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Diagnosis of the Small Round Blue Cell Tumors
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The small round blue cell tumors of childhood, which
include neuroblastoma, rhabdomyosarcoma, non-
Hodgkin’s lymphoma, and the Ewing’s family of tu-
mors, are so called because of their similar appear-
ance on routine histology. Using cDNA microarray
gene expression profiles and artificial neural net-
works (ANNs), we previously identified 93 genes ca-
pable of diagnosing these cancers. Using a subset of
these, together with some additional genes (total 39),
we developed a multiplex polymerase chain reaction
(PCR) assay to diagnose these cancer types. Blinded
testing of 96 new samples (26 Ewing’s family of tu-
mors, 29 rhabdomyosarcomas, 24 neuroblastomas,
and 17 lymphomas) using ANNs in a complete leave-
one-out analysis demonstrated that all except one
sample were accurately diagnosed as their respective
category. Moreover, using an ANN-based gene mini-
mization strategy in a separate analysis, we found
that the top 31 genes could correctly diagnose all 96
tumors. Our results suggest that this molecular test
based on a multiplex PCR reaction may assist the
physician in the rapid confirmation of the diagnosis
of these cancers. (J Mol Diagn 2007, 9:80–88; DOI:
10.2353/jmoldx.2007.060111)

The highly malignant small round blue cell tumors (SR-
BCTs) occur in the pediatric, adolescent, and young
adult populations in some cases. Accurate diagnosis of
these cancers, which include neuroblastoma (NB), rhab-
domyosarcoma (RMS), non-Hodgkin’s lymphoma, and
the Ewing’s family of tumors (EWS), is essential because
the treatment options, responses to therapy, and prog-
noses vary widely depending on the diagnosis. As their
name implies, these cancers are difficult to distinguish by
light microscopy, and currently no single test can pre-
cisely distinguish these cancers. To confirm the diagno-

sis, pathologists rely on several techniques, including
immunohistochemistry,1 cytogenetics, interphase fluo-
rescence in situ hybridization,2 and reverse transcription-
polymerase chain reaction (RT-PCR).3 Immunohisto-
chemistry for individual protein markers is used to
establish the diagnosis in many instances, but it can only
examine a single protein at a time. Molecular techniques,
such as RT-PCR of tumor-specific translocations, are
used for the diagnosis of EWS containing the EWS-FLI1
and alveolar rhabdomyosarcoma containing the PAX3-
FKHR, but molecular markers do not always provide a
definitive diagnosis because of either technical difficul-
ties or the presence of variant translocations. Using
cDNA microarray gene expression profiling and artificial
neural networks (ANNs), we previously identified 93
genes as gene expression signature that was capable of
presenting these SRBCTs to specific diagnostic catego-
ries.4 In this study, we have developed a reliable multi-
plex RT-PCR assay for the rapid diagnosis of these can-
cers using genes known to be differentially expressed in
these cancers.

Materials and Methods

Tumor Samples

The source and other information for 96 tumor samples
used in this study are described in Table 1. All of the
original histological diagnoses were made at tertiary hos-
pitals, which have reference diagnostic laboratories with
extensive experience in the diagnosis of pediatric can-
cers. The EWSs (n � 26) had a spectrum of the expected
translocations containing both primary tumor (labeled as
EWS_T in Table 1) and xenografts derived from cell lines
(EWS_X), and the RMSs (n � 29) were a mixture of
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alveolar RMS containing the PAX3-FKHR translocation
(RMS_A), embryonal RMS (RMS_E), and botryoid sub-
type (RMS_B). The NBs (n � 24) contained both MYCN
amplified and single-copy samples. The lymphoma (n �
17) contained several different types as listed in Table 1.
RNA extraction was described previously.4

