Hall C Infrastructure Projects Update

- Outline
 - Targets
 - Input from tgt group
 - Polarimetry
 - Input from Dave G.
 - Some Other Stuff

Greg Smith

JLab

Jan. 2006

Target Upgrade- Basic Philosophy

- Need smaller SC for SHMS → new SC
- Need bigger smiles for Gep → new SC
 - Surprise → time now a factor
- Need bigger smiles for SANE/BETA too → new SC
- Qweak → new SC (building on existing sample SC)
- Want to improve reliability & servicibility
- Want to improve performance
 - Less current dependence
 - Higher power
 - Less vacuum motion
- Money more of a problem these days

Target Upgrade- The Plan

- Toss existing Hall C SC & tgts into storage
 - Keep intact as a deep spare option
 - Loops, cells, HXs, fans, heaters, lifter all stay in old SC in storage
- Build completely new SC & targets based on (latest) Hall A design
 - Can capture (steal) their spares this way:
 - Bellows, HXs, lifter, even some cells. Saves \$\$ & time.
 - New: fans, heaters, instrumentation, feedthroughs, etc.
 - Smaller SC Φ SHMS compatible. On-axis vacuum load. Larger smiles for Gep.
 - No rotation. Solid tgts hung below cryostack:
 - 4-5 tgts ~ 25 x 25 mm², plus 3 optics tgts

Postponed

(until money and time are both available)

- Re-design of cell blocks to eliminate flow restriction causing large Δρ/ρ(I_{beam})
 - Note this will almost certainly require going to 2 loops (with 2 tgts each) or 3 loops (with 1 tgt each)
- Improved fan motors
- HX re-design to decouple fan from HX
 - Get fan out of HX central bore
- Improved impellers (bigger! v_{flow} ~ r²)
- Common spares
 - For now A spares C and C spares A

New Hall C Scattering Chamber

New Scattering Chamber

Hall A:

Hall C (proposed):

- Inner diam. ~ 104 cm
- Height ~ 120 cm
- SOS/SHMS smile:
 - $-36 \text{ cm high } (\sim \pm 20^{\circ})$
 - $-3^{\circ} < \theta < 118^{\circ}$
- HMS smile:
 - -8.5 cm high ($\sim \pm 4.7^{\circ}$)
 - $-5.5^{\circ} < \theta < 118^{\circ}$

The Guts of it

Lifter:

Single motor, -Chain drive, -

3 axis,

bellows

Hall A's current (waterfall) config.

From behind

Gas I/O at an extreme back angle to keep clear of spectrometer acceptance

beam

Hall A machined cells & cell blocks

What you will notice

- Nothing, hopefully....
 - Same control system
 - Same cell options as now, plus waterfall
 - 3 loops each with 15 & 4 cm cells
 - 4-5 solid tgts, plus optics tgts
 - Same basic 3-axis, single motor lifter mech.
 - No solid tgt rotator (whew!)
 - Less vacuum motion & corresponding survey issues
- Should have fewer IOC reboots
 - Because we will move the tgt IOC out of the hall
- No retraining should be necessary!

Acc. Maintenance Breaks

- Past:
 - Usually we staff the cryotgt over these 4 day breaks
 - Sometimes we warm up in spite of thermal stress
 - For long breaks we always warm up (and will continue to do so)
- Future: Staffing short breaks sucks!
 - Proposal: Replace LH2 with cold He gas
 - Stay below 30K to avoid transition to warm return
 - Maintain trickle flow of coolant
 - Relieves us of our staffing obligation
 - Downsides:
 - Going sub-atmospheric can introduce ice
 - While unstaffed the target could warm up
 - To recondense again takes time & some (daytime) preparation

Basel/Hall C Møller Upgrade

From Dave G:

 Existing Hall C Møller can do 1% measurements (stat) in a few minutes

- Limitations
 - -Maximum current ~ 10 μA . At higher currents the Fe target depolarizes due to target heating
 - -Measurement is destructive
- Goals for and upgraded Møller
 - Measure beam polarization at 100 μ A or higher
 - Make measurement quasi-continuously

Kicker Magnet for High Current Møller Polarimetry

- We can overcome target heating effects by using a fast kicker magnet to scan the electron beam across an iron wire or strip target
- Kicker needs to move beam quickly and at low duty cycle to minimize time on iron target and beam heating
- First generation kicker was installed in Fall 2003

From Chen Yan:

