Labs21

United States Environmental Protection Agency Laboratories for the 21st Century Durham, NC October 7–9, 2002

Integrated Laboratory Energy Systems: Emerging Methods for Matching Distributed Generation Systems with Building Thermal Systems

P. Richard Rittelmann, FAIA <u>dick.rittelmann@burthill.com</u> S. Faruq Ahmed, PE, NSPE <u>ahmed@burthill.com</u> Alex K. Wing <u>alex.wing@burthill.com</u>

LABS FOR THE 21ST CENTURY

Burt Hill Kosar Rittelmann Associates

But Hill Kosar Rittelmann Associates 101 East Diamond Street, Suite 400 Butler, PA 16001 724-285-4761 (phone) 724-285-6815 (fax) www.burthill.com

Presentation Background

• This presentation is a follow up to:

LABS FOR THE 21ST CENTURY

Burt Hill Kosar Rittelmann Associates

"Integrated Laboratory Energy Systems; Emerging Methods in Laboratory Energy Production, Recovery, and Distribution"
Presented at:
Laboratories for the 21st Century Conference
Washington, DC, January 7-11, 2002

 Matching of building thermal loads to heat from distributed generation system is investigated

Presentation Summary

• "Strawman" Lab Building

LABS FOR THE 21ST CENTURY

- Components of laboratory energy use
- Areas of the country in the study
- Technologies for distributed generation (DG)
- Integration of DG with building thermal systems
- Economic considerations
- Environmental impacts
- Future investigations

Mission-Critical Building – Case Study

• Components of Lab Energy Use

– Fume hoods

LABS FOR THE 21ST CENTURY

- Ventilation
- Heating

- Cooling
- Service hot water
- Lighting
- Equipment energy

"Strawman Lab Building" – Background

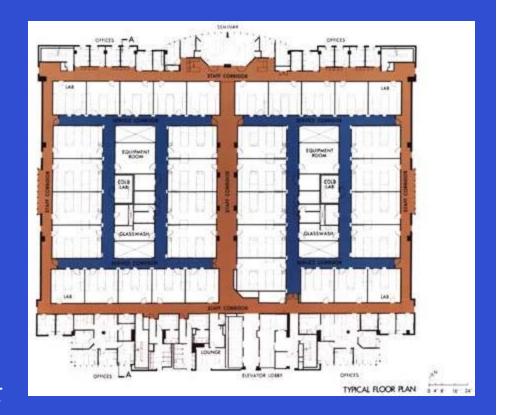
• Biomedical Science Tower in Pittsburgh

- Built in 1991

LABS FOR THE 21ST CENTURY

- Gross area: 440,000 SF
- Total usable area: 244,981 net sq. ft. (NSF)
- Total labs: 130, 500 NSF
- Offices: 42,772 NSF
- Lab support: 60,784 NSF
- Animal areas: 13,000 NSF

"Strawman Lab Building" – Background


• HVAC System

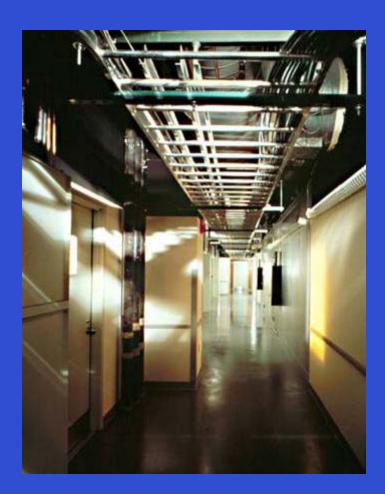
Burt Hill Kosar Rittelmann Associates

- Offices: 1 CFM/NSF

LABS FOR THE 21ST CENTURY

- Labs: 1.5 CFM/NSF
- VAV Fume Hoods:(about 325)
- Power Offices
 - Lights: 1.2 W/NSF
 - Equipment: 1.5 W/NSF
 - HVAC: 3.7 W/NSF

"Strawman Lab Building" – Background


Power – Labs

Burt Hill Kosar Rittelmann Associates

- Lights: 2.5 W/NSF

LABS FOR THE 21ST CENTURY

- Equipment: 16 W/NSF
- HVAC: 5.6 W/NSF
- Occupants: 1200
- Outside air: 500,000 CFM

Methodol ogy Used For Evaluation of Case Study

- Develop power use profile for the building, without electric chillers, (thermal energy-driven cooling is evaluated)
- Use TMY2 hourly weather data

LABS FOR THE 21ST CENTURY

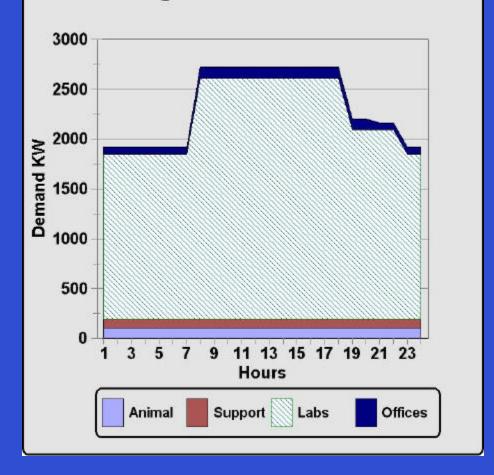
Burt Hill Kosar Rittelmann Associates

 Use transient simulation system (TRNSYS) for hour-by-hour analysis of thermal options

Methodol ogy Used For Evaluation of Case Study

- Evaluate the use of absorption cooling and desiccant cooling system
- Evaluate the matching of thermal and electric loads
- Estimate environmental impact
- Evaluate system economics

LABS FOR THE 21ST CENTURY


Methodol ogy Used For Evaluation of Case Study

• Building Electric Load profile

LABS FOR THE 21ST CENTURY

- Fuel cell system size with no sell back: 1.9 MW
- Fuel cell system size with sell back: 3 MW or more
- This study uses 1.9 MW generation

Building Electric Demand KW

Methodol ogy Used For Evaluation of Case Studies

• Cities Studied – Weather Data (TMY2 weather data was used)

€PA

Burt Hill Kosar Rittelmann Associates

LABS FOR THE 21ST CENTURY

			Cooling Design: 1%			
City	Heating °F Days*	Cooling °F Days*	Dry Bulb °F	Wet Bulb °F	Humidity Ratio gr/lb** of air	Remarks Summer/Winter
Pittsburgh, PA	5,929	646	89	72	90	Cold/Mild
Houston, TX	1,433	2,889	97	77	110	Mold/Hot Humid
Phoenix, AZ	1,552	3,506	109	71	52	Mild/Hot Dry
Seattle, WA	5,184	128	85	68	76	Mild/Mild
Minneapolis, MN	8,258	585	92	75	104	Cold/Hot
Chicago, IL	6,125	923	94	75	1,000	Cold/Hot Humid
Colorado Springs, CO	6,473	461	93	59	20	Cold/Dry
Atlanta, GA	3,094	1,588	94	74	92	Cool/Warm
Washington, DC	5,009	940	93	75	102	Cold/Humid
Los Angeles, CA	1,818	614	98	70	74	Mild/Mild