Primer Design

The genes and primers used in the multiplex RT-PCR
reaction are described in Table 2. Each reverse primer is
chimeric with the 5� end containing a 19-nucleotide uni-
versal priming sequence and the 3� end containing the
gene-specific sequence (typically around 20 nucleo-
tides). Each forward primer is chimeric with the 5� end
containing a second, 18-nucleotide universal forward
priming sequence and the 3� end containing the gene-
specific sequence. Each of the primer pairs was de-
signed to yield PCR products 4 to 7 bp apart, ranging
from 137 to 300 bp. Primer design and multiplex optimi-
zation was performed using GeXP Express Profiler,
Primer Design module (Beckman, Fullerton, CA). Primers
were also designed to amplify from a kanamycin RNA
transcript that is spiked into each reaction as an external
control. Included in the PCR reaction are the two univer-
sal primers that are homologous to the 5� ends of the
chimeric primers with the forward universal primer carry-
ing the D4 dye label. The universal primers are included
in the 5� GeXP PCR buffer.

Multiplex RT-PCR

The method is summarized in Figure 1. The gene expres-
sion patterns of multiple genes were examined from each of
the above samples to the GenomeLab GeXP Analysis Sys-
tem Multiplex RT-PCR assay (Beckman). For each reaction,
3 �l of RNA was mixed with 1.5 �l of 10� DNase Buffer
(Ambion, Austin, TX), 0.5 �l of DNase (Ambion), and 10 �l
of dH2O and incubated at 37°C for 20 minutes. Then, 1 �l of
25 mmol/L ethylenediamine tetraacetic acid was added to
each reaction and was incubated at 70°C for 5 minutes. The
RNA samples were then diluted down to a concentration of
5 ng/�l. The chimeric primers were divided into two gene
sets (PCR set in Table 2), and the multiplex RT-PCR was
done separately for each set. In brief, 25 ng of RNA from
each sample was reverse transcribed with both sets of
chimeric reverse primers in individual reactions. The re-
verse transcription reactions were performed according to
GeXP Start kit protocol using the following kit reagents: 5�
RT Master Mix buffer, 1 �l of Moloney murine leukemia virus
reverse transcriptase, and KanR/RI reagent, an internal re-
action integrity control. The concentration of each primer
varied from 0.003 to 0.05 �mol/L to adjust the final signals of
each amplified gene. The reverse transcription reactions
were incubated for 1 minute at 48°C, 5 minutes at 37°C, 60
minutes at 42°C, and then 5 minutes at 95°C. The 20-�l
reactions were performed in a Thermo-Fast 96-well PCR
Detection Plate (ABgene, Epsom, Surrey, UK). GeXP Multi-
plex PCR was then performed on each sample as follows.
An aliquot of 10 �l of cDNA from each above reverse

transcription reaction was added to the wells of a new
96-well PCR plate and 10 �l of a PCR reaction mix contain-
ing the each set of chimeric forward primers at 2 �mol/L
each (multiplex forward primer mixtures), GeXP 5� PCR
buffer Master Mix, which contains the D4 dye-labeled for-
ward universal primer and unlabeled reverse universal
primer, 7 mmol/L MgCl2 (USB, Cleveland, OH), and 3.5
units of Taq Polymerase (ABgene). The reactions were first
subjected to 95°C for 10 minutes followed by 35 PCR cy-
cles. Each PCR cycle consisted of the following conditions:
94°C for 30 seconds, 55°C for 30 seconds, and 68°C for 1
minute. The PCR products for each set were then prepared
for capillary electrophoresis by adding 1 �l of each reaction
to its corresponding well in a Beckman 96-well CEQ elec-
trophoresis plate (Beckman) containing 39 �l of CEQ Sam-
ple Loading Solution (Beckman) and 0.5 �l of CEQ DNA
Size Standard 400 (Beckman) per each reaction. The sam-
ples were mixed and placed in a GeXP Genetic Analysis
System for capillary electrophoresis and fragment size anal-
ysis. The fragment results were analyzed on the eXpress
Analysis module of the GeXP Genetic Analysis System. This
software associates each PCR product with its correspond-
ing gene and reports its peak area.

