Improvements in the Surface-Only Flux Algorithms (SOFA) Since the First CERES-II Science Team Meeting

David P. Kratz¹, Shashi K. Gupta², Anne C. Wilber², and Victor E. Sothcott²

¹NASA Langley Research Center ²Science Systems and Applications, Inc.

Ninth CERES-II Science Team Meeting

Newport News, Virginia 6-8 May 2008

Background

 CERES uses several surface-only flux algorithms to compute SW and LW surface fluxes in conjunction with the detailed model used by SARB. These algorithms include:

LPSA/LPLA:	
Langley Parameterized	S
SW/LW Algorithm	
<u> </u>	

		Model A	Model B	Model C
	Clear	Li et al.	LPSA	
SW	All-Sky		LPSA	
LW	Clear	Inamdar and Ramanathan	LPLA	Zhou-Cess
	All-Sky		LPLA	Zhou-Cess

References:

- SW A: Li et al. (1993): *J. Climate*, **6**, 1764-1772.
- SW B: Darnell et al. (1992): *J Geophys. Res.*, **97**, 15741-15760. Gupta et al. (2001): *NASA/TP-2001-211272*, 31 pp.
- LW A: Inamdar and Ramanathan (1997): Tellus, 49B, 216-230.
- LW B: Gupta et al. (1992): J. Appl. Meteor., 31, 1361-1367.
- LW C: Zhou and Cess (2001): *J. Geophys. Res.*, **106**, 12477-12488. Zhou et al. (2007): *J. Geophys. Res.*, **112**, D15102.

Background (contd.)

- The SOFA SW & LW Models use rapid parameterizations to calculate the transfer of energy from TOA to surface.
- The SOFA calculated surface fluxes have undergone extensive validation and act as an independent verification of the SARB results.
- SW Model A and LW Models A & B were incorporated at the start of the CERES project.
- SW Model B was adapted for use in the CERES processing shortly before the launch of TRMM.
- LW Model C to be introduced in Edition-3 processing to maintain two independent LW algorithms should the CERES Window Channel be replaced in future versions of the CERES instrument.

SW Algorithm Improvements

- SW Model A: Replaced GFDL aerosol optical depths with 550nm MATCH aerosol optical depths (Aqua Edition 2A).
- SW Model B: Replaced monthly climatological clear-sky TOA albedo maps based on ERBE data with corresponding albedo maps based on 46 months of Terra data (Aqua Edition 2A).
- SW Model B: Corrected a code limitation that prevented flux calculation for O₃ column abundances exceeding 500 Dobson units (Edition 3).
- SW Model B: Modified formulation to provide a more realistic dependence of instantaneous surface albedo on cosine of the solar zenith angle (Edition 3).

SW Algorithm Improvements

- SW Model A: Replaced GFDL aerosol optical depths with 550nm MATCH aerosol optical depths (Aqua Edition 2A).
- SW Model B: Replaced monthly climatological clear-sky TOA albedo maps based on ERBE data with corresponding albedo maps based on 46 months of Terra data (Aqua Edition 2A).
- SW Model B: Corrected a code limitation that prevented flux calculation for O₃ column abundances exceeding 500 Dobson units (Edition 3).
- SW Model B: Modified formulation to provide a more realistic dependence of instantaneous surface albedo on cosine of the solar zenith angle (Edition 3).

Shortwave Model A; Aqua 1B and Aqua 2B

Sites # of points		Aqua 1B	Aqua2B
Continental	Bias Wm ⁻² (%)	-10.2 (-1.5)	-12.1 (-1.8)
896	σ Wm⁻² (%)	31.3 (4.6)	29.4 (4.3)
Coastal	Bias Wm ⁻² (%)	6.8 (1.0)	1.3 (0.2)
99	σ Wm⁻² (%)	35.3 (5.3)	31.5 (4.7)
Desert	Bias Wm ⁻² (%)	-25.8 (-3.2)	-27.9 (-3.5)
519	σ Wm⁻² (%)	61.7 (7.6)	62.9 (7.8)
Island	Bias Wm ⁻² (%)	37.3 (4.4)	45.2 (5.3)
32	σ Wm⁻² (%)	71.6 (8.4)	69.3 (8.1)
Polar	Bias Wm ⁻² (%)	-51.6 (-12.0)	-46.5 (-10.9)
288	σ Wm⁻² (%)	26.3 (6.1)	22.8 (5.3)
Global	Bias Wm ⁻² (%)	-19.3 (-2.8)	-20.4 (-3.0)
1834	σ Wm⁻² (%)	49.8 (7.3)	48.9 (7.2)

