Title: Go With The Flow!

Brief Overview:

In this three-lesson unit, students will be introduced to flow chart proofs. Students will become familiar with the flow chart format by using them to organize real life scenarios, and then use what they have learned to prove triangle congruence. The methods within the lessons stress logically sequencing definitions, postulates and theorems, as well as finding the essential elements necessary to lead into one of the triangle congruence postulates. It is assumed that students have experience with SSS, SAS, AAS, ASA and HL postulates.

NCTM Content Standard/National Science Education Standard:

Geometry

- Recognize reasoning and proof as fundamental aspects of mathematics.
- Make and investigate mathematical conjectures.
- Develop and evaluate mathematical arguments and proofs.
- Select and use various types of reasoning and methods of proof.
- Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships.
- Use visualization, spatial reasoning, and geometric modeling to solve problems.

Grade/Level:

Grades 9 - 12, Geometry

Duration/Length:

Three 90 minute periods.

Student Outcomes:

Students will be able to:

- Use logical reasoning to complete triangle congruency proofs.
- Analyze triangles in order to identify essential information and postulate to complete a proof.

Materials and Resources:

- Flow chart and worksheets on overhead transparency sheets
- Overhead markers
- Sentence strips with magnets or tape
- Scissors
- Glue sticks or tape
- Worksheets:
- Real Life Proofs
- Identifying Triangle Congruency
- Flow Chart Proofs \#1-5
- Cut 'n Paste template
- Missing Parts
- Flow Chart Proofs \#6 - 14
- Two Column Proofs
- Proofs \#15-19
- More Two Column Proofs
- Flow Chart Template
- Round Table Proofs

Development/Procedures:

Lesson 1 Launch - Introduce the idea of flow chart proof using the "making a peanut butter and jelly sandwich" example from the "Real Life Proofs" worksheets.

To use the flow chart, "preliminary information" goes in the dotted ellipses. This information does not contribute directly to forming the sandwich. "Essential steps/ingredients" go in the three solid squares below the dotted ellipses. Reasons for each step go on the lines below each shape.

In this example, students do not need to use the fourth dotted ellipse, for the proof is complete after the step where students eat the sandwich.

Continue with the "writing a research paper" from "Real Life Proofs", allowing students to volunteer the majority of inputs. Allow students to complete "going to the mall" in pairs at their seats. Note that answers for these proofs don't need to match the provided answer key exactly, but students should have the general idea presented in the solutions. After reviewing their solutions, students should pose their own givens and ultimate goals to their partners and challenge them to complete a flow chart proof.

Preassessment - Distribute "Identifying Triangle Congruency" for postulate and theorem review.

Teacher Facilitation - Model completing a triangle congruence proof with given statements and reasons, using "Flow Chart Proof \#1". The instructor should link these proofs with the previous real life examples by emphasizing that "essential ingredients" to a triangle congruence proof are the angles and sides that are
congruent (e.g. SAS). This information is always placed in the solid squares. Any "preliminary information" will be information which leads to essential information, and is written in the dotted ellipses. For example, "preliminary information" might be that an angle bisector exists, which will lead to the "essential information" of two angles being congruent. The fourth solid square will state the triangles now proven congruent by the essential information. The blank underneath the fourth square will be filled in with the appropriate triangle congruency theorem or postulate.

For "Flow Chart Proof \#2", give students statements and reasons to cut and paste from the "Cut ' n Paste" template. Use magnetic sentence strips to model how to match the "Cut ' n Paste" strips into the flow chart as students complete the proof at their desks. Encourage students to first sort through the strips to identify those that are reasons, and those that are statements. It is also helpful to identify which strips are the given information, and which strips are added information. For an added visual technique, project a flow chart on the board and put sentence strips on board within the projected image of the flow chart. Stress to students that the dotted circles on the flow chart may or may not need to be used. These are for preliminary information that does not contribute directly to a triangle congruence theorem, but can be used as stepping stones to the facts that one can use to prove triangles congruent.