Data Analysis

We have chosen the housekeeping gene PPIA as the con-
trol gene.5 The gene expression data obtained from multi-
plex RT-PCR were normalized by dividing the peak area
result of each gene by the peak area result of PPIA and
were then log2-transformed. Because there are two multi-
plex assays for each experiment, we combined the normal-
ized data from both assays. For ANNs, we used feed-
forward resilient back-propagation multilayer perceptron
artificial neural networks6 with three layers: an input layer of
the normalized expression ratio data, a hidden layer with
three nodes, and an output layer generating a committee
vote that discriminates four classes (EWS, RMS, NB, and
lymphoma; Figure 2A). For each diagnostic category, each
ANN model gave an output between 0 (not this category)
and 1 (this category). Average artificial neural network com-
mittee votes were used to classify samples. The sample is
classified as a particular cancer if it receives the highest
committee vote for that cancer. We performed a leave-one-
out prediction strategy, where we left out each sample (of
the 96 unique samples) one time during the training of
artificial neural networks and tested it as an independent
sample to predict the diagnosis.

Results

Development of Multiplex RT-PCR Assay and
Gene Selection

We developed the assay that combined the multiplex RT-
PCR and fluorescence capillary electrophoresis techniques
as illustrated in Figure 1. Two types of primers were de-
signed for multiplex PCR amplification: chimeric primers
and universal primers (see primer design in Materials and
Methods for details). After reverse transcription of RNA, the
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Table 1. Tumor Sample Information and ANN Diagnosis Prediction