Kicker + Møller Layout

- · Kicker located upstream of Møller target in Hall C arc
- Beam excursion ~ 1-2 mm at target
- The kick angle is small and the beam optics are configured to allow beam to continue cleanly to the dump

Kicker Progress to date

·1µ foil

From Dave G:

• Fall '03: Kicker + wire

•25µ wire too thick
•Inst. Rates too hi
•Established principle
•Got to 20 µA

80 75 ©₇₀ No kicker, 4 μm foil ▲ Kicker on, 4 μm foil 65 Kicker on, wire target $(I_e \times f_{kick} = 2000)$ 60 5 10 15 20 25 0 Current (µA)

• Fall '04: Kicker + Foil

Current (µA)

Future Plans: Optimized Kicker with "Half-Target"

From Dave G:

Modify kicker:

 The ideal kicker would allow the beam to dwell on the target for a few μs rather than continuously move across the foil

Improve target:

 The 1 μm target is crucial, but we need to improve the mounting scheme to avoid wrinkles and deformations

Kicker R&D

Kicker Current Waveform from Pearson Probe

Base width ~ 600 ns, Reputation ~ 5 kHz, Ipeak ~ 100 A

A1 0,8 U

From Chen Yan:

Current flow

Magnetic field

"Two turn" kicker – $2 \mu s$ total dwell time!

Quasi-flat top kicker interval

Møller + Kicker Performance

Configuration	Kick width achieved	Precision	Max. Current
Nominal	-	<1%	2 μΑ
Prototype I	20 μs	few %	20 μΑ
Prototype II	10 μs	few %	40 μΑ
G0 Bkwd. (2006)	3.5-4 μs	Required:2% Goal:1%	80 μΑ
Q _{Weak}	2 μs	Required:1% Goal:1%	180 μΑ

Kicker Summary

- Fast kicker magnet and thin Fe foil target will allow very precise (1% syst.) msrmnts of P_{beam} at full beam current
- R&D progressing well:
 - The 2 test runs we've had so far have been invaluable in getting the system ready for prime time
 - Next round of tests during commissioning for 60 Bkwrd
 - · New 1µ half-moon foil target
 - Improved (1 µs, step function) kicker
 - High current tests with good statistics
- Our goal:
 - 1% polarization measurements at ~80 μA during GO Backward
 - 1% polarization measurements at 180 μA during Q_{weak}

Hall C Compton Polarimeter

From Dave:

- Chicane will be designed at Bates
 - MOU in final stages
 - Chicane PR this FY?
- Laser will be a pulsed green laser
 - PR as late as possible → cheaper & better that way
- Yerevan has built a candidate photon detector
 - Working prototype is lead-tungstate
 - Needs to be characterized with a tagged photon beam
- TRIUMF/UManitoba NSERC grant request submitted to build a Si μ-strip e-detection arm
- Will go between legs of Moller
 - 1st chicane magnet for pol. tgt expts will move downstream & needs to be beefed up
- Installation work needs to begin at next changeover
 - − ~ 6 months of work!

Compton Chicane and Beamline

Beamline

- Cavity BPMs and BCM now available
 - Electronics too now...
 - Aka "G0 long girder"
 - Also with striplines, OTR, etc.
- Ion Chamber electronics being moved to our access tunnel
 - Big grey panel just past key room
- Massive beamline rework in Moller tunnel being planned for upcoming Compton installation

Electronics

From Steve:

- F1 TDC experience during HKS was bad
 - TDCs would crash/freeze
 - Radiation? Hall B has not reported problems with them (just fictitious particles...)
 - Firmware? (upgrades coming)
 - Will learn from upcoming Hall A Gep expt.
 - Spectrometers stay on FB
 - F1's for 3rd arm stuff only
- DAQ test stand in EEL for small detector tests

Electrical Infrastructure

From Bill:

- New 2.0 MVA transformer bringing power into hall
 - Installed (already used by HKS)
- New DC power supply ordered
 - Portable, general purpose
 - Rated for 9500 A, 170 V
- Arc flash calc's. done

Infrastructure Infrastructure

- New 4T crane above dump entrance
 - To facilitate shielding placement outside nominal crane radius
- A-can/Bayonet can access platform under construction
 - To facilitate stinging of U-tubes
- Raised platform & ramps in SOS area
 - Meant to be used to move HKS dipole to side
 - But the dipole has not moved
 - Facilitates jig & forklift access
 - For now locks SOS to ~120 degrees

A-can Platform going in now

ramps

Ramps & Rails

Rail missing- SOS frozen

END