Student Application -Distribute the remaining proofs from "Flow Chart Proofs \#1-5". Student should cut out sentence strips for each proof, sort them, and then complete the proofs. They should only do one proof at a time to avoid mixing up statements and reasons from each proof. Take appropriate breaks to review solutions to the proofs on the board, and determine breaks based upon the understanding of the students.

Embedded Assessment - Partway through class, the instructor can ask groups of students to put their solutions to proofs on the board or present them to the class. Classmates can ask each other questions based on their presentations to clarify any confusion.

Reteaching/Extension -

- Encourage students who finish the four cut and paste proofs to redo proof \#5 without cutting and pasting, trying to find an alternative postulate to prove congruency. Refer to the answer key for Proof \#5 for alternative solutions. They will be asked to find a second solution to the problem.
- For those students who have not finished their original proofs, they may continue to work on them with increased instructor assistance

Lesson 2

Lesson 3

Preassessment - Warm up with the worksheet "Missing Parts", which asks students to identify missing information necessary to prove triangles congruent.

Launch - Students will complete Proof \#6 in pairs, since they will have to complete the proof without cut-out strips.

Teacher Facilitation - Use proof \# 6 to introduce into corresponding parts of congruent triangles are congruent (CPCTC). Ask students why they can make the statement that $\overline{J M} \cong \overline{K M}$. Students should respond or be led to the reason CPCTC. Inform students that this is entered in the last dotted ellipse, and stress the importance of the flow. That is, CPCTC cannot be assumed until congruency has been proven.

Student Application - Students will complete Proofs \#7-14 using flow charts.

Embedded Assessment - Each group will present one of the proofs on overhead.

Reteaching/Extension -

- Students experiencing difficulty can finish their proofs with increased instructor assistance.
- Students who have finished their proofs with a good understanding will expand on their ideas in their presented proof to create their own form of proof (e.g. a proof using something other than a flow chart).
- Students should discuss their ideas in small groups; the instructor should not lead them to any conclusions. The instructor should simply ask if students can rewrite the proof without the boxes, circles and arrows, such that a third party could read and understand the statements and reasons in order.

Preassessment - Distribute "Two Column Proofs", in which students will complete two proofs in two-column form, one of which has all the statements and the reasons are missing and the other which supplies the reasons and asks for the statements.

Launch - Have the students present and discuss their solutions, and compare and contrast the two-column form to the flow chart. This
discussion can be in the form of a "think-pair-share" focused around the questions "Which form of proof do you prefer and why?" and "Which form of proof do you think a third party would find easiest to understand and why?"

Teacher Facilitation - Discuss the alternative forms of proof completed during "reteaching/ extension". Students may or may not have suggested two-column proofs. If so, allow the student to explain their reasoning and methods. The students may also have suggested additional valid proof methods; encourage them to share their ideas with the class.

Student Application - Students will complete Proofs \#15-19 using the proof method of their choice. Encourage students to use more than one method on all proofs. For those that choose flow charts, provide copies of the "Flow Chart Template."

Embedded Assessment - Organize students into groups of 3 or 4 in a circle, or a shape that allows passing of paper. Each individual is given a half a sheet of paper with a two-column proof from "Round Table Proofs" worksheet. Each proof has six pieces of information missing. Each student should write their name at the top of the paper, and draw a picture describing the given information. Then they pass their paper to the person to their left who writes their name at the top and completes the first line of missing information. They pass it to the next member, and this continues until the proof is completed. After the last line is completed, the paper should be returned to its original owner, who will be responsible for checking the group's answers. If they wish to make changes they must discuss changes as a group.

Reteaching/Extension -

- Students should write 3-4 sentences about how they work through proofs. Prompt students, asking them, "What's the first thing you do when you see a proof?", "How do you know what comes first, or last?", and "Which proof format do you now think is the best, and why?"