Samples ANN diagnosis Histological diagnosis Source label Source

ANN committee vote

LymphomaEWS RMS NB

EWS_T_1 EWS EWS 9512P350SP3 CHTN 0.96 0.03 0.03 0.04
EWS_T_2 EWS EWS 9601P007SP1 CHTN 0.91 0.10 0.02 0.04
EWS_T_3 EWS EWS 9607P075 CHTN 0.96 0.02 0.03 0.04
EWS_T_4 EWS EWS 9704P013 CHTN 0.96 0.03 0.03 0.03
EWS_T_5 EWS EWS 9706P044 CHTN 0.96 0.03 0.04 0.03
EWS_T_6 EWS EWS 9708P076 CHTN 0.96 0.02 0.06 0.03
EWS_T_7 EWS EWS 9810P202 CHTN 0.95 0.03 0.02 0.07
EWS_T_8 EWS EWS 9904P6008 CHTN 0.94 0.06 0.02 0.04
EWS_T_9 EWS EWS 9910P6003 CHTN 0.95 0.02 0.06 0.05
EWS_T_10 EWS EWS 740987 CHTN 0.95 0.03 0.03 0.05
EWS_T_11 EWS EWS 750880 CHTN 0.93 0.03 0.06 0.02
EWS_T_12 EWS EWS 753118 CHTN 0.94 0.03 0.04 0.04
EWS_T_13 EWS EWS 453034 CHTN 0.97 0.03 0.03 0.03
EWS_T_14 EWS EWS 718336 CHTN 0.96 0.02 0.04 0.03
EWS_T_15 EWS EWS 520645 CHTN 0.94 0.05 0.04 0.02
EWS_T_16 EWS EWS 492359 CHTN 0.95 0.07 0.02 0.03
EWS_T_17 EWS EWS 682034 CHTN 0.95 0.02 0.05 0.04
EWS_T_18 EWS EWS 614795 CHTN 0.96 0.03 0.03 0.03
EWS_T_19 EWS EWS 98-10-A040A CHTN 0.91 0.06 0.03 0.03
EWS_X_1 EWS EWS xenograft CB-AGPN CHLA 0.90 0.12 0.05 0.03
EWS_X_2 EWS EWS xenograft CHP-100 CHLA 0.90 0.06 0.04 0.10
EWS_X_3 EWS EWS xenograft SK-N-MC CHLA 0.95 0.03 0.03 0.05
EWS_X_4 EWS EWS xenograft TC-268 CHLA 0.93 0.02 0.07 0.09
EWS_X_5 EWS EWS xenograft TC-32 CHLA 0.96 0.02 0.11 0.05
EWS_X_6 EWS EWS xenograft TC-71 CHLA 0.93 0.04 0.03 0.05
EWS_X_7 EWS EWS xenograft SK-PN-DW CHLA 0.87 0.03 0.08 0.04
RMS_A_1 RMS ARMS RH4 SJCRH 0.04 0.97 0.03 0.03
RMS_A_2 RMS ARMS RH30 SJCRH 0.01 0.93 0.15 0.07
RMS_E_3 RMS ERMS RD SJCRH 0.05 0.95 0.03 0.03
RMS_A_4 RMS ARMS 200002P2054 CHTN 0.03 0.97 0.04 0.03
RMS_A_5 RMS ARMS 200002P2065 CHTN 0.03 0.97 0.03 0.03
RMS_E_6 RMS ERMS 200003P2080 CHTN 0.03 0.97 0.03 0.04
RMS_A_7 RMS ARMS 200003P4067 CHTN 0.03 0.97 0.03 0.03
RMS_A_8 RMS ARMS 200004P2174 CHTN 0.03 0.97 0.03 0.03
RMS_E_9 RMS ERMS 9911P1241 CHTN 0.04 0.96 0.03 0.03
RMS_A_10 RMS ARMS 9709P144 CHTN 0.04 0.96 0.02 0.05
RMS_A_11 RMS ARMS 200008P6027 CHTN 0.02 0.95 0.05 0.11
RMS_A_12 RMS ARMS 200009P4233 CHTN 0.02 0.96 0.05 0.03
RMS_A_13 RMS ARMS 200010P1258 CHTN 0.07 0.95 0.02 0.03
RMS_E_14 RMS ERMS 200104P4055 CHTN 0.03 0.97 0.03 0.03
RMS_E_15 RMS ERMS 9701P126 CHTN 0.06 0.94 0.04 0.03
RMS_B_16 RMS BRMS 9704P209 CHTN 0.03 0.97 0.03 0.03
RMS_E_17 EWS ERMS 200004P2015 CHTN 0.49 0.30 0.18 0.01
RMS_A_18 RMS ARMS 200006P2010 CHTN 0.04 0.97 0.03 0.03
RMS_A_19 RMS ARMS 200006P2010 CHTN 0.03 0.97 0.03 0.03
RMS_A_20 RMS ARMS 200007P1049 CHTN 0.05 0.97 0.03 0.03
RMS_A_21 RMS ARMS 200007P1049 CHTN 0.03 0.97 0.03 0.04
RMS_E_22 RMS ERMS 9609P032 CHTN 0.03 0.96 0.03 0.05
RMS_A_23 RMS ARMS 9807P117 CHTN 0.08 0.95 0.02 0.05
RMS_A_24 RMS ARMS 9807P117 CHTN 0.02 0.96 0.04 0.05
RMS_A_25 RMS ARMS 9807P332 CHTN 0.03 0.97 0.04 0.03
RMS_A_26 RMS ARMS 9808P189 CHTN 0.04 0.95 0.04 0.03
RMS_E_27 RMS ERMS 9705P060 CHTN 0.10 0.84 0.04 0.04
RMS_B_28 RMS BRMS 9809P631 CHTN 0.03 0.96 0.03 0.03
RMS_A_29 RMS ARMS 9903P605 CHTN 0.04 0.97 0.03 0.03
NB_1 NB NB 99-12-P2020 CHTN 0.03 0.04 0.96 0.03
NB_2 NB NB 2000-03-P1273 CHTN 0.03 0.03 0.96 0.06
NB_3 NB NB 2000-03-P2226 CHTN 0.03 0.03 0.97 0.03
NB_4 NB NB 2000-04-P2103X CHTN 0.03 0.04 0.96 0.03
NB_5 NB NB 2000-05-P4140 CHTN 0.04 0.03 0.97 0.04
NB_6 NB NB 2000-08-P1148 CHTN 0.04 0.04 0.96 0.03
NB_7 NB NB 2000-09-P4042 CHTN 0.03 0.03 0.97 0.03
NB_8 NB NB 2000-10-P1300 CHTN 0.04 0.03 0.97 0.03
NB_9 NB NB 2000-12-P4028 CHTN 0.04 0.04 0.97 0.03
NB_10 NB NB 2001-02-P1214 CHTN 0.04 0.03 0.97 0.03
NB_11 NB NB 2001-03-P8006 CHTN 0.05 0.02 0.96 0.06
NB_12 NB NB 2001-05-P8013 CHTN 0.04 0.03 0.97 0.03
NB_13 NB NB 2001-05-P8041 CHTN 0.04 0.03 0.97 0.03
NB_14 NB NB 2001-06-P8007 CHTN 0.04 0.04 0.96 0.03

