MST Program Plans

S.C. Prager Budget Planning Meeting March, 2008

MST Collaborations

- UCLA FIR interferometry/polarimetry
- RPI Heavy ion beam probe
- Novosibirsk neutral beam diagnostics and heating, MSE on GDT
- ORNL pellet injection
- RFX, Italy SXR, PPCD, OFCD
- RELAX, Japan PPCD, NBI, Thomson scattering
- T2, Stockholm PPCD expts
- University of Strathclyde Atomic data modeling
- TechX lower hybrid modeling
- CompX Fokker Planck modeling
- Wheaton College CHERS etc
- Ohio State University Fast Thomson scattering
- University of Washington analysis of fast particle effects
- UCSD/Decysive RFP systems study
- LANL theory and CMSO
- SAIC theory and CMSO
- U. Chicago CMSO
- Princeton CMSO
- Swarthmore CMSO
- LLNL CMSO
- U New Hampshire CMSO
- HSX, Pegasus Thom scat, CHERS, HXR detection, plasma guns
- Astronomy Dept CMSO

<u>Outline</u>

- Major program goals and plans
- FY 10 budget cases: decrement, full use
- Upcoming programmatic opportunities

MST Program Goals

- Advance specific fusion physics issues
- Advance the RFP reactor configuration
- Link fusion energy science to astrophysics (magnetic self-organization)

MST contributes centrally to half of the topical questions from the priorities panel report

MST also makes contributions to enabling technology

RF antennas

pellet injectors

neutral beam sources

diagnostics (HIBP, FIR polarimetry and interferometry, Rutherford scattering, MSE, fast Thomson scattering, fast CHERS)

Issues for development of RFP configuration

- Confinement
- Beta
- Resistive wall instabilities
- Sustainment

Issues for development of RFP configuration

Issues for development of RFP configuration

for these three topics, major advances in past decade, that introduce new regimes for fusion physics

Confinement improvement

Method:

improve confinement by current profile control, control current (transiently) by programming loop voltages

Earlier results up to 0.4 MA:

- Energy confinement improves tenfold
- Electron temperature ~ 1 keV (increase ~ 3-fold from standard case)
- But, ions remain cold (~ 0.3 keV)

Recent results

 Ion temperature increased to 1 keV (by confining heat produced during reconnection event)

 Positive confinement trend with plasma current (at 0.5 MA, electron temperature ~ 2 keV) Simultaneous favorable electron and ion confinement

Simultaneous favorable electron and ion confinement

Positive trend with plasma current

current	Те	β	τ _e
0.2 MA	0.6 keV	15%	~ 10 ms
0.5 MA	2.0 keV	10%	> 8 ms

absence of auxiliary heating

measurement limitation Thus, simultaneously obtain

- Good confinement of
 - thermal electrons
 - thermal ions
 - large orbit ions (shown earlier by NBI)
 - energetic electrons (shown earlier by FP analysis)
- High beta (~10%)

But,

 Confinement improvement is transient (limited by transience of current profile control technique)

 Predictive physics understanding not yet in hand can magnetic transport be entirely suppressed? what are properties of electrostatic transport (new regime: q < 1 dominated by electrostatic transport)

Directions for FY 10

- Optimize and sustain current profile control
- Diagnose limits and causes of transport in new regime

Optimizing current profile control

- Improved inductive programming (programmable power supply for toroidal loop voltage)
- RF current drive (lower hybrid, electron Bernstein waves)

Programmable power supply

To more flexibly program loop voltages

- FY 08 begin operation of power supply for for poloidal loop voltage
- FY 09 use for confinement optimization, use for oscillating field current drive
- FY 10 design supply for toroidal loop voltage control (requires additional resources)

RF Current Drive

Lower hybrid wave injection (proven physics in tokamak, antenna challenges for RFP)

RF Current Drive

Lower hybrid wave injection (proven physics in tokamak, antenna challenges for RFP)

Electron Bernstein wave

(antennas are simple, physics not well-established)

Both techniques evolving, presently at 200 kW power level

Hard x-ray generation with LH waves

Lower hybrid plans

FY 08 Examine HXR localization, upgrade power to 0.4 MW

FY 09 Assess antenna, HXR at 0.4 MW

FY 10 complete physics assessment at 0.4 MW, begin upgrade to higher power (contingent on results)

EBW plans

- FY 08 Characterize HXR, SXR emission, investigate power upgrade with in-house tubes (~ 1 MW)
- FY 09 Perform coupling tests at higher frequency (5.5 GHz vs 3.6 GHz)
- FY 10 Begin assembly of higher power system (~ 1MW) (contingent on results)

RF is the most resource-limited project on MST

<u>Understanding transport with improved diagnostics</u>

Improved equilibrium profiles to determine diffusivity

- Fast Thomson scattering for $T_e(t)$
- Laser Cotton-Mouton effect for B_{toroidal} (UCLA)
- Extension of CHERS, TS to higher temperature
- Extension of CHERS, MSE to more spatial points