Summative Assessment:

The instructor should instruct students to combine proofs \#1-19 for a portfolio on proofs. In addition they should create their own proof, providing a labeled drawing of two triangles, givens, statements and reasons mixed up and an answer key.

Authors:

Madeline Ahearn
Baltimore Freedom Academy
Baltimore, MD

Marla Sanders
New Town High School
Owings Mills, MD

Real Life Proofs

Given: You have peanut butter in your cabinet, jelly in your refrigerator.
Ultimate Goal: You want to eat a peanut butter and jelly sandwich.

Given

Put the slices of bread (with peanut butter and jelly spread on them) together to form a sandwich.

PB is necessary for a PBJ sandwich
Jelly is needed for a PBJ sandwich

Given: You have reference books, Wikipedia, and a computer with Microsoft Word software.
Ultimate Goal: You need to write a research paper.

Given: Your mom has money, your dad has a car, and your friends are at home Ultimate Goal: You want to go to the mall

Given: Your mom has money, your dad has a car, and your friends are at home Ultimate Goal: You want to go to the mall

Identifying Triangle Congruency
Name: \qquad
Date: \qquad
For each example, choose the proper triangle congruency postulate theorem to use to prove triangles congruent.

2.

$\overline{F H} / / \overline{K L}$
3.

4.

$$
\begin{aligned}
& \overline{A E} \cong \overline{D E} \\
& \overline{B E} \cong \overline{C E}
\end{aligned}
$$

B is the midpoint of $\overline{A D}$

$$
\begin{aligned}
& \overline{B C} / / \overline{D E} \\
& \angle C \cong \angle E
\end{aligned}
$$

5.

$\angle M Q N \cong \angle K R L$
$\overline{K Q} \cong \overline{M R}$
$\angle K \cong \angle M$
6.

$$
\begin{aligned}
& \angle A B D \cong \angle C B D \\
& \angle A \cong \angle C
\end{aligned}
$$

7.

$\triangle L M P$ and $\triangle N M P$ are right triangles
P is the midpoint of $\overline{L N}$

Identifying Triangle Congruency
Name: _ANSWER KEY \qquad
Date: \qquad
For each example, choose the proper triangle congruency postulate theorem to use to prove triangles congruent.

2.

$\overline{F H} / / \overline{K L}$
ANSWER: ASA
3.

$$
\begin{aligned}
& \overline{A E} \cong \overline{D E} \\
& \overline{B E} \cong \overline{C E}
\end{aligned}
$$

4.

B is the midpoint of $\overline{A D}$

$$
\begin{aligned}
& \overline{B C} / / \overline{D E} \\
& \angle C \cong \angle E
\end{aligned}
$$

ANSWER: AAS
5.

$\angle M Q N \cong \angle K R L$

$$
\overline{K Q} \cong \overline{M R}
$$

$$
\angle K \cong \angle M \quad \text { ANSWER: ASA }
$$

6.

$$
\begin{aligned}
& \angle A B D \cong \angle C B D \\
& \angle A \cong \angle C \\
& \quad \text { ANSWER: AAS }
\end{aligned}
$$

7.

$\triangle L M P$ and $\triangle N M P$ are right triangles
P is the midpoint of $\overline{L N}$
ANSWER: HL or SAS

Flow Chart Proofs \#1-5
Proof \#1
Given: $\begin{array}{ll}\overline{Y Z} \cong \overline{W Z} \\ & \overline{Z V} \cong \overline{Z X}\end{array}$

Prove: $\quad V Y Z \cong X W Z$

ป

Flow Chart Proofs \#1-5
Proof \#1 ANSWER KEY
Given: $\overline{Y Z} \cong \overline{W Z}$
$\overline{Z V} \cong \overline{Z X}$
Prove: $\quad V Y Z \cong X W Z$