* Degree days based on 65°F

** gr = grains of moisture

Methodol ogy Used For Evaluation of Case Studies

Assumptions Made for the Evaluation

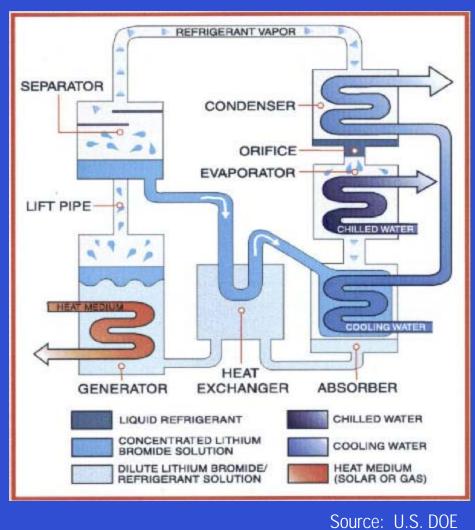
– Heating Energy Use

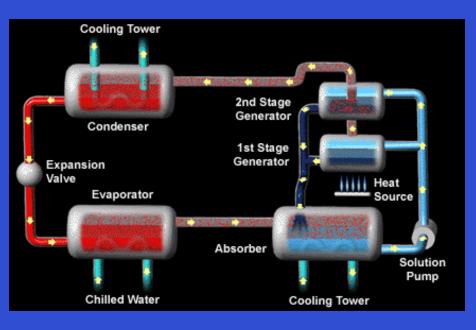
LABS FOR THE 21ST CENTURY

- Efficiency of gas use: 80%
- Gas cost: \$3.50 per million BTU
- Electricity cost: approximately \$0.085/kWh (including demand)
- Seasonal COP of electric cooling equipment: 2
- Laboratory air conditions: 76°F dB, 70 gr/lb. of air
- Laboratory supply air: 66°F, 50 gr/lb. of air

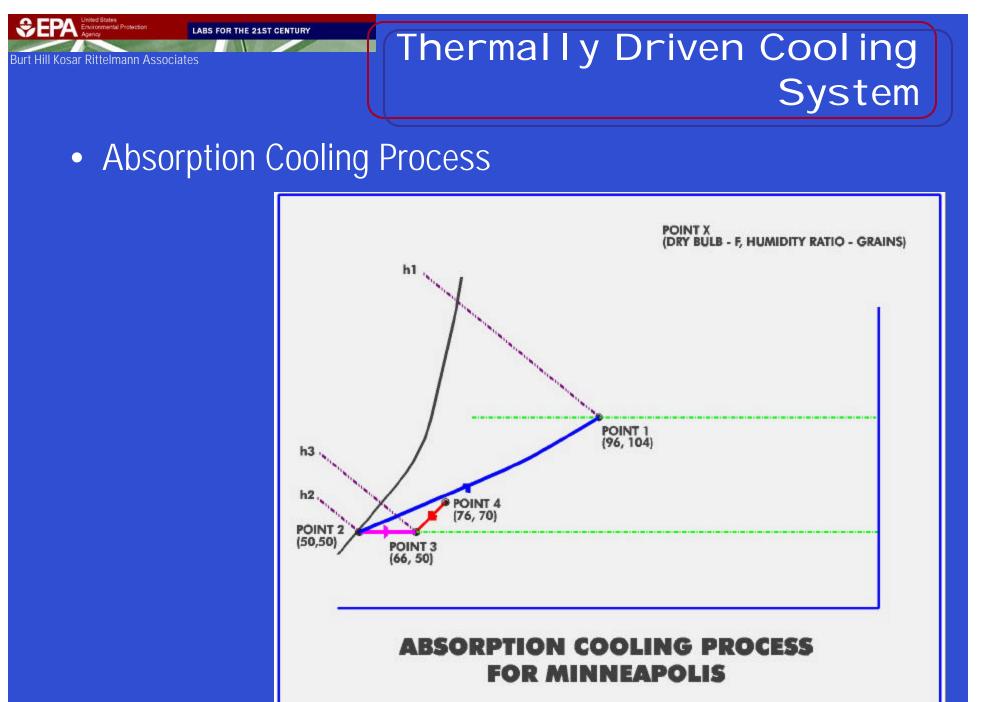
Absorption Cooling

LABS FOR THE 21ST CENTURY

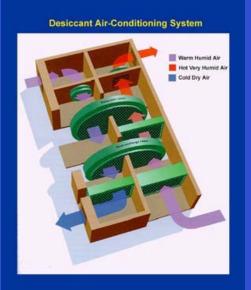

- Double effect cooling
- Seasonal COP 1.21
- Hot water fired
- Desiccant Cooling
 - Active regeneration of desiccant
 - Hot water/gas heat used for desiccant regeneration


