ~�St) � � exp[ max
1�t��;t2N

(~�t+ ~�St)]
d
= � exp[ max

1�t��;t2N
(~�t+ ~�Wt)]

� � exp[ max
0�t��;t2R

(~�t+ ~�Wt)]

where Wt is a standard Brownian motion. The second step exploits the equality in distribution

of St and Wt sampled at integer times, which follows from the properties of standard Brownian

motion. The last step follows from the fact that the max is taken over a larger set. Hence, since

� < 0,

��(z; �) � E[fz + � exp[ max
0�t��;t2R

(~�t+ ~�Wt)]g�]

Since max
0�t��;t2R

(~�t+ ~�Wt) � ~�0 + ~�W0 = 0, it follows that, for � � z, z � � � � exp[ max
0�t��;t2R

(~�t+

13A straightforward way to derive a lower bound is to apply Jensen�s inequality to �. Unfortunately, while

simpler, this leads to a weaker lower bound than the one derived in the proof, as will be shown below in this

footnote. This weaker lower bound does have the virtue of not relying on lognormality, so it is possible to

prove the main result without relying on lognormality, albeit under stronger su¢ cient conditions:

Since x! x� is a convex mapping (� < 0), Jensen�s inequality implies that

��(z; �) �
�
E[z + f1� jz]

��
=
�
z +

P�
s=1 (E[~g])

s�� = �z + E[~g]

E[~g]� 1((E[~g])
� � 1)

��
Thus, combining this with the upper bound,

���1(z; �)

��(z; �)
� (E[~g��1])��

z + E[~g]
E[~g]�1 ((E[~g])

� � 1)
��

It is straightforward to show that the right hand side goes to zero as � !1 if E[~g��1] < E[~g]�, in which case

lim
�!1

���1(z;�)
��(z;�)

= 0 follows and the proof goes through without lognormality (provided in addition that E[~g�] is

�nite). For the lognormal case, E[~g��1] < E[~g]� requires ~� > 0:5~�2(�2 � 3� + 1). Unfortunately, this condition

is rather easily violated.
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~�Wt)]. Therefore, for � � z,

��(z; �) � E[f2� exp[ max
0�t��;t2R

(~�t+ ~�Wt)]g�] = (2�)�E[exp[�~� max
0�t��;t2R

((~�=~�)t+Wt)]]

Standard results on Brownian motion, which are based on the re�ection principle, allow for the

evaluation of the expectation on the right-hand-side. Applying formula 1.1.3. of Borodin and

Salminen (2002, p. 250) yields, after some manipulations, for the expectation:

1

~�+ 0:5�~�2

�
(~�+ �~�2) exp[(�~�+ 0:5�2~�2)� ]�

�
~�+ �~�2

~�

p
�

�
+ ~��

�
� ~�
~�

p
�

��
where � denotes the cumulative distribution function of a standard normal (�(x) � Pr[N(0; 1) �

x]). The assumption (12) to the theorem implies that ~� + �~�2 > 0 and therefore also that ~� +

0:5�~�2 > 0, �
�
~�+�~�2

~�

p
�
�
> 0:5 and ~� > 0. Using this �nally yields the following lower bound for

�, for � � z :

��(z; �) � (2�)�
�
~�+ �~�2

2~�+ �~�2

�
exp[(�~�+ 0:5�2~�2)� ] (26)

4. [Showing that lim
�!1

���1(z;�)
��(z;�)

= 0 and lim
�!1

��(z0;�)
��(z;�)

= 1] Applying the lower and upper bounds

on � ((24) and (26)) yields, for � � z:

���1(z; �)

��(z; �)
� exp[(~�(� � 1) + 0:5(� � 1)2~�2)� ]

(2�)�
�
~�+�~�2

2~�+�~�2

�
exp[(�~�+ 0:5�2~�2)� ]

= (2�)��
�
2~�+ �~�2

~�+ �~�2

�
exp[�(~�+ (� � 0:5)~�2)� ]

Assumption (12) to the theorem states that ~� + (� � 0:5)~�2 > 0, so the right hand side of the

inequality goes to zero as � ! 1 (as the exponential factor dominates). Since ���1(z;�)
��(z;�)

� 0, this

implies that

lim
�!1

���1(z; �)

��(z; �)
= 0

This proves the second claim of the lemma, equation (23). Recalling the conclusion of step 2, it

follows that

lim
�!1

��(z0; �)

��(z; �)
= 1

proving the �rst claim of the lemma (22). QED.
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Appendix 2. Proof of Theorem 2

From equations (4), (7) and (16), and the assumption that gt is i:i:d:,

�ct@2EtU=(@ct)2
@EtU=@ct

= 
 + (�� 
)�
��1(zt; T � t)
��(zt; T � t)

Using the result in equation (23) of lemma 1 (see appendix 1), we immediately have

lim
T!1

�ct@2EtU=(@ct)2
@EtU=@ct

= 


QED.
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