Given

Given
$\angle Y Z V \cong \angle W Z X$

Vertical Angles

Proof \#2

Given: $\angle M P L$ and $\angle M P N$ are right angles
$\overline{L P} \cong \overline{N P}$

Prove: $L M P \cong N M P$

Proof \#2 ANSWER KEY

Given: $\angle M P L$ and $\angle M P N$ are right angles
$\overline{L P} \cong \overline{N P}$

Prove: $\quad L M P \cong N M P$

Given

Defn. of a right triangle
Given
Given
Reflexive Pron
$L M P \cong N M P$

Proof \#3

Given: $\quad J K L M$ is a rectangle
Prove: $\quad J L M \cong L J K$

Given: $J K L M$ is a rectangle
Prove: $\quad J L M \cong L J K$

$$
\frac{\sqrt{\square}}{\overline{J L} \cong \overline{J L}}
$$

Opp. sides of a rect. are congruent
Reflexive Prop.

Proof \#4

Given: $\overline{Q U} / / \overline{T S}, R$ is the midpoint of $\overline{Q T}$
Prove: $\triangle R Q U \cong \triangle R T S$

Proof \#4 ANSWER KEY

Given: $\overline{Q U} / / \overline{T S}, R$ is the midpoint of $\overline{Q T}$
Prove: $\triangle R Q U \cong \triangle R T S$

Alternate Interior Angles

\sqrt{n}

$$
\angle Q R U \cong \angle T R S
$$

Definition of a Midpoint

$$
\frac{R Q U \cong R T S}{\mathrm{ASA}}
$$

Proof \#5

Given: $\quad S T U V$ is a parallelogram
Prove: $\quad U T W \cong S V W$

Cut 'n Paste Template
Cut N' Paste - Proof \#2

$L M P \cong N M P$	$\overline{M P} \cong \overline{M P}$	Given
$\angle \mathrm{MPL}$ and $\angle \mathrm{MPN}$ are right angles	Given	Defn. of a right triangle
HL	$\overline{L P} \cong \overline{N P}$	Reflexive Prop.
$\Delta \mathrm{MPL}$ and $\triangle \mathrm{MPN}$ are right triangles		

Cut N' ${ }^{\prime}$ Paste $=$ Proof \#3

$\overline{J M} \cong \overline{L K}$	$J L M \cong L J K$	Given
Opp. sides of a rect. are congruent	$\overline{J K} \cong \overline{L M}$	JKLM is a rectangle
SSS	Opp. sides of a rect. are congruent	Reflexive Prop.
$\overline{J L} \cong \overline{J L}$	JKLM is a rectangle	Given

Cut N' ${ }^{\prime}$ Paste $=$ Proof \#4

$R Q U \cong R T S$	$\angle Q R U \cong \angle T R S$	Given
Definition of a Midpoint	ASA	$\overline{Q R} \cong \overline{T R}$
$\angle Q \cong \angle T$	Vertical Angles	R is the midpoint of QT
$\overline{Q U} / / \overline{T S}$	Alternate Interior Angles	Given

Cut N' Paste $=$ Proof \#5

Diags of a //ogram bisect each other	$\angle T W U \cong \angle V W S$	Given
Diags of a //ogram bisect each other	$\overline{W U} \cong \overline{W S}$	$U T W \cong S V W$
STUV is a parallelogram	Vertical Angles	$\overline{W T} \cong \overline{W V}$
SAS	$S T U V$ is a parallelogram	Given

Other possible solutions to proof \#5 (extension, day 1)

Name: \qquad
Date: \qquad
Directions: For each picture, decide what other parts need to be congruent in order to prove the triangles congruent using the given postulate or theorem. Mark the correct congruent parts on your picture.

Using SSS
3.

Using ASA
5.

Using AAS
2.

Using SAS
4.

Using HL
6.