(Table continues)
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chimeric primers containing gene-specific sequence and
universal primer sequence are used at the first stage of
amplification. The second stage converts to use one pair of
universal primers for the multiplex amplification (Figure 1A).
The obtained mixture of amplicons was then analyzed using
fluorescence capillary electrophoresis to identify the peak
location (gene identity) and peak fluorescence intensity
(gene expression level) (Figure 1B). We show here an ex-
ample of comparative chromatograms of four different cat-
egories of tumors (one in each category) from the one
multiplex assay (Figure 1C). For most of the genes (peak
location), we observed the differential gene expression
(peak area).

We have previously used cDNA microarray gene ex-
pression profiling and ANN to identify 93 genes capable
of diagnosing the SRBCTs to specific diagnostic catego-
ries.4 A subset of these genes (n � 34), which are spe-
cific to each diagnostic category, were selected for mul-
tiplex RT-PCR as seen in Table 2. In addition, several
genes (n � 5) differentially expressed in NB tumors and
normal tissues from Son et al7 and an unpublished result
were also included in the assay (Table 2).

Diagnostic Classification

We applied ANN models to diagnose and classify tumors
in each of the four SRBCT categories and used gene-
expression data from multiplex RT-PCR results contain-

ing 39 genes of all 96 samples (26 EWSs, 29 RMSs, 24
NBs, and 17 lymphomas) as inputs for ANN as shown in
Figure 2A. We performed a leave-one-out prediction
strategy, where we left out each sample (of the 96 sam-
ples) one time during the training of artificial neural net-
works and tested it as an independent sample to predict
the diagnostic category of tumors. A sample is classified
to a diagnostic category if it receives the highest vote for
that category, and because the classifier has only four
possible outputs, all samples will be classified to one of
the four categories. We found that the artificial neural
networks correctly predicted 95 of 96 samples except
one RMS sample, which was misclassified to EWS (Fig-
ure 2B; Table 1). The sensitivity of the ANN models
(leave-one-out strategy) for diagnostic classification was
96.6% for RMS and 100% for EWS, NB, and lymphoma;
the specificity was 98.6% for EWS and 100% for the rest
of categories; the positive predictive value was 96.3% for
EWS and 100% for others; the negative predictive value
was 98.5% for RMS and 100% for the rest of categories
(Table 3).

Minimization of Genes Used for Diagnostic
Assay

To identify the optimal set of genes, resulting in minimal
classification errors that construct the final diagnostic