Absorption Cooling System

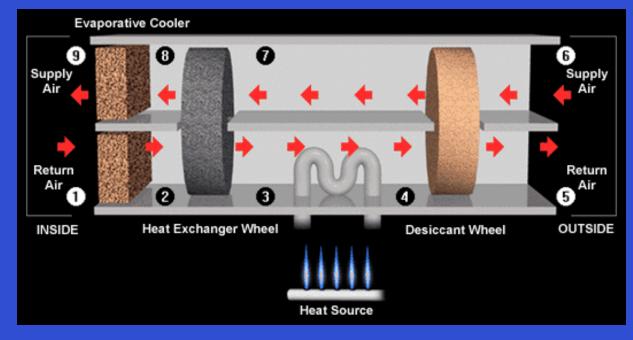
LABS FOR THE 21ST CENTURY


Separation United States Environmental Protection Agency

Burt Hill Kosar Rittelmann Associates



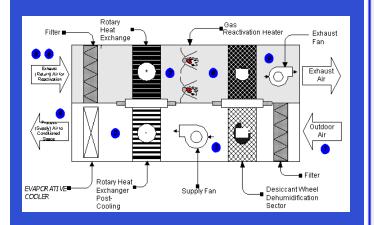
Source: www.bchp.org


• Desiccant Cooling Process

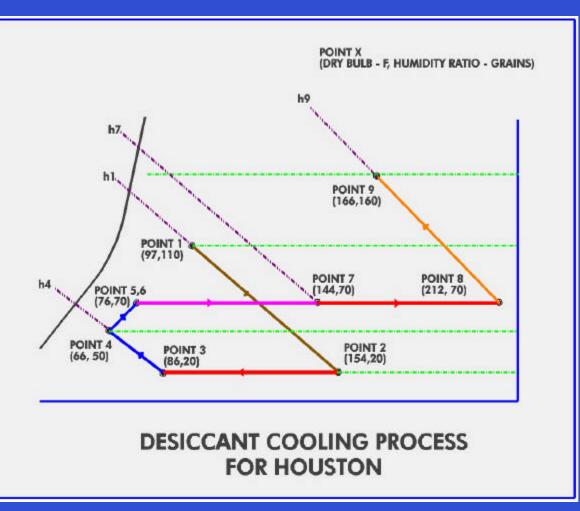
LABS FOR THE 21ST CENTURY

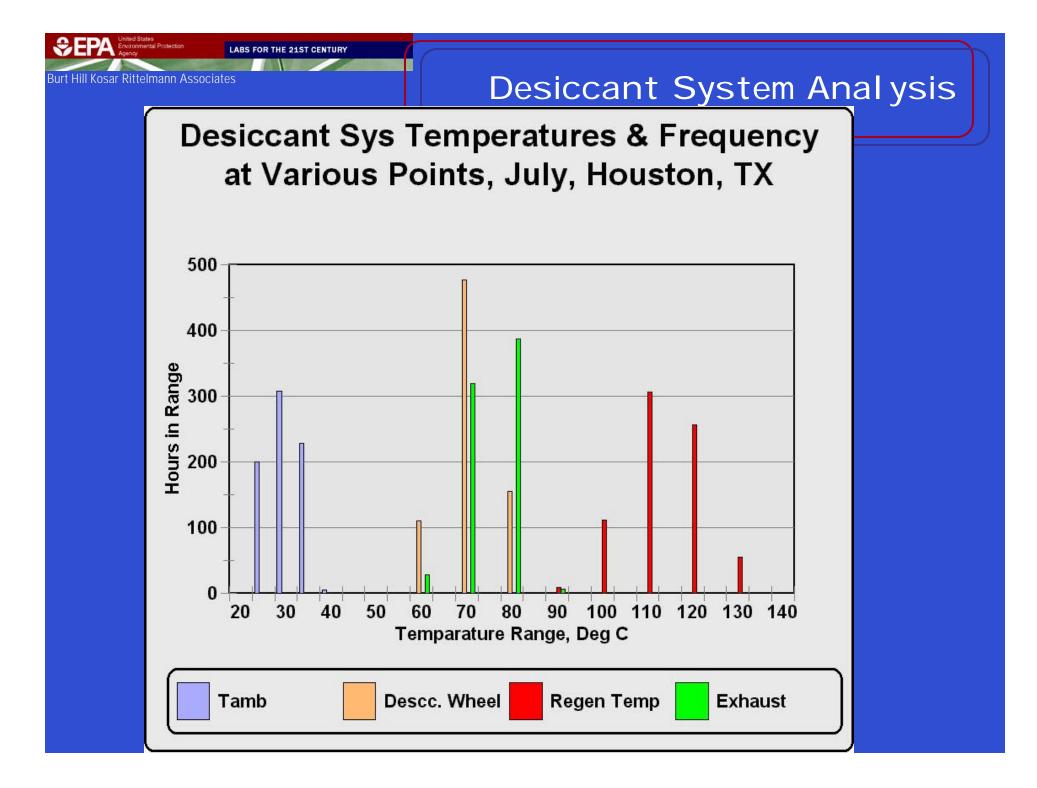
tates nental Protection

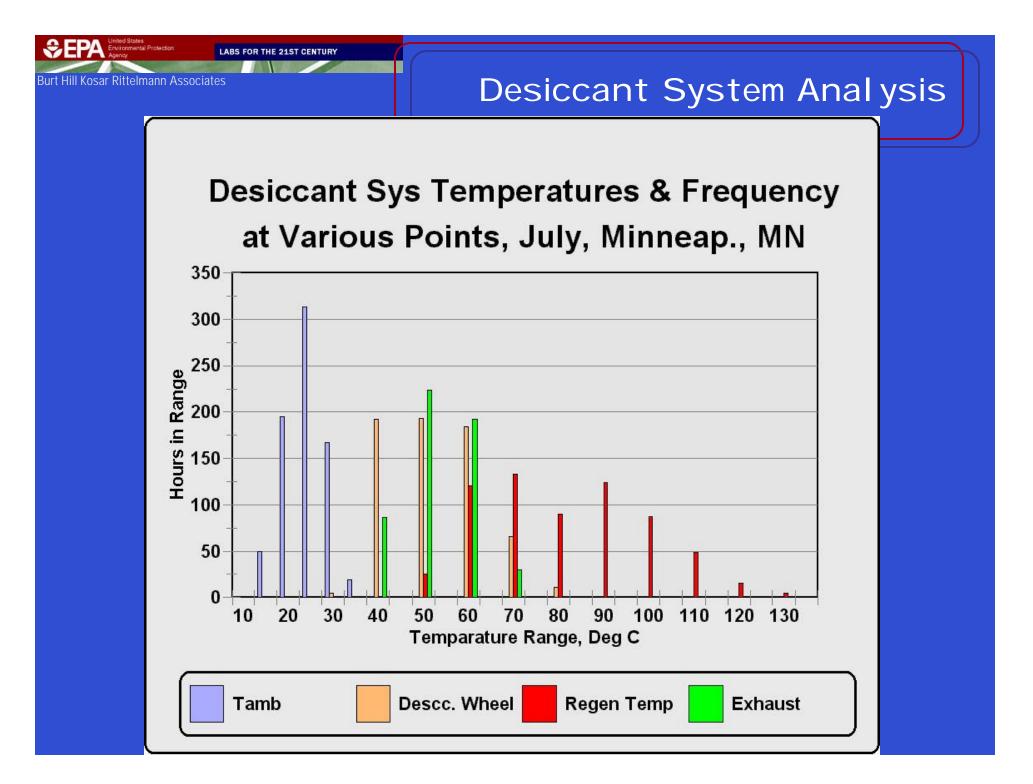
Burt Hill Kosar Rittelmann Associates

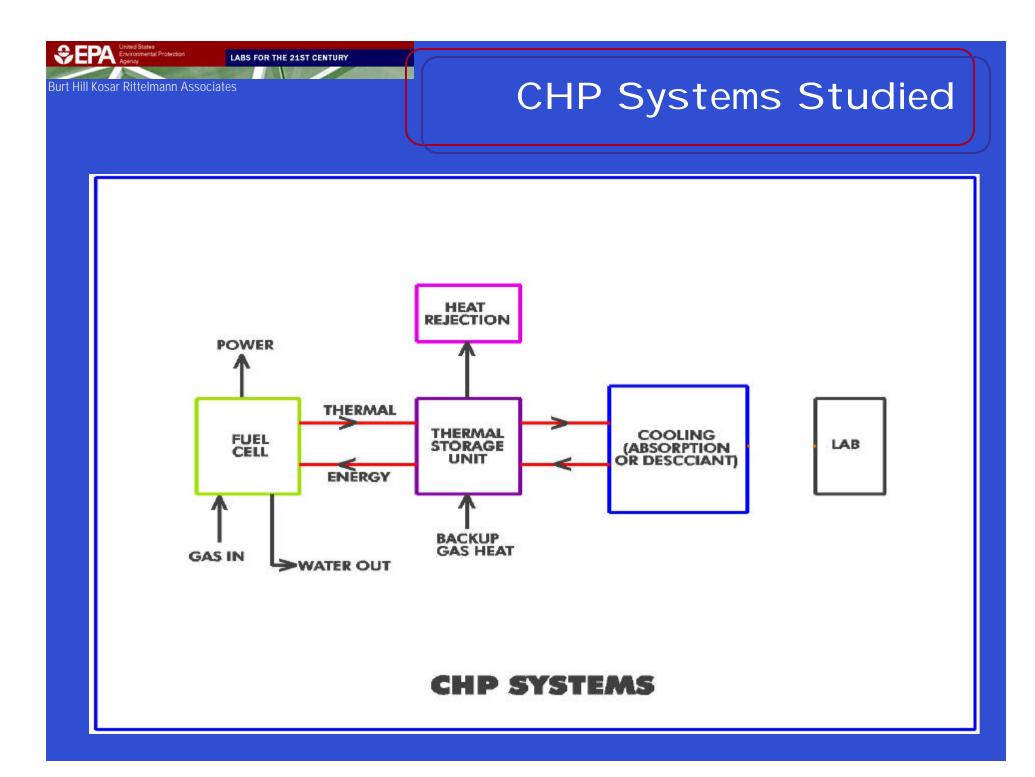


Source: www.ornl.gov


Source: www.bchp.org

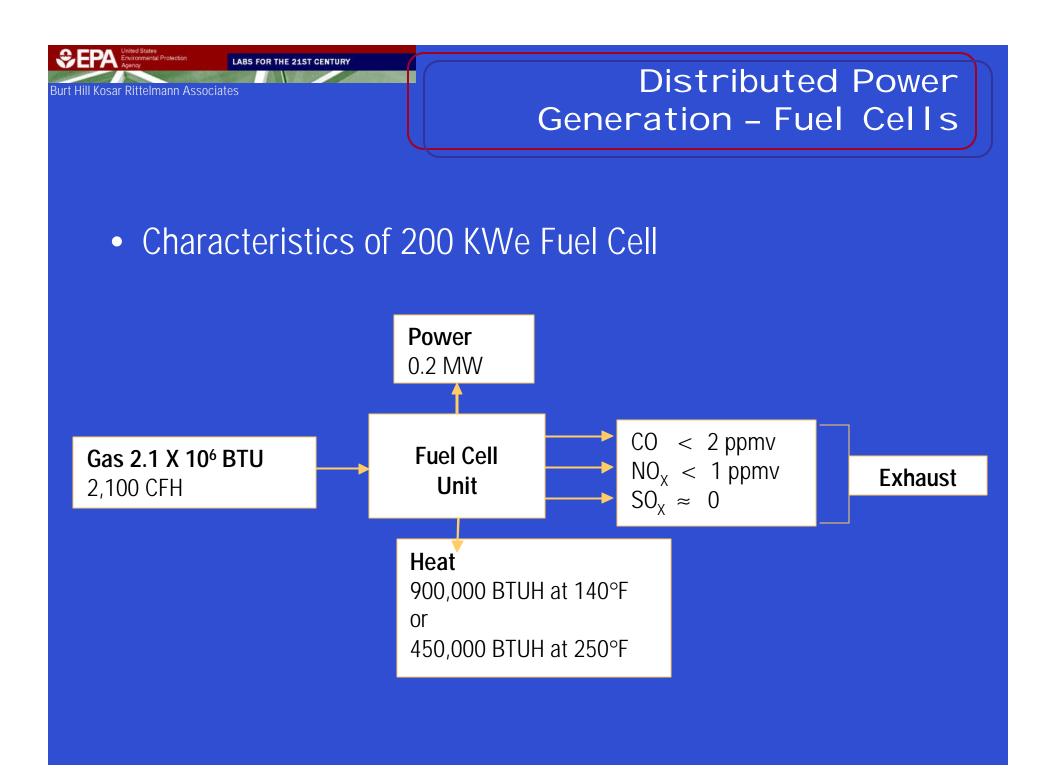

• Desiccant Cooling Process


LABS FOR THE 21ST CENTURY



United States Environmental Protection

Distributed Power Generation – Fuel Cells

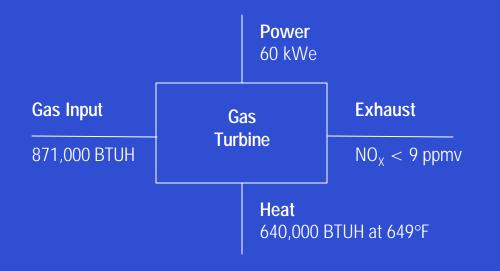

- 1.9 MW total, each unit 200 KW
- Total 10 units

Burt Hill Kosar Rittelmann Associates

- Characteristics
 - Availability: 97%