Using HL
\qquad
\qquad
Directions: For each picture, decide what other parts need to be congruent in order to prove the triangles congruent using the given postulate or theorem. Mark the correct congruent parts on your picture.
1.

Using SSS

3.

Using ASA
5.

Using AAS
The third angle is another alternative
2.

Using SAS
4.

Using HL
The triangles need to be right triangles

Using HL
The left and right sides could also be congruent.

Proof \#6
Given: $\quad P M L$ is isosceles
$\angle J L K$ and $\angle K M J$ are right angles
Prove: $\quad J M P \cong K L P$

Proof \#6 ANSWER KEY

Given: $\quad P M L$ is isosceles
$\angle J L K$ and $\angle K M J$ are right angles
Prove: $\quad J M P \cong K L P$

Defn. Isosceles Triangle

All right angles are congruent

$J M P \cong K L P$

AAS

Proof \#7
Given: $\angle C B D \cong \angle A B D$
$\angle C \cong \angle A$
Prove: $\angle C D B \cong \angle A D B$ using triangle congruence

\qquad

Proof \#7 ANSWER KEY

Given: $\angle C B D \cong \angle A B D$
$\angle C \cong \angle A$
Prove: $\angle C D B \cong \angle A D B$ using triangle congruence

Given
Given
C

C

B
$\sqrt{6}$

$\overline{B D} \cong \overline{B D}$

Proof \#8
Given: $\overline{H G} \cong \overline{J F}$
$\overline{H F} \cong \overline{J G}$
Prove: $\angle J G F \cong \angle H F G$

Ω

Proof \#8 ANSWER KEY
Given: $\overline{H G} \cong \overline{J F}$
$\overline{H F} \cong \overline{J G}$
Prove: $\angle J G F \cong \angle H F G$

Reflexive Property

Proof \#9
Given: $\angle K J N$ and $\angle M N J$ are right angles $\overline{J M} \cong \overline{N K}$

Prove: $\angle M J N \cong \angle K N J$

$\sqrt{5}$

Sis

\qquad

Proof \#9 ANSWER KEY
Given: $\angle K J N$ and $\angle M N J$ are right angles $\overline{J M} \cong \overline{N K}$

Prove: $\angle M J N \cong \angle K N J$

Given

Proof \#10
Given: $\overline{D F}$ bisects $\angle \mathrm{GDE}$ $\overline{D G} \cong \overline{D E}$

Prove: $\quad \angle G \cong \angle E$

Proof \#10 ANSWER KEY

Given: $\overline{D F}$ bisects $\angle \mathrm{GDE}$ $\overline{D G} \cong \overline{D E}$

Prove: $\angle G \cong \angle E$

Proof \#11
Given: $J K L$ is an isosceles triangle $\overline{K M}$ is an angle bisector

Prove: $\overline{J M} \cong \overline{L M}$

\qquad
\qquad

』

Proof \#11 ANSWER KEY

Given: $J K L$ is an isosceles triangle $\overline{K M}$ is an angle bisector

Prove: $\overline{J M} \cong \overline{L M}$

$\sqrt{\Omega}$
A: $\angle J \cong \angle L$
Or
B: $\overline{J K} \cong \overline{L K}$

A: Isos. Triangle Theorem Or
B: Defin. Isos. Triangle

A: AAS or B: SAS

Proof \#12

Given:
$\overline{L H}$ and $\overline{\mathrm{JM}}$ bisect each other at K

Prove: $\overline{H J} \cong \overline{M L}$

Proof \#12 ANSWER KEY
Given: $\begin{aligned} & \overline{L H} \text { and } \overline{\mathrm{JM}} \text { bisect } \\ & \text { each other at } \mathrm{K}\end{aligned}$
Prove: $\overline{H J} \cong \overline{M L}$