Table 1. Continued

Samples ANN diagnosis Histological diagnosis Source label Source

ANN committee vote

LymphomaEWS RMS NB

NB_15 NB NB 2001-10-P6139 CHTN 0.05 0.02 0.95 0.07
NB_16 NB NB 2001-12-P4075 CHTN 0.05 0.03 0.97 0.03
NB_17 NB NB 2002-07-P6055 CHTN 0.05 0.03 0.97 0.03
NB_s18 NB NB 2002-07-P6098 CHTN 0.03 0.03 0.97 0.04
NB_19 NB NB 2002-07-P6111 CHTN 0.02 0.04 0.96 0.05
NB_20 NB NB 2002-07-P6120 CHTN 0.03 0.03 0.96 0.04
NB_21 NB NB 96-04-P328 CHTN 0.04 0.04 0.96 0.03
NB_22 NB NB 0000-07-P6112 CHTN 0.04 0.04 0.96 0.03
NB_23 NB NB 0000-07-P9394 CHTN 0.04 0.03 0.96 0.03
NB_24 NB NB 0000-07-P9404 CHTN 0.04 0.03 0.97 0.03
Lymph_1 Lymph BL 9809P1009 CHTN 0.03 0.05 0.03 0.96
Lymph_2 Lymph BL 9903P903 CHTN 0.03 0.07 0.04 0.95
Lymph_3 Lymph BL 9711P411 CHTN 0.02 0.08 0.03 0.95
Lymph_4 Lymph HD 9508P228 CHTN 0.05 0.05 0.03 0.95
Lymph_5 Lymph LL 9808P272 CHTN 0.03 0.06 0.03 0.95
Lymph_6 Lymph NHL 9508P413 CHTN 0.24 0.09 0.42 0.67
Lymph_7 Lymph NHL 9509P834 CHTN 0.06 0.04 0.04 0.96
Lymph_8 Lymph APLC 9603P340 CHTN 0.07 0.04 0.02 0.93
Lymph_9 Lymph APLC 9612P204 CHTN 0.05 0.06 0.03 0.91
Lymph_10 Lymph BL 9704P100 CHTN 0.04 0.04 0.04 0.96
Lymph_11 Lymph BL 9802P183 CHTN 0.04 0.09 0.04 0.95
Lymph_12 Lymph BL 200005P6002 CHTN 0.03 0.05 0.05 0.96
Lymph_13 Lymph SNCC 9504P051 CHTN 0.04 0.11 0.03 0.95
Lymph_14 Lymph LCL 9508P351 CHTN 0.17 0.08 0.02 0.87
Lymph_15 Lymph NHHL 9801P612 CHTN 0.43 0.15 0.01 0.70
Lymph_16 Lymph NHL 9808P320 CHTN 0.10 0.05 0.04 0.95
Lymph_17 Lymph SNCC 9712P137 CHTN 0.03 0.07 0.14 0.95

Source label refers to the original name of the sample as designated by the source. Histological diagnosis is defined as cancer type.
CHTN, Cooperative Human Tissue Network; CHLA, Children’s Hospital Los Angels; SJCRH, St. Jude Children’s Research Hospital.
Lymphoma categories: APLC, anaplastic large cell; ARMS, alveolar rhabdomyosarcoma; ERMS, embryonal rhabdomyosarcoma; BRMS,

rhabdomyosarcoma of botryoid subtype, BL, Burkitt’s; HD, Hodgkin’s; LCL, large cell; LL, lymphoblastic; NHL, non-Hodgkin’s unknown; NHHL, non-
Hodgkin’s histiocytic; SNCC, small noncleaved cell.
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multiplex RT-PCR assay, we performed a gene minimiza-
tion procedure using all 96 samples. The rank of the
genes and the misclassification rate are shown in Table 2
and Figure 2B. We observed that the top 31 genes re-
sulted in the least classification error, although classifi-
cation error is very low starting from nine genes (Figure
3A). Testing of 96 samples using these 31 genes in a
complete leave-one-out ANN analysis demonstrated that
all samples were accurately diagnosed as their respec-
tive category (data not shown). Multidimensional scaling
analysis using these 31 genes clearly separated the four
cancer types (Figure 3B). In addition, hierarchical clus-
tering using the 31 genes showed all except one RMS
(RMS_E_17) sample clustering with their respective cat-
egory (Figure 3C).

Discussion

The SRBCTs represent four of the most aggressive solid
cancers in the pediatric population, and accurate diag-
nosis is critical to the management of these patients. For
instance, patients with high-stage RMSs, which are tu-
mors originating from striated muscle, require a combi-

nation of high-dose chemotherapy, surgery, and radia-
tion treatment, whereas patients with non-Hodgkin’s
lymphoma require repeated lumbar punctures with instal-
lation of intrathecal chemotherapy because of the pro-
pensity for them to spread to the central nervous system,
and they rarely require surgery or radiation therapy. In
addition, the majority of patients with high-risk neuroblas-
toma are currently treated with autologous stem cell
transplants, unlike those with RMS, EWS, or non-
Hodgkin’s lymphoma, where only in rare cases in the
setting of recurrent disease do they require stem cell
transplants and then usually as an experimental therapy.8

Consequently, accurate diagnosis of these cancers is
critical for the administration of the correct therapy and
for avoiding unnecessary procedures to the patients.