LABS FOR THE 21ST CENTURY

- Yearly generation: 16,644 MWH
- Total efficiency (heat and power): 87%
- Electrical efficiency: 37%
- Thermal efficiency: 50%
- Noise level: 60 dBA at 30 ft.
- Unit size: 10' x 10' x 18'


Distributed Power GeneratioN

• Gas Micro Turbines

LABS FOR THE 21ST CENTURY

EPA

- Use 60 kWe Turbines
- Total 32 Units
- Performance of units is as follows:

Base Case Heating/Cooling System Performance

• COP of Cooling Equipment = 2

LABS FOR THE 21ST CENTURY

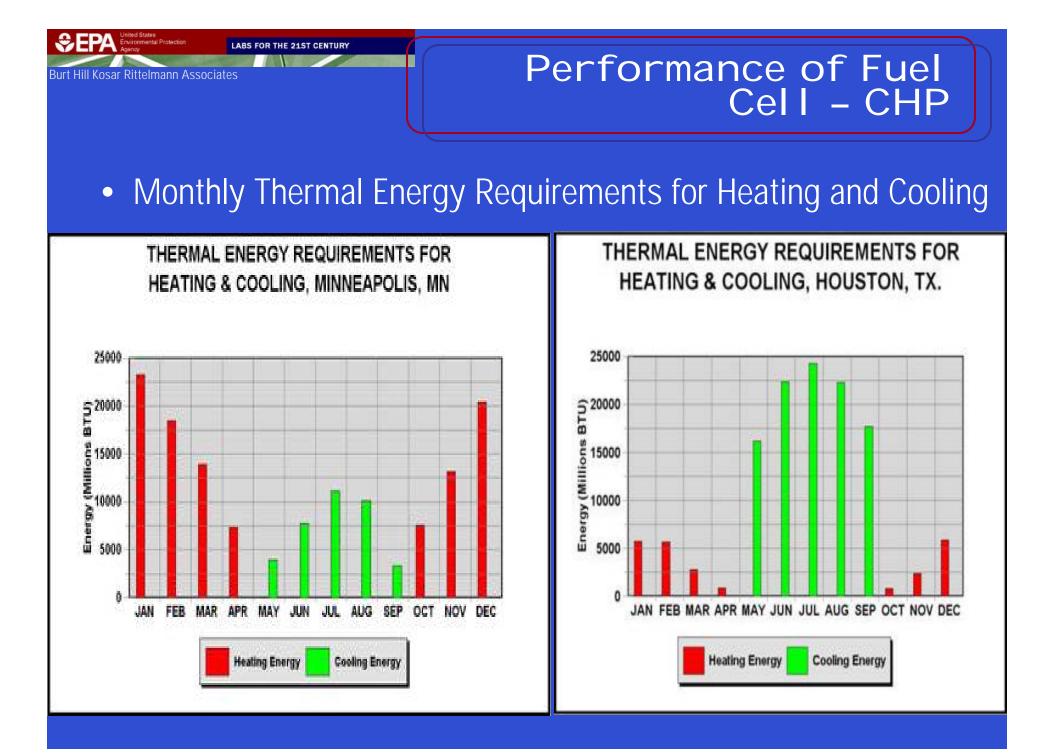
ntal Protection

	Energy in Mi	llions of BTU	
City	Heating Requirements Cooling Requirements		Electricity for Providing Cooling MW Hrs.
Pittsburgh	77,355	39,436	5,777
Houston	24,176	102,717	15,048
Phoenix	21,061	75,610	11,076
Seattle	58,386	13,885	2,034
Minneapolis	104,140	36,268	5,313
Chicago	84,640	40,432	5,923
Colorado Springs	83,141	22,118	3,240
Atlanta	44,387	70,896	10,382
Washington	64,931	53,777	7,878
Los Angeles	19,557	29,705	4,351