$\sqrt{\Omega}$

Defn. of a bisector

Defn. of a bisector

Proof \#13
Given: $A B C D$ is a rectangle

Prove: $\angle B D C \cong \angle A C D$

Proof \#13 ANSWER KEY
Given: $A B C D$ is a rectangle

Prove: $\angle B D C \cong \angle A C D$

Diags. of a rectangle are congruent

HL

СРСТС

Proof \#14
Given: $R P M K I G$ is a regular hexagon $F N J$ is equilateral

Prove: $\angle F G R \cong \angle N M P$
exagon

Prove $\angle F G R=\angle N M P$

,

Proof \#14 ANSWER KEY
Given: $R P M K I G$ is a regular hexagon $F N J$ is equilateral

Prove: $\angle F G R \cong \angle N M P$

Given

Defn. regular polygons

Defn. regular polygons

1.

Given: $\overline{R T} / / \overline{K S}, \overline{K R} / / \overline{S T}$
Prove: $K R S \cong T S R$
Name: \qquad
Date: \qquad
STATEMENTS

1. $\overline{R T} / / \overline{K S}$
2. $\angle T R S \cong \angle R S K$
3. $\overline{K R} / / \overline{S T}$
4. $K R T S$ is a parallelogram
5. $\angle R K S \cong \angle S T R$
6. $\overline{R S} \cong \overline{R S}$
7. $\Delta K R S \cong \triangle T S R$

REASONS

2.
3.
4.
5.
6.
7.
8.

Given: $\quad \overline{G H} \cong \overline{I J}, \overline{G Y} / / \overline{H X}, \overline{I Y} / / \overline{J X}$
Prove: $G Y I \cong H X J$

STATEMENTS	
1.	REASONS
2.	1. Given
3.	2. Additive Property
4.	3. Given
5.	4. Definition of Corresponding Angles
6.	5. Given
7.	6. Definition of Corresponding Angles

Two Column Proofs
1.

Given: $\overline{R T} / / \overline{K S}, \overline{K R} / / \overline{S T}$
Prove: $K R S \cong T S R$
Name: \qquad ANSWER KEY Date: \qquad

STATEMENTS

1. $\overline{R T} / / \overline{K S}$
2. $\angle T R S \cong \angle R S K$
3. $\overline{K R} / / \overline{S T}$
4. $K R T S$ is a parallelogram
5. $\angle R K S \cong \angle S T R$
6. $\overline{R S} \cong \overline{R S}$
7. $\triangle K R S \cong \triangle T S R$

REASONS

1. Given
2. Definition of Alt. Interior Angles
3. Given
4. Def. of Parallelogram
5. Property of Parallelogram
6. Reflexive Property
7. AAS
8.

Given: $\overline{G H} \cong \overline{I J}, \overline{G Y} / / \overline{H X}, \overline{I Y} / / \overline{J X}$
Prove: $G Y I \cong H X J$

\quad STAT

1. $\overline{G H} \cong \overline{I J}$
2. $\overline{G I} \cong \overline{H J}$
3. $\overline{G Y} / / \overline{H X}$
4. $\angle I G Y \cong \angle J H X$
5. $\overline{I Y} / / \overline{J X}$
6. $\angle G I Y \cong \angle H J X$
7. $\Delta G Y I \cong \triangle H X J$
8. Given
9. Additive Property
10. Given
11. Definition of Corresponding Angles
12. Given
13. Definition of Corresponding Angles
14. ASA

Proof \# 15

Given: $\overline{A B} / / \overline{E D}$, and C is the midpoint of $\overline{B D}$
Prove: $\quad B C A \cong D C E$

Proof \# 16

Given: $\overline{A B} \cong \overline{D C}, \overline{A C} \cong \overline{D B}$
Prove: $\quad C B D \cong B C A$

Proof \# 17

Given: $J K L M$ is a rectangle
Prove: $\overline{J L} \cong \overline{M K}$

Proof \# 18

Given: $\quad F G H I$ is a kite, with $\overline{F G} \cong \overline{G H}$
Prove: $F I G \cong H I G$