SW Model A Clear-Sky Comparisons, 1 minute data

SW Model A Clear-Sky Comparisons, 1 minute data

Sites	# of Points	Mean Bias W/m ⁻² (%)	Random Error Wm ⁻² (%)
Continental	1345	-10.2 (-1.4)	32.4 (4.6)
Coastal	132	0.5 (0.1)	31.8 (4.6)
Desert	658	-27.5 (-3.4)	57.4 (7.1)
Island	43	43.2 (5.0)	69.6 (8.1)
Polar	338	-45.8 (-10.8)	23.3 (5.5)
Global	2516	-18.1 (-2.6)	46.9 (6.7)

Shortwave Measured at Islands

SW Algorithm Improvements

- SW Model A: Replaced GFDL aerosol optical depths with 550nm MATCH aerosol optical depths (Aqua Edition 2A).
- SW Model B: Replaced monthly climatological clear-sky TOA albedo maps based on ERBE data with corresponding albedo maps based on 46 months of Terra data (Aqua Edition 2A).
- SW Model B: Corrected a code limitation that prevented flux calculation for O₃ column abundances exceeding 500 Dobson units (Edition 3).
- SW Model B: Modified formulation to provide a more realistic dependence of instantaneous surface albedo on cosine of the solar zenith angle (Edition 3).

SWB All-sky Aqua 1B ERBE-derived TOA albedo Polar (BAR, SPL, NYA, GVN and SYO)

SWB All-sky Aqua 1B ERBE-derived TOA albedo Polar (BAR, SPL and NYA)

SWB All-sky Aqua 1B ERBE-derived TOA albedo Polar (GVN and SYO)

TOA Albedo Aqua2B - Aqua1B January

SWB Aqua2B - Aqua1B 2004/01/04

SWB 2B - ΤΒ (TUA and Surface Fluxes) Data Range: υστατίνα - Ζρτοθίοθι (Π. Ζροβρους Π)

/Volumes/insanity/CERES/SOFA/archive_data/awilber/Aqua2B/hdf_200401/CER_SSF_Aqua-FM4-MODIS_Edition2B_034039.2004010400 Mon Apr 28 10:11:04 2008

Criterion: 0.00000 <= CERES solar zenith at surface (Viewing Angles) <= 90.0000

SWB All-sky Aqua 2B Terra-derived TOA albedo Polar (GVN and SYO)

SWB All-sky Aqua 2B Terra-derived TOA albedo Polar (BAR, SPL, NYA, GVN and SYO)

Shortwave Model B; Aqua 1B and Aqua 2B All-sky

Sites # of points		Aqua 1B	Aqua2B
Continental	Bias Wm ⁻² (%)	17.0 (3.4)	20.2 (4.0)
5928	σ Wm⁻² (%)	81.3 (16.0)	75.7 (14.9)
Coastal	Bias Wm ⁻² (%)	20.7 (4.0)	25.1 (4.9)
951	σ Wm⁻² (%)	86.4 (16.8)	85.5 (16.6)
Desert	Bias Wm ⁻² (%)	-15.2 (-2.2)	-6.6 (-1.0)
2547	σ Wm⁻² (%)	92.8 (13.6)	82.6 (12.1)
Island	Bias Wm ⁻² (%)	64.5 (10.3)	56.1 (8.9)
2077	σ Wm⁻² (%)	106.3 (16.9)	106.5 (17.0)
Polar	Bias Wm ⁻² (%)	-14.4 (-5.7)	6.8 (2.7)
6893	σ Wm⁻² (%)	86.0 (34.2)	68.1 (27.1)
Global	Bias Wm ⁻² (%)	6.4 (1.4)	15.8 (3.5)
18396	σ Wm⁻² (%)	98.3 (21.9)	84.6 (18.8)