Heating and Cooling for CHP Analysis

Thermal Loads for Heating and Cooling

LABS FOR THE 21ST CENTURY


€PA

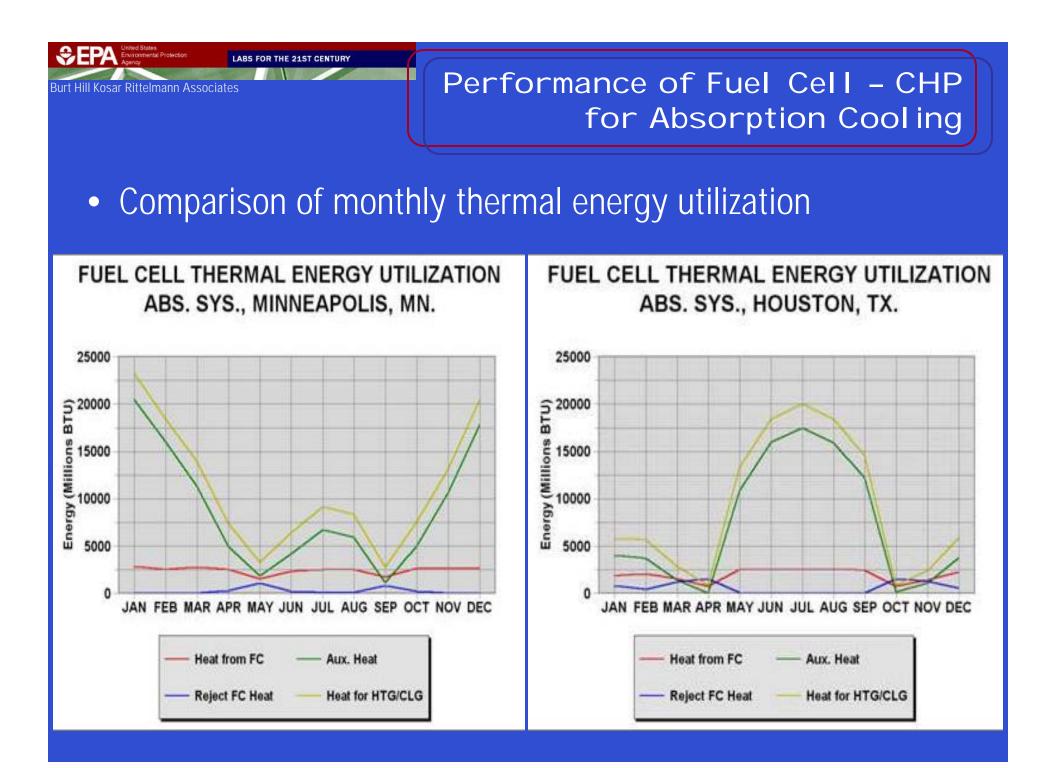
Burt Hill Kosar Rittelmann Associates

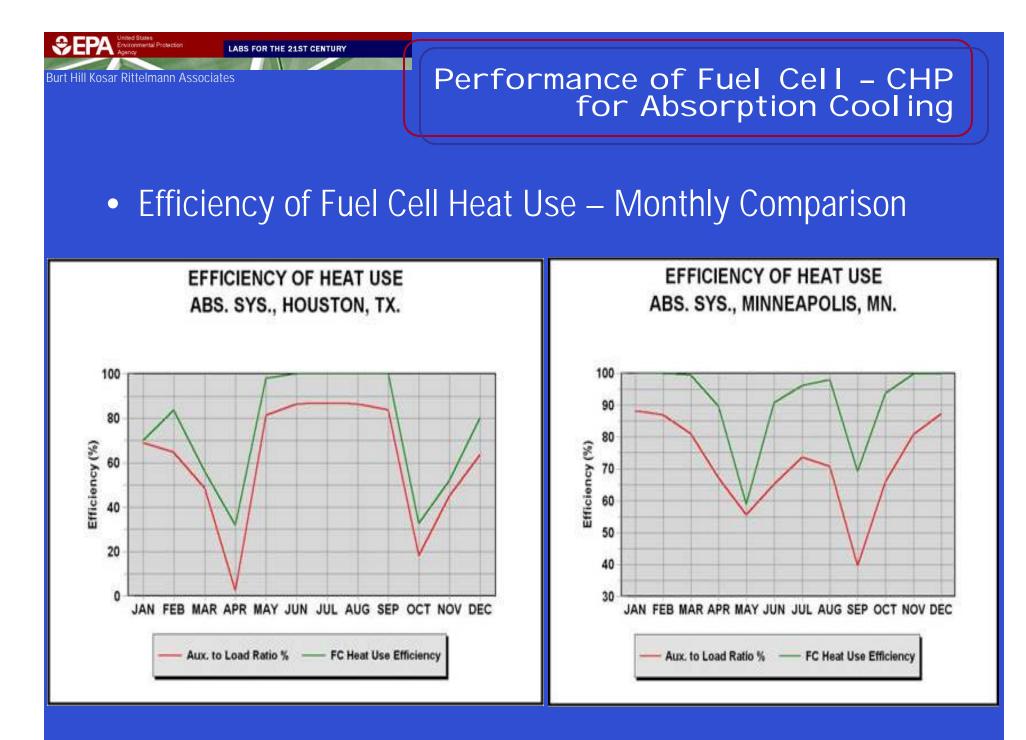
	Energy in Millions of BTU				
City	Heating	Cooling ¹	Cooling ²		
Pittsburgh (PA)	77,355	39,436	37,141		
Houston (TX)	24,176	102,717	112,202		
Phoenix (AZ)	21,061	75,610	54,820		
Seattle (WA)	58,386	13,885	7,312		
Minneapolis (MN)	104,140	36,268	35,813		
Chicago (IL)	84,640	40,432	39,626		
Colorado Springs (CO)	83,141	22,118	5,683		
Atlanta (GA)	44,387	70,896	72,917		
Washington (DC)	64,931	53,777	56,196		
Los Angeles (CA)	19,557	29,705	30,559		

1. Cooling based on dry bulb temperature control

2. Cooling based on enthalpy control, need for desiccant cooling

LABS FOR THE 21ST CENTURY


Burt Hill Kosar Rittelmann Associates


Performance of Fuel Cell – CHP for Absorption Cooling

	Energy in Million BTU						
Cities	Heat Supplied to Thermal Load	Useful Heat from Fuel Cell	Auxiliary Heat from Gas**	Rejected Heat from Fuel Cell	Ratio, Fuel Cell Heat to Total Heat for Load	Utilization of Heat Produced by Fuel Cell	
Pittsburgh	109,641	29,174	81,339	2,393	0.266	92.4%	
Houston	108,882	23,028	86,489	7,293	0.211	75.9%	
Phoenix	83,274	24,745	59,335	7,217	0.297	77.4%	
Seattle	69,796	26,983	43,752	4,986	0.386	84.4%	
Minneapolis	134,016	29,126	105,847	2,727	0.217	91.4%	
Chicago	117,987	29,155	89,752	2,647	0.247	91.6%	
Colorado Springs	101,294	28,169	74,083	3,976	0.278	87.6%	
Atlanta	102,907	28,406	75,354	3,311	0.276	89.5%	
Washington	113,434	28,794	85,512	2,740	0.253	91.3%	
Los Angeles	44,055	26,566	18,371	5,057	0.602	84.0%	

* Electric Power produced = 16,644,000 kWh per year.

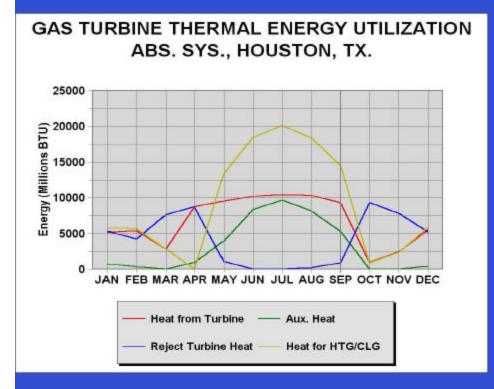
** This energy is for the thermal systems and does not include the gas used to run the fuel cell.

LABS FOR THE 21ST CENTURY

Burt Hill Kosar Rittelmann Associates

tal Protection

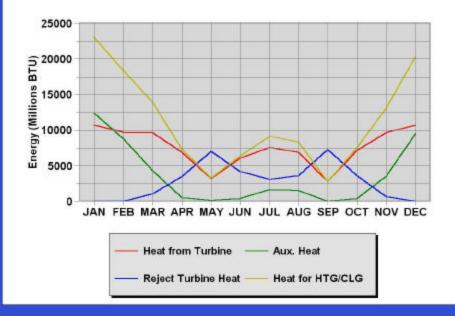
Performance of Micro Turbine – CHP for Absorption Cooling


	Energy in Million BTU					
Cities	Heat Supply to Thermal Load	Useful Heat from Turbine	Auxiliary Heat from Gas**	Rejected Heat from Turbine	Ratio: Turbine Heat to Total Heat for Load	Utilization of Heat Produced by Turbine
Pittsburgh	109,830	87,893	22,914	37,700	0.8	69.9
Houston	108,977	73,011	36,856	50,220	0.66	59.2
Phoenix	83,321	69,113	15,032	56,157	0.83	55.1
Seattle	69,815	68,563	2,219	56,745	0.98	54.7
Minneapolis	133,636	91,117	43,287	34,087	0.68	72.7
Chicago	117,892	91,165	27,694	34,277	0.77	72.6
Colorado Springs	101,294	80,713	21,529	45,079	0.79	64.1
Atlanta	102,907	83,302	20,505	41,855	0.81	66.5
Washington	113,434	90,947	23,464	34,409	0.8	72.5
Los Angeles	44,093	44,966	36	80,343	1	35.8