Proof \# 19

Given: $\overline{L M}$ and $\overline{N O}$ bisect each other at P

Prove: $\overline{L N} \cong \overline{O M}$

Proof \# 15 ANSWER KEY

Given: $\overline{A B} / / \overline{E D}$, and C is the midpoint of $\overline{B D}$

STATEMENTS	
REASONS	
1. $\overline{A B} / / \overline{E D}$	1. Given
2. $A B C \cong E D C$	2. Def. of Alt. Int. Angles
3. C is the midpoint of $\overline{B D}$	3. Given
4. $\overline{B C} \cong \overline{D C}$	4. Def. of Midpoint
5. $A C B \cong E C D$	5. Vertical Angles
6. $B C A \cong D C E$	6. ASA

Proof \# 16 ANSWER KEY

Given: $\overline{A B} \cong \overline{D C}, \overline{A C} \cong \overline{D B} \quad$ Prove: $C B D \cong B C A$

STATEMENTS	REASONS
1. $\overline{A B} \cong \overline{D C}$	1. Given
2. $\overline{A C} \cong \overline{D B}$	2. Given
3. $\overline{B C} \cong \overline{B C}$	3. Reflexive Property
4. $A B C \cong D C B$	4. SSS
5. $C B D \cong B C A$	5. CPCTC

Proof \# 17 ANSWER KEY

Given: JKLM is a rectangle Prove: $\overline{J L} \cong \overline{M K}$ using congruent triangles

STATEMENTS	REASONS
1. $J K L M$ is a rectangle	1. Given
2. $\overline{J K} \cong \overline{M L}$	2. Definition of a rectangle
3. $J K L \cong M L K$	3. Definition of a rectangle
4. $\overline{K L} \cong \overline{K L}$	4. Reflexive
5. $J K L \cong M L K$	5. SAS
6. $\overline{J L} \cong \overline{M K}$	6. CPCTC

Proof \# 18 ANSWER KEY

Given: $F G H I$ is a kite, with $\overline{F G} \cong \overline{H G} \quad$ Prove: $F I G \cong H I G$

STATEMENTS	REASONS
1. $F G H I$ is a kite	1. Given
2. $\overline{F G} \cong \overline{H G}$	2. Given
3. $\overline{F I} \cong \overline{H I}$	3. Definition of a Kite
4. $\overline{G I} \cong \overline{G I}$	4. Reflexive
5. $F G I \cong H G I$	5. SSS
6. $F I G \cong H I G$	6. CPCTC

Proof \# 19 ANSWER KEY

Given: $\overline{L M}$ and $\overline{N O}$ bisect each other at P

STATEMENTS	REASONS
1. $\overline{L M}$ and $\overline{N O}$ bisect each other at P	1. Given
2. $\overline{L P} \cong \overline{P M}, \overline{N P} \cong \overline{P O}$	2. Definition of Bisect
3. $L P N \cong \overline{O P M}$	3. Vertical Angles
4. $\frac{L P N \cong M P O}{\text { 4. SAS }}$	
5. $\overline{L N} \cong \overline{O M}$	5. CPCTC

Round Table Proofs

Student \#1: \qquad Student \#2 \qquad
Student \#3: \qquad Student \#4

Picture:
Given: $\overline{A B} \cong \overline{B C}, \overline{B D} \perp \overline{A B}$

Prove: $\triangle A B D \cong \triangle C B D$

STATEMENTS	REASONS
1. $\overline{A B} \cong \overline{B C}$	1.
2.	2. Isosceles Triangle Theorem
3.	3. Given
4. $\angle B D A \cong \angle B D C$	4.
5.	5. Reflexive property
6. $\triangle A B D \cong \triangle C B D$	6.