SW Algorithm Improvements

- SW Model A: Replaced GFDL aerosol optical depths with 550nm MATCH aerosol optical depths (Aqua Edition 2A).
- SW Model B: Replaced monthly climatological clear-sky TOA albedo maps based on ERBE data with corresponding albedo maps based on 46 months of Terra data (Aqua Edition 2A).
- SW Model B: Corrected a code limitation that prevented flux calculation for O₃ column abundances exceeding 500 Dobson units (Edition 3).
- SW Model B: Modified formulation to provide a more realistic dependence of instantaneous surface albedo on cosine of the solar zenith angle (Edition 3).

SWB 2004/03/12 Missing fluxes due to not include $O_3 > 500 \text{ DU}$

SWB (Viewing Angles) Data Range: 00:0000 - 20:09:09 (11: 200072: 1)

/Volumes/insanity/CERES/SOFA/archive_data/awilber/Aqua2B/hdf_200403/CER_SSF_Aqua=FM4=MODIS_Edition2B_034039.2004031200 Thu Apr 24 12:41:42 2008

Criterion: 0.00000 <= CERES solar zenith at surface (Viewing Angles) <= 90.0000

Ozone Environment Canada

Total ozone (DU) / Ozone total (UD), 2004/03/12

SW Algorithm Improvements

- SW Model A: Replaced GFDL aerosol optical depths with 550nm MATCH aerosol optical depths (Aqua Edition 2A).
- SW Model B: Replaced monthly climatological clear-sky TOA albedo maps based on ERBE data with corresponding albedo maps based on 46 months of Terra data (Aqua Edition 2A).
- SW Model B: Corrected a code limitation that prevented flux calculation for O₃ column abundances exceeding 500 Dobson units (Edition 3).
- SW Model B: Modified formulation to provide a more realistic dependence of instantaneous surface albedo on cosine of the solar zenith angle (Edition 3).

Surface Albedo at ARM SGP July 2004

SW Algorithm Improvements (Tentative)

- SW Model B: Investigating the reasons why validation studies show large differences between cases involving clear-sky and cloudy-sky conditions (Hopefully ready for Edition 3).
- SW Model B: Investigating the possibility of replacing WCP-55 aerosol optical depths with broadband MATCH aerosol optical depths (Hopefully ready for Edition 3).
- SW Model B: Investigating the possibility of replacing single scattering albedos and asymmetry parameters provided by Staylor with the corresponding values from OPAC - Optical Properties of Aerosols & Clouds (Hopefully ready for Edition 3).

SWB SGP Terra2B

SW Model B Clear-Sky Comparisons, 1 minute data

SW Model B Clear-Sky Comparisons, 1 minute data

Sites	# of Points	Mean Bias W/m⁻² (%)	Random Error Wm⁻² (%)
Continental	1351	-23.2 (-3.3)	29.7 (4.2)
Coastal	134	-2.4 (-0.3)	28.7 (4.1)
Desert	664	-25.4 (-3.1)	43.2 (5.3)
Island	43	26.0 (3.0)	66.8 (7.8)
Polar	353	-2.4 (-0.6)	13.6 (3.3)
Global	2545	-19.0 (-2.7)	36.9 (5.3)

SW Model B All-Sky Comparisons, 60 minute data

SW Model B All-Sky Comparisons, 60 minute data

Sites	# of Points	Mean Bias W/m ⁻² (%)	Random Error Wm⁻² (%)
Continental	8114	20.3 (3.8)	74.1 (14.0)
Coastal	1358	28.3 (5.3)	83.5 (15.6)
Desert	3223	-4.9 (-0.7)	82.0 (12.0)
Island	2900	54.1 (8.5)	103.5 (16.3)
Polar	8837	8.3 (3.3)	66.9 (27.0)
Global	24432	17.1 (3.7)	83.4 (18.1)

LW Algorithm Improvements

- LW Model B: Modified to successfully calculate cloud effects for high altitude regions, such as Tibet, where cloud base heights were often not available from the SSF (Aqua Edition 2A).
- LW Model C: Reformulated to handle cases involving cirrus and low water vapor amounts (Edition 3).
- LW Model C: Currently in the process of being incorporated into CERES processing (Edition 3).
- LW Models A, B & C: Implemented near-surface air-temperature constraint to handle cases where the skin surface temperature greatly exceeds the overlying air temperatures, e.g., daytime deserts and cold continental outbreak events over oceans (Edition 3).