We have therefore developed a rapid and reliable
diagnostic assay to distinguish SRBCTs according to
their diagnostic categories. Recently, multiple RT-PCR
analyses have also been used as a screening tool for
detection of genetic rearrangements,9 for in vitro toxi-
cology screening,10 and for validation of gene sets
obtained from global screens.11 We verified the multi-
ple RT-PCR results using the real-time RT-PCR method

Table 2. Genes and Primers Used in the Multiplex RT-PCR

Gene
symbol RefSeq Diagnosis

PCR
set

Reverse primer
w/0 universal tags

Forward primer
w/o universal tags

Size of
product

Paper source of genes: *, from Khan et al.4; **, from Son et al.7; ***, from unpublished data; ****, from de Kok et al.5. The genes are in ANN rank
order.
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in a previous study.10 As discussed above, the devel-
opment of such a diagnostic assay is of particular
importance for rapid clinical confirmation of the diag-
nosis of these SRBCT cancers because of the difficulty
of these cancers to be distinguished by histology and
the need for accurate diagnosis to guide therapy.
Currently, no single test can precisely differentiate be-
tween these cancers. Immunohistochemistry for indi-
vidual protein markers is used to establish the diagno-
sis in many instances, but occasionally it will have

diagnostic difficulties because the individual gene may
also be expressed in other tumors. For example, CD99
immunostaining is currently used to diagnose EWS;
however, it alone cannot be used to discriminate EWS.
Although CD99 detects EWS with high sensitivity, it is
also expressed in several RMS tumors. This issue is
resolved using the multiplex RT-PCR method, because
one is able to examine the expression levels of multiple
genes within a single reaction. Amplifying the signals
of many genes concurrently has allowed us to deter-
mine the unique gene expression signatures for each
of the four tumor types and diminishes the complica-
tions of misclassification. Another advantage is that
this procedure only requires nanograms of RNA, such
as that isolated from needle biopsies. In addition, RT-
PCR is a relatively simple procedure, is completed in a
short amount of time, and is cost effective.

We have applied an artificial neural network-based
method for predicting the diagnostic category of tumor
samples using the expression profiles of 39 genes from
multiplex RT-PCR assays. We started with two multiplex
PCR assays with 40 unique genes (39 differential genes
and one control gene) and later combined the data from
two assays for classification analysis after normalization.
This works well because blinded testing of 96 samples
using artificial neural networks in a complete leave-one-
out analysis demonstrated that all except one sample
were accurately diagnosed as their respective category.
This study is essentially equivalent to an independent
study because we used genes derived from our previous
SRBCT study4 and validated by multiplex RT-PCR on an
independent set of tumors not used in the previous study.
In addition, Figure 3B was done using a leave-one-out
analysis, and there was no leakage of information into the
testing samples.

When we tested whether we could further minimize the
number of genes, we identified the top 31 genes that
correctly diagnosed all 96 samples while using the leave-
one-out strategy. This demonstrated that 31 genes are
sufficient for the diagnostic purpose, and we were there-
fore able to reduce the number of genes required to
diagnose these cancers. Thus, it will be possible to make
a single multiplex-PCR assay to diagnose these cancers.
Remarkably, the classification error is also very low start-
ing from just 9 genes. However, a redundancy in the
number of genes used to diagnose these cancers is
important to avoid misdiagnosis in case a single gene
fails to amplify.