Student \#1:
Student \#3:
\qquad
\qquad
Student \#2
Student \#4

Picture:
Given: $\overline{E F} / / \overline{H I}, G$ is the midpoint of $\overline{E I}$

Prove: $\Delta E G F \cong \Delta I G H$

STATEMENTS	REASONS
1. G is the midpoint of $\overline{E I}$	1.
2.	2. Definition of midpoint
3.	3. Given
4. $\angle F E G \cong \angle H I G$	4.
5. $\angle E G F \cong \angle I G H$	5.
6. $\triangle E G F \cong \triangle I G H$	6.

Student \#1: \qquad
Student \#3: \qquad
Given: $A B C D$ is a parallelogram with diagonal $\overline{D B}$

Student \#2 \qquad
Student \#4 \qquad Picture: Picture.

Prove: $\angle A D B \cong \angle C B D$

STATEMENTS	REASONS
1. $A B C D$ is a parallelogram $\mathrm{w} / \operatorname{diag} \overline{D B}$	1.
2. $\overline{A D} \cong \overline{C B}, \overline{A B} \cong \overline{B D}$	2.
3.	3.
4.	4. SSS
5. $\angle A D B \cong \angle C B D$	5.

Student \#1: \qquad Student \#3: \qquad

Student \#2
Student \#4

Picture:

Given: $\overline{P R}$ and $\overline{Q S}$ bisect each other at T

Prove: $\overline{P Q} \cong \overline{S R}$

STATEMENTS	REASONS
1.	
2. $\overline{P T} \cong \overline{T R}, \overline{Q T} \cong \overline{T S}$	1. Given
3.	2.
4.	3.
5. $\overline{P Q} \cong \overline{S R}$	4. SAS

Student \#1: \qquad Student \#2 \qquad
Student \#3: \qquad Student \#4

Picture:

STATEMENTS	REASONS
1. $\overline{A B} \cong \overline{B C}$	1. Given
2. $\angle B A D \cong \angle B C D$	2. Isosceles Triangle Theorem
3. $\overline{B D} \perp \overline{A B}$	3. Given
4. $\angle B D A \cong \angle B D C$	4. Definition of Perpendicular
5. $\overline{B D} \cong \overline{B D}$	5. Reflexive property
6. $\triangle A B D \cong \triangle C B D$	6. AAS

Student \#1:
Student \#3:
\qquad
\qquad
Given: $\overline{E F} / / \overline{H I}, G$ is the midpoint of $\overline{E I}$
,
Prove: $\Delta E G F \cong \Delta I G H$
\quad

1. \quad STATE
1s the midpoin
2. $\overline{E G} \cong \overline{G I}$
3. $\overline{E F} / / \overline{H I}$
4. $\angle F E G \cong \angle H I G$
5. $\angle E G F \cong \angle I G H$
6. $\Delta E G F \cong \Delta I G H$

Student \#2
Student \#4

Picture:

1. Given
2. Definition of midpoint
3. Given
4. Alt. Int. Angles
5. Vertical Angles
6. ASA

Student \#1: \qquad
Student \#3: \qquad
Given: $A B C D$ is a parallelogram with diagonal $\overline{D B}$

Prove: $\angle A D B \cong \angle C B D$

STATEMENTS	REASONS
1. $A B C D$ is a parallelogram w/ diag $\overline{D B}$	1. Given
2. $\overline{A D} \cong \overline{C B}, \overline{A B} \cong \overline{B D}$	2. Property of Parallelogram
3. $\overline{D B} \cong \overline{D B}$	3. Reflexive Property
4. $\triangle A D B \cong \Delta C B D$	4. SSS
5. $\angle A D B \cong \angle C B D$	5. CPCTC

Student \#1:
Student \#3:
\qquad

Given: $\overline{P R}$ and $\overline{Q S}$ bisect each other at T

Student \#2
Student \#4 \qquad
Picture: $\quad P$

1. Given
2. Definition of Bisect
3. Vertical Angles
4. SAS
5. CPCTC

Flow Chart Template