Measuring electrostatic transport

• Heavy ion beam probe (RPI)

Fast Thomson scattering for electron dynamics

Measure time dependence of T_e , n_e

- at 250 kHz (in 20 30 pulse train)
- spatial resolution of 2 cm

Laser development in collaboration with Ohio State University

<u>Schedule for</u> <u>Fast Thomson scattering</u>

FY 08 Being assembled

- FY 09 Begin measurement of equilibrium changes, and $\rm T_e$ fluctuations
- FY 10 Obtain improved thermal diffusivity, investigate fluctuation-induced energy flux

Cost-shared with CMSO

Heavy Ion Beam Probe (RPI)

Goals: measure E and electrostatic transport in time-varying equilibriaPast: measured transport in standard plasmasNext: measure in improved confinement

<u>HIBP plans</u>

FY 08 Begin n, E measurements with upgraded system

- FY 09 Measure n, E (equilibrium, fluctuating) in improved confinement plasmas
- FY 10 Determine particle flux from electrostatic fluctuations

Challenging beta limits with pellet injection

density quadruples with pellet injection

exceeding MHD limits without apparent limit

Exceeding linear MHD stability limits

Further increase beta

- Optimization of pellets
- Neutral beam injection

Testing neutral beam injection

0.6 MW, 1 ms Novosibirsk

Demonstrated favorable confinement of energetic ions

Thus, can use NBI for beta enhancement, momentum input

next step in neutral beam injection

1 MW, 20 ms

- FY 08 Complete construction
- FY 09 Begin experiments
- FY 10 Assess effect on beta and stability

Example of magnetic self-organization

Momentum transport

Reconnection events

Rotation profile flattens

faster than can be explained by collisions

Lorentz force measured in MST core

Faraday rotation, UCLA

must be another large force present

Measurement of forces at plasma edge

Maxwell and Reynolds stresses large and opposite, generated by tearing instability

Links to astrophysics

Momentum transport is major issue for astrophysics, Flow-driven instability is the "standard model"

We are beginning to investigate the applicability of current-driven instability to

- Magnetized disks (e.g., young stars)
- Magnetized extragalactic jets

Next steps

- Improved flow measurements (multi-point CHERS)
- Investigate transport from stochastic fields (Faraday rotation for magnetic fluctuations)
- Examine two-fluid features (laser Fizeau effect for electron flow)

Laser Fizeau Effect (UCLA)

• For electron flow velocity (for electron transport, Hall reconnection....)

• Measure phase shift due to flow, with counterpropagating lasers

Fizeau effect plans

FY 08	develop the technique
FY 09	determine feasibility
FY 10	measure fluctuating v_e and j_e

MST Utilization

	run weeks (45)	
	FY 08 utilization	Appropriate Utilization
Full diagnostic set	7	16
Reduced diagnostic set	38	29

~ at staff limit

FY 09 Decrement Case (-10%)

- Eliminate CHERS upgrades
- Eliminate postdoc for CHERS upgrade
- Eliminate technical staff member, delaying Thomson scattering mods
- Eliminate MSE extension to half-radius
- Delay construction of 0.4 MW lower hybrid system

FY 10 Decrement Case (-10%)

- Delay completion of CHERS upgrade
- Eliminate next step in lower hybrid current drive
- Eliminate construction of additional neutral beam

Full Use for FY 09 or 10 (+\$2.9M)

Additions beyond level budget

- Begin construction of programmable power supply for toroidal loop voltage (for confinement optimization, OFCD, improved flat-top)
- Construct active feedback system for toroidal field error control
- Add RF physicists (2) and engineers (2) for more rapid development and physics studies
- Add technical and physics staff for full utilization

Upcoming transitions

Recompeting CMSO

Moving beyond MST operational limits

<u>The Center for Magnetic Self-Organization</u> <u>in Laboratory and Astrophysical Plasmas</u> (CMSO)

- An NSF Physics Frontier Center
- An NSF/DOE partnership
- Links fusion to astrophysics, yields new fusion science results
- Institutions : Wisconsin, Princeton, U. Chicago, LANL, U. New Hampshire, SAIC, Swarthmore, LLNL

current NSF funding : \$2.25M/yr for 5 years, significant NSF support for plasmas and fusion

The Status

- Presently recompeting for additional 5 years
- Passed through pre-proposal stage to proposal stage (19 out of 58 pre-proposals)

OFES support is crucial and highly leveraged

Moving beyond MST operational limits

Positive confinement trends with current, Increase current

Effect of auxiliary power (OFCD, beams) > Increase pulse length

Both current and pulse length are limited by volt-seconds

One possible route: increase iron core area, mechanically complex

One possible route: increase iron core area, mechanically complex move to outside a=52cm MST iron core B_T flange

we are beginning to explore this option, and other possible next steps for the RFP program