It is important to note that although we can distinguish
the broad categories of the SRBCTs, our method does
not remove the necessity for detailed histological or other
molecular analysis of these tumors, which gives impor-
tant clues as to the degree of differentiation or presence
of gene amplifications. There are also other similar small
round cell tumors including Wilms, hepatoblastoma, des-
moplastic small round cell tumor, and others. Our genes
were chosen to distinguish only the four major categories
including RMS, EWS, NB, and lymphoma, which will
therefore identify the majority of the small round cell
tumors of childhood. In addition, we recommend that our
studies be performed in conjunction with detailed clinical

Figure 1. The schematic illustration of multiplex RT-PCR assay. A: The
multiplex RT-PCR involves two stages: the first stage includes reverse
transcription and amplification using chimeric primers, and the second
stage converts to the use of a single pair of universal primers during
amplification (see Materials and Methods for the primer design). B: The
amplicons obtained from multiplex amplification were then analyzed
using fluorescence capillary electrophoresis. The peak location represents
the gene identity, and the peak area represents gene expression level. C:
The comparative chromatograms of four different categories of tumor
samples from one multiplex assay. Blue, Lymph-13; yellow, EWS-T-4; red,
RMS-A-18; and green, NB-20.

Cancer Diagnosis Using Multiplex PCR 85
JMD February 2007, Vol. 9, No. 1



Figure 2. The artificial neural network. A: Workflow for a complete leave-one-out ANN analysis. Multiplex RT-PCR analysis using 40 genes was performed
on tumors from 96 pediatric cancer patients (26 EWS, 29 RMSs, 17 lymphomas, and 24 NBs). One sample was left out as an independent test sample,
and the ANNs were trained using the remaining 95 samples. ANN training scheme (gray box). 1, All samples were randomly partitioned into three
groups. 2, One of the three groups (containing 32 samples) was selected as a validation set, whereas the remaining two groups (63 samples) were used
to train the network. 3 and 4, The training weights were iteratively adjusted for 100 cycles (epochs). 5, The ANN output (0 to 1) for each of four classes
(EWS, RMS, NB, and lymphoma) was calculated for each sample in the validation set. 6, A different validation set was selected from the same partitioning
in 1, and the remaining two groups were used for training. Steps 2 through 6 were repeated until each of the three groups from 1 had been used as a
validation set exactly one time. 7, The samples were randomly repartitioned into three new groups, and steps 2 through 6 were repeated. Sample
partitioning was performed 100 times in total. Thus, steps 1 through 6 were repeated 100 times. Three hundred ANN models were thus trained and
were used to predict the left-out test sample. This scheme was repeated for each left-out test sample. B: Classification of the samples from a leave-one-out
ANN analysis. A sample is classified to a cancer category according to its highest committee vote (average of all ANN outputs; Table 1). Plotted is the
distance for each sample from its committee vote to the ideal vote for that category (for example, for EWS, it is EWS � 1, RMS � NB � Lymph � 0). The
perfectly classified sample would be plotted with a distance of 0. The histological diagnosis of four different cancer categories was displayed in shape as
diamond for EWS, square for RMS, triangle for NB, and circle for lymphoma. All samples were correctly classified except one RMS sample, which was
misclassified as EWS.

Table 3. Performance of ANN Diagnosis (Leave-One-Out with 39 Genes)

Tumor type Sensitivity (%) Specificity (%) Positive predictive value (%) Negative predictive value (%)

EWS (n � 26) 100 98.6 96.3 100
RMS (n � 29) 96.6 100 100 98.5
NB (n � 24) 100 100 100 100
Lymphoma (n � 17) 100 100 100 100
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investigation, including radiological and serological
markers, immunohistopathology, and other molecular
markers such as RT-PCR for fusion genes, which will
distinguish the RMS, ESW, NB, and lymphoma from other
small round cell tumors.

In conclusion, we have developed a simple and
reliable diagnostic assay for the major SRBCTs includ-
ing EWS, RMS, NB, and lymphoma. We believe our
assay offers a powerful diagnostic tool for pathologists
for a rapid diagnosis using a minimal amount of tissue.
However, it will be valuable to include a broader range
of other small round cell tumors in the future multiplex
RT-PCR assays, and this will be incorporated as more
microarray profiling data of these tumors become
available.
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