Positional cloning of the maternally-acting, selfish gene, Medea ${ }^{1}$, in Tribolium castaneum

Richard Beeman ${ }^{1}$, Sara Brown ${ }^{2}$, Beth Stone-Smith ${ }^{2}$, Andreas Gnirke ${ }^{3}$, Jeffrey Garnes ${ }^{3}$, Marguerite Trankiem ${ }^{3}$ and Kevin Keegan ${ }^{3}$. 1) USDA, ARS, GMPRC, Manhattan, KS ; 2) Div Biol, Kansas State Univ, Manhattan, KS; 3) Exelixis Pharmaceutical Co., Inc., South San Francisco, CA

For each step of the walk, either of two BAC libraries was hybridized with 36-mer "overgo" probes from end-sequences of BACs identified in the previous step. BACs were ordered and contigged by PCR based on end-sequences. The walk was oriented by high-resolution recombination mapping internal to the contig, left-of-Medea.

chromosome walk from X63
to Medea, in two BAC libraries

BACs indicated in dark blue were shotgun-sequenced

High-resolution recombinational mapping within sequenced BAC contig. Total numbers of recoms analyzed per interval are indicated (ca. 7000 chromosomes screened).

Gene map of au-to-Medea region

The aureate and Medea loci were positioned on the molecular sequence map using very high-resolution recombinational mapping (average recombinant spacing of 3 kb). The aureate and Medea loci map to within approximately 3 kb of scabrous and highwire, respectively. The localization of Medea relied on one-sided mapping, and therefore assumes the absence of a recombination coldspot in the immediate vicinity of that locus.

Summary and conclusions: We have demonstrated the feasibility of positional cloning in Tribolium by chromosome walking in a BAC library. Two genes, aureate and the unique, maternal selfish gene Medea, defined only by phenotypic effect, were cloned and mapped to the scabrous and highwire regions, respectively, using very high-resolution recombinational mapping. Confirmation will include molecular mapping of seven Medea revertant (knockout) lesions induced by radiation, mapping of one spontaneous and one radiation-induced mutant lesion in aureate, and expression analysis of the candidate genes in mutant beetles.