* Electric power produced: 16,644,000 kWh/year

** This energy is for thermal systems and does not include the gas used to run the turbines.

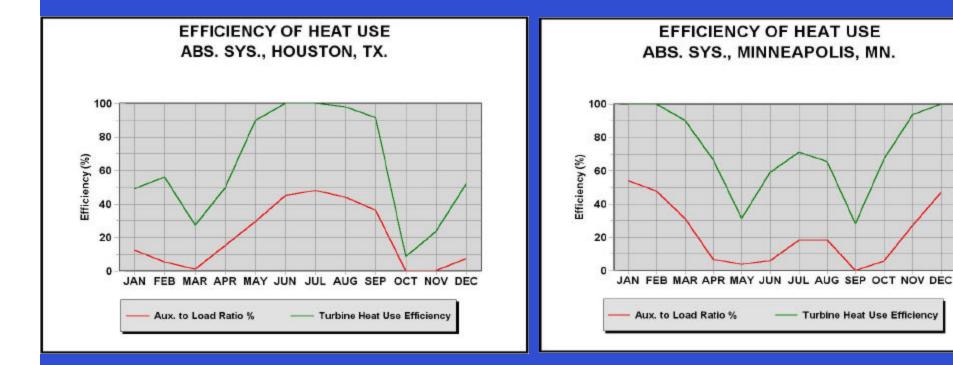
Performance of Turbines – CHP for Absorption Cooling


Comparison of monthly thermal energy utilization

LABS FOR THE 21ST CENTURY

♥EPA

GAS TURBINE THERMAL ENERGY UTILIZATION ABS. SYS., MINNEAPOLIS, MN.


Performance of Turbines – CHP for Absorption Cooling

• Efficiency of turbine heat use – monthly comparison

♥EPA

Burt Hill Kosar Rittelmann Associates

LABS FOR THE 21ST CENTURY

LABS FOR THE 21ST CENTURY

Burt Hill Kosar Rittelmann Associates

€PA

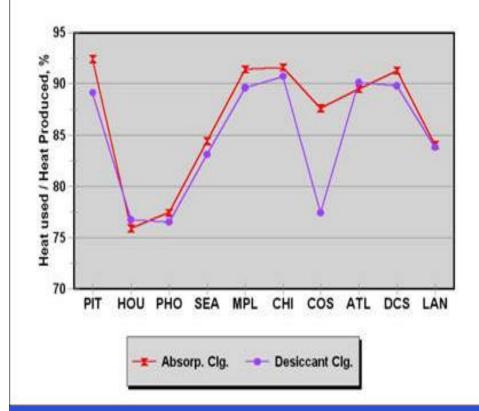
Performance of Fuel Cell – CHP for Desiccant Cooling

	Energy in Million BTU					
Cities	Heat Supplied to Thermal Load	Useful Heat from Fuel Cell	Auxiliary Heat from Gas**	Rejected Heat from Fuel Cell	Ratio, Fuel Cell Heat to Total Heat for Load	Utilization of Heat Produced by Fuel Cell
Pittsburgh	164,272	30,009	135,154	3,633	0.182	89.1%
Houston	190,923	24,138	167,686	7,303	0.126	76.7%
Phoenix	102,622	24,650	78,749	7,533	0.240	76.5%
Seattle	94,940	25,352	70,536	5,130	0.260	83.1%
Minneapolis	187,604	29,335	159,245	3,377	0.156	89.6%
Chicago	173,576	30,028	144,638	3,057	0.172	90.7%
Colorado Springs	110,115	24,327	86,736	7,074	0.220	77.4%
Atlanta	178,214	31,137	147,958	3,418	0.174	90.1%
Washington	179,826	30,322	150,424	3,424	0.168	89.8%
Los Angeles	122,919	28,966	94,826	5,571	0.235	83.8%

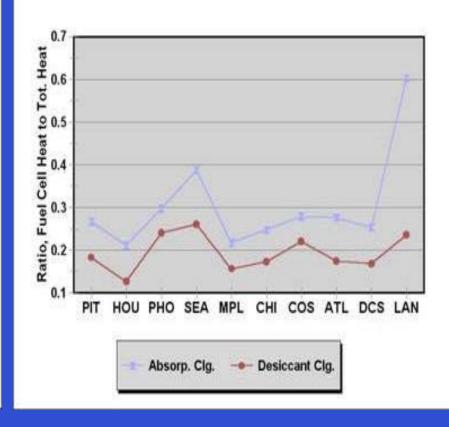
* Electric Power produced = 16,644,000 kWh per year.

** This energy is for the thermal systems and does not include the gas used to run the fuel cell.

Comparison of Fuel Cell Thermal Energy Use


Utilization of Heat from Fuel Cells Absorption & Desiccant Cooling.

LABS FOR THE 21ST CENTURY


1000

€PA

Burt Hill Kosar Rittelmann Associates

Ratio, Fuel Cell Heat to Total Heat, Absorption & Desiccant Cooling.

LABS FOR THE 21ST CENTURY

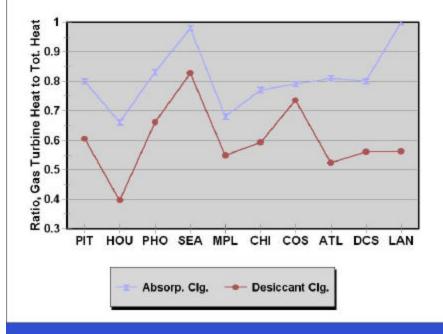
Burt Hill Kosar Rittelmann Associates

Performance of Turbine – CHP for Desiccant Cooling

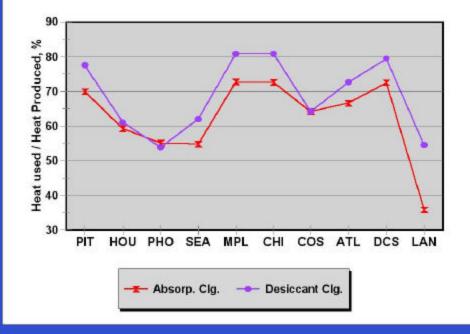
	Energy in Million BTU					
Cities	Heat Supplied to Thermal Load	Useful Heat from Fuel Cell	Auxiliary Heat from Gas**	Rejected Heat from Fuel Cell	Ratio, Fuel Cell Heat to Total Heat for Load	Utilization of Heat Produced by Fuel Cell
Pittsburgh	164,177	99,208	65,926	28,681	0.604	77.5
Houston	190,923	75,705	116,090	48,361	0.396	61
Phoenix	102,622	67,766	35,671	58,054	0.66	53.8
Seattle	94,940	78,522	17,404	48,162	0.827	61.9
Minneapolis	187,603	102,907	85,654	24,384	0.548	80.8
Chicago	173,756	103,001	71,655	24,432	0.592	80.8
Colorado Springs	110,020	80,855	30,113	45,089	0.735	64.1
Atlanta	178,214	93,156	85,891	35,102	0.522	72.6
Washington	179,731	100,725	79,973	26,072	0.56	79.4
Los Angeles	123,014	69,208	54,649	57,855	0.562	54.4

* Electric power produced = 16,644,000 kWh per year.

** This energy is for the thermal systems and does not include the gas used to run the fuel cell.


Burt Hill Kosar Rittelmann Associates

ental Protection


Comparison of Turbine Thermal Energy

Ratio, Gas Turbine Heat to Total Heat, Absorption & Desiccant Cooling.

LABS FOR THE 21ST CENTURY

Utilization of Heat from Gas Turbine Absorption & Desiccant Cooling.