Status of LW Models A & B for Aqua 2B

LW Model A Clear-Sky Comparisons, 1 minute data

LW Model A Clear-Sky Comparisons, 1 minute data

Sites	# of Points	Mean Bias W/m ⁻² (%)	Random Error Wm ⁻² (%)
Continental	3647	-5.1 (-1.8)	13.4 (4.6)
Coastal	455	5.0 (1.7)	12.9 (4.5)
Desert	1669	0.0 (0.0)	24.3 (8.0)
Island	118	0.3 (0.1)	11.6 (3.0)
Polar	960	-15.0 (-12.9)	11.7 (10.0)
Global	6849	-4.5 (-1.7)	17.3 (6.4)

LW Model B Clear-Sky Comparisons, 1 minute data

LW Model B Clear-Sky Comparisons, 1 minute data

Sites	# of Points	Mean Bias W/m ⁻² (%)	Random Error Wm⁻² (%)
Continental	3663	-8.0 (-2.8)	13.1 (4.5)
Coastal	460	-0.2 (-0.1)	13.4 (4.7)
Desert	1681	-4.0 (-1.3)	22.7 (7.4)
Island	119	2.5 (0.6)	13.3 (3.4)
Polar	972	-8.8 (-7.5)	11.3 (9.7)
Global	6895	-6.4 (-2.4)	16.4 (6.1)

LW Model B All-Sky Comparisons, 1 minute data

Sites	# of Points	Mean Bias W/m ⁻² (%)	Random Error Wm⁻² (%)
Continental	16475	-4.8 (-1.5)	19.9 (6.3)
Coastal	2748	4.2 (1.2)	21.5 (6.4)
Desert	5812	5.1 (1.6)	28.7 (8.9)
Island	5819	5.4 (1.3)	14.8 (3.6)
Polar	19727	-8.1 (-3.8)	26.9 (12.5)
Global	50581	-3.3 (-1.1)	25.0 (8.6)

LW Algorithm Improvements

- LW Model B: Modified to successfully calculate cloud effects for high altitude regions, such as Tibet, where cloud base heights were often not available from the SSF (Aqua Edition 2A).
- LW Model C: Reformulated to handle cases involving cirrus and low water vapor amounts (Edition 3).
- LW Model C: Currently in the process of being incorporated into CERES processing (Edition 3).
- LW Models A, B & C: Implemented near-surface air-temperature constraint to handle cases where the skin surface temperature greatly exceeds the overlying air temperatures, e.g., daytime deserts and cold continental outbreak events over oceans (Edition 3).

Longwave All-sky Polar

Longwave All-sky Polar

LW Algorithm Improvements

- LW Model B: Modified to successfully calculate cloud effects for high altitude regions, such as Tibet, where cloud base heights were often not available from the SSF (Aqua Edition 2A).
- LW Model C: Reformulated to handle cases involving cirrus and low water vapor amounts (Edition 3).
- LW Model C: Currently in the process of being incorporated into CERES processing (Edition 3).
- LW Models A, B & C: Implemented near-surface air-temperature constraint to handle cases where the skin surface temperature greatly exceeds the overlying air temperatures, e.g., daytime deserts and cold continental outbreak events over oceans (Edition 3).

Original and Modified Computation - Alice Springs

Bias for Alice Springs is greatly reduced

Conclusions

- SW Model A provides satisfactory global flux retrievals, though there remain problems with cloud contamination and significant flux underestimations for cases with low water vapor amounts.
- SW Model B has been improved significantly; however, additional improvements are still required.
- LW Models A provides very good clear-sky results for most validation sites; however, the polar sites yield a modest negative bias due to a known discrepancy at low water vapor amounts.
- LW Models B & C provide very good clear-sky and all-sky results for all of the validation sites that were considered.