• Base Case System: Gas Heat, and Vapor Compression Cooling

♥EPA

Burt Hill Kosar Rittelmann Associates

LABS FOR THE 21ST CENTURY

City	Gas Energy X10 ⁶ Btu	Electric for Cooling MWHR	Cost of Gas \$	Cost of Electric \$	Cost of Purchasing 1.9 MW Base Power \$	Total Annual Cost
Pittsburgh	96693175	5,777	\$338,428	491,045	\$1,414,740	\$2,244,213
Houston	30220	15,048	\$105,770	\$1,279,080	\$1,414,740	\$2,799,590
Phoenix	26326.25	11,076	\$92,142	\$941,460	\$1,414,740	\$2,448,342
Seattle	72982.5	2,034	\$255,439	\$172,890	\$1,414,740	\$1,843,069
Minneapolis	130175	5,313	\$455,713	\$451,605	\$1,414,740	\$2,321,958
Chicago	105800	5,923	\$370,300	\$503,455	\$1,414,740	\$2,288,495
Colorado Springs	103926.3	3,240	\$363,740	\$275,400	\$1,414,740	\$2,053,882
Atlanta	55483.75	10,382	\$194,193	\$882,470	\$1,414,740	\$2,491,403
Washington	81163.75	7,878	\$284,073	\$669,630	\$1,414,740	\$2,368,443
Los Angeles	24446.25	4,351	\$85,562	\$369,835	\$1,414,740	\$1,870,137

• Fuel Cell – CHP, Absorption Cooling

LABS FOR THE 21ST CENTURY

ronmental Protection

Burt Hill Kosar Rittelmann Associates

	Gas Cost for FuelGas EnergyCost of GasCellsAuxiliary* 106Energy			Total Annual Cost
City	\$	Btu	\$	\$
Pittsburgh	\$643,860	101,673	\$355,855	\$999,715
Houston	\$643,860	108,111	378,388	1,022,248
Phoenix	\$643,860	74,168	259,588	903,488
Seattle	\$643,860	54,690	191,415	835,275
Minneapolis	\$643,860	132,308	463,078	1,106,938
Chicago	\$643,860	112,190	392,665	1,036,525
Colorado Springs	\$643,860	92,603	324,110	967,970
Atlanta	\$643,860	94,192	329,672	973,532
Washington	\$643,860	106,890	374,115	1,017,975
Los Angeles	\$643,860	22,963	80,370	724,230

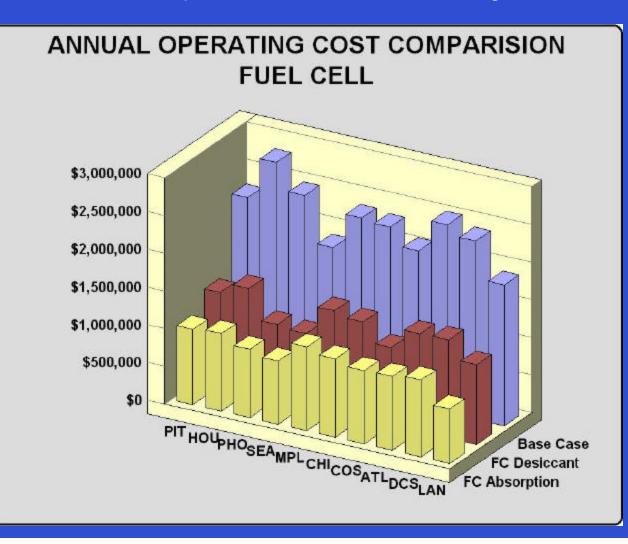
* Includes 80% efficiency of gas use

• Fuel Cell – CHP – Desiccant Cooling

LABS FOR THE 21ST CENTURY

ronmental Protection

Burt Hill Kosar Rittelmann Associates


	Gas Cost for Fuel Cells	Gas Energy Auxiliary* 10 ⁶	Cost of Gas Energy	Total Annual Cost	
City	\$	Btu	\$	\$	
Pittsburgh	\$643,860	168,942	\$591,298	\$1,235,158	
Houston	\$643,860	209,607	733,626	1,377,486	
Phoenix	\$643,860	98,436	344,526	988,386	
Seattle	\$643,860	88,170	308,595	952,455	
Minneapolis	\$643,860	199,056	696,696	1,340,556	
Chicago	\$643,860	180,797	632,791	1,276,651	
Colorado Springs	\$643,860	108,420	379,470	1,023,330	
Atlanta	\$643,860	184,947	647,310	1,291,176	
Washington	\$643,860	188,030	658,105	1,301,965	
Los Angeles	\$643,860	118,532	414,863	1,058,723	

* Includes 80% efficiency of gas use

Comparison of Annual Operation Costs

• Base System, Absorption and Desiccant System

• Turbine – CHP – Absorption Cooling

LABS FOR THE 21ST CENTURY

Sepa United States Environmental Protection Agency

Burt Hill Kosar Rittelmann Associates

	Gas Cost for Fuel Cells	Gas Energy Auxiliary* 10 ⁶	Cost of Gas Energy	Total Annual Cost	
City	\$	Btu	\$	\$	
Pittsburgh	\$801,145	28,642	\$100,251	\$901,396	
Houston	\$801,145	46,070	161,249	962,394	
Phoenix	\$801,145	18,790	65,769	866,914	
Seattle	\$801,145	2,773	9,710	810,855	
Minneapolis	\$801,145	54,108	189,382	990,527	
Chicago	\$801,145	34,617	121,165	922,310	
Colorado Springs	\$801,145	26,911	94,193	895,338	
Atlanta	\$801,145	25,631	89,712	890,857	
Washington	\$801,145	29,330	102,658	903,803	
Los Angeles	\$801,145	45	158	801,303	

* Includes 80% efficiency of gas use

• Turbine – CHP – Desiccant Cooling

LABS FOR THE 21ST CENTURY

ental Protection

Burt Hill Kosar Rittelmann Associates

	Gas Cost for Turbines	Gas Energy Auxiliary* 10 ⁶	Cost of Gas Energy	Total Annual Cost	
City	\$	Btu	\$	\$	
Pittsburgh	\$801,145	82,407	\$288,430	\$1,089,575	
Houston	\$801,145	145,112	507,896	1,309,041	
Phoenix	\$801,145	44,588	156,002	957,207	
Seattle	\$801,145	21,755	76,143	877,288	
Minneapolis	\$801,145	107,067	374,739	1,175,884	
Chicago	\$801,145	89,568	313,493	1,114,638	
Colorado Springs	\$801,145	37,641	131,746	932,891	
Atlanta	\$801,145	107,363	375,777	1,176,922	
Washington	\$801,145	99,966	349,884	1,151,029	
Los Angeles	\$801,145	68,311	239,093	1,040,238	

* Includes 80% efficiency of gas use

Comparison of Annual Operating Costs

 Base System, Absorption and Desiccant Systems – Turbines

Environmental Emissions

lbs/million Btu

Power Generation¹

LABS FOR THE 21ST CENTURY

- Sulphur Dioxide SO₂: 19.157 Metric Tons/MW
- Nitrogen Oxide NO_x: 7.894 Metric Tons/MW
- Gas Boilers²

Burt Hill Kosar Rittelmann Associates

- Particulates:
- SO_2 : 0.00057 lbs/million Btu $- NO_2$: **Ibs/million Btu**
- Micro Turbines³ $-NO_{x}$

- 0.1333
- lbs/kWh 0.00049

Sources:	1.	Tina M. Kaarsberg, "An Integrated Assessment of the Energy Saving and Emission Reductive Potential for CHP," Northeast, Midwest Institute
	2.	U.S. DOE, Publication DOE/EE-0217, Assessment of Donlee 3000 Horsepower Turbo-Fired XL Boiler
	3.	FEMP: Distributed Energy Sources: How To Guide

0.00095

Shadow Prices for Environmental Pollutants

Pollutant	Shadow Price US \$/kg
Carbon Dioxide CO ₂	\$0.017
Sulpher Dioxide SO ₂	\$1.800
Nitrogen Dioxide NO _x	\$1.086
Carbon Monoxide CO	\$0.562
Volatile Organic Compounds	\$398
Nitrous Oxide N ₂ O	\$2981
Methane CH ₄	\$170

<\$€PA

Burt Hill Kosar Rittelmann Associates

LABS FOR THE 21ST CENTURY

10 Mar 10 Mar 10

Source: Oakridge National Lab, 1995, The Effects of Considering Externalities on Electric Utilities Mix of Resources

Comparison of Air Emissions – Absorption Cooling

• Base Case, Fuel Cells and Turbine - Absorption

LABS FOR THE 21ST CENTURY

♥EPA

Burt Hill Kosar Rittelmann Associates

	All Quantities in Metric Ton/Year					
	Base Case ¹		Absorption Fuel Cell ²		Absorption Turbine ²	
	SO ₂	NO _X	SO ₂	NO _X	SO ₂	NO _X
Pittsburgh	49.05	26.05	0.026	6.14	0.0074	5.438
Houston	69.31	30.38	0.028	6.53	0.0119	6.492
Phoenix	60.02	26.57	0.017	4.48	0.0048	4.843
Seattle	40.86	21.24	0.014	3.30	0.0007	3.874
Minneapolis	48.05	27.65	0.034	7.99	0.0140	6.978
Chicago	49.37	26.73	0.027	6.78	0.0089	5.799
Colorado Springs	43.51	24.20	0.023	5.59	0.00697	5.333
Atlanta	59.11	27.70	0.024	5.69	0.00664	5.256
Washington	53.64	27.00	0.027	6.49	0.00759	5.480
Los Angeles	45.91	20.39	0.005	1.38	0.00001	3.709

1. Includes emissions from 1.9 MW power generation, power for chiller, and gas for heating

2. Emissions from auxiliary gas heating and for turbine emissions are negligible

Comparisons of Air Emissions – Desiccant Cooling

• Base Case, Fuel Cells and Turbine - Desiccant

LABS FOR THE 21ST CENTURY

10.000

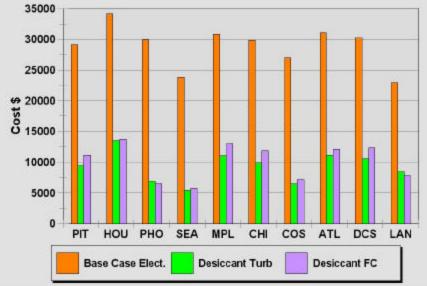
EPA

Burt Hill Kosar Rittelmann Associates

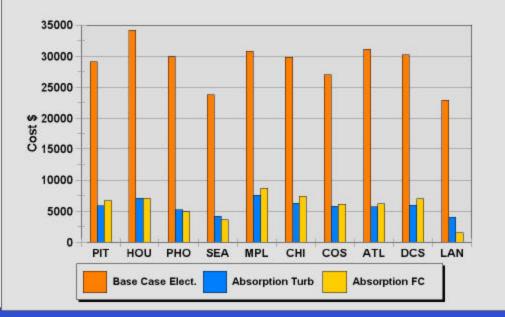
	All Quantities in Metric Ton/Year					
	Base Case ¹		Absorption Fuel Cell ²		Absorption Turbine ²	
	SO ₂	NO _X	SO ₂	NO _X	SO ₂	NO _X
Pittsburgh	49.05	26.05	0.043	10.21	0.0213	8.688
Houston	69.31	30.38	0.034	12.67	0.037	12.477
Phoenix	60.02	26.57	0.025	5.95	0.011	6.397
Seattle	40.86	21.24	0.022	5.33	0.005	5.017
Minneapolis	48.05	27.65	0.051	12.03	0.027	10.177
Chicago	49.37	26.73	0.046	10.93	0.023	9.117
Colorado Springs	43.51	24.20	0.028	6.55	0.009	5.977
Atlanta	59.11	27.70	0.047	11.18	0.027	10.197
Washington	53.64	27.00	0.048	11.36	0.025	9.747
Los Angeles	45.91	20.39	0.030	7.16	0.017	7.827

1. Includes emissions from 1.9 MW power generation, power for chiller, and gas for heating

2. Emissions from auxiliary gas heating and for turbine emissions are negligible


Comparison of Environmental Costs

ENVIRONMENTAL COST OF DESICCANT SYS FC & TURBINE USING SHADOW PRICES.


LABS FOR THE 21ST CENTURY

d States comental Protection

Burt Hill Kosar Rittelmann Associates

ENVIRONMENTAL COST OF ABSORPTION SYS FC & TURBINE USING SHADOW PRICES.

Summary and Conclusions

• In most climates, the heat from fuel cells provide about 25% of the total thermal energy requirements.

LABS FOR THE 21ST CENTURY

Kosar Rittelmann Associates

- The utilization of heat produced by fuel cell is between 75% and 92% for various cities. The rejection of fuel cell heat is small.
- For the microturbine generation, the system provides from 50% to 98% of the total thermal energy. The utilization of heat produced is from 50% to 80%.

Summary and Conclusions (cont'd)

• More heat is wasted or rejected for turbine systems than for fuel cell system.

LABS FOR THE 21ST CENTURY

- On a monthly basis the utilization of heat is low in swing months.
- In cooling dominated climates, more heat is rejected, primarily in winter months.
- In the desiccant system, the temperature of the exhaust air is quite high and can be used for heat recovery for service hot water, saves approximately \$50,000 per year.

Summary and Conclusions (cont.)

• The use of desiccant system allows the operation without "wet cooling coil," "drain pans," and cooling towers, thereby reducing molds and air quality issues.

LABS FOR THE 21ST CENTURY

- Most desiccants are also a bacteriacide which greatly improves indoor air quality and may help prevent "sick building syndrome".
- No reheat energy is required for desiccant cooling systems.
- Thermal based cooling allows the use of multiple fuels as heat sources.

Summary and Conclusions (cont'd)

- The operating cost based on energy alone, suggests that absorption systems have the lowest cost. However,
 - Absorption systems require larger cooling towers, thus increased maintenance
 - Require reheat energy for labs

LABS FOR THE 21ST CENTURY

Burt Hill Kosar Rittelmann Associates

- Part load efficiency may be lower

Summary and conclusions (cont'd)

- For desiccant cooling system, the operating cost based on energy, is still lower than base electric/gas system specifically:
 - No cooling towers are required

LABS FOR THE 21ST CENTURY

- Heat can be recovered from the exhaust
- Uses lower grade energy heat

Summary and Conclusions (cont'd)

• Fuel cell and natural gas systems significantly help air quality, especially in distressed air quality areas

LABS FOR THE 21ST CENTURY

- Very significant societal benefits are available from disturbed generation, based on shadow pricing of pollutants.
- Carefully designed distributed generation systems may reduce the total cost of building by not requiring large UPS, batteries, and other equipment.
- The thermal and electric loads must be optimized for every application.

Further Study

- Evaluate the distributed generation system coupled to variations of desiccant cooling.
 - Cooling and reheat

LABS FOR THE 21ST CENTURY

Kosar Rittelmann Associates

- Total recovery with conventional cooling and reheat
- Total recovery and free heat with dual wheel approach
- Heat regenerated based cooling and recovery, wheel hybrid

Further study (cont'd)

 Study desiccant based systems, with detailed calculations for energy distribution costs due to pressure drops in conventional system

LABS FOR THE 21ST CENTURY

- Couple a refrigerant-based heat pipe systems with desiccant cooling for energy recovery
- Evaluate the improved air quality bacteriacidal benefits of desiccant systems for lab air supply
- Study of the integration of high temperature fuel cells with building thermal systems

Thank You!