### New CDF B Physics Results

- CDF Detector
- Lifetimes, Polarization and  $\Delta\Gamma_{BS}$
- Mixing
- Charmless B Decay: Branching Ratios and A<sub>CP</sub>
- X Physics
- Conclusion

Matthew Herndon, August 10, 2004 Johns Hopkins University for the CDF Collaboration Tevatron Connection 2004

### **CDF** Detector

Silicon

- EXCELLENT TRACKING
- |η|<2, less coverage gaps, 90cm long</p>
- Drift Chamber(COT)
  - 96 layers between 44 and 132cm

- Expanded muon coverage
  - |η|<1.5</li>
- PID
  - p, K and  $\pi$  by dE/dx and TOF



## B Physics & B Triggers

TRIGGERS ARE CRITICAL

- Huge production rates
  - $\sigma(ppbar \rightarrow bX, |y| < 0.6) = 17.6 \pm 0.4 \text{ (stat.)} \pm 2.5 \text{ (syst.)} \ \mu b$
- Heavy b states produced
  - $B_{0}$ ,  $B^+$ ,  $B_s$ ,  $B_c$ ,  $\Lambda_b$ ,  $\Xi_b$
- Backgrounds are also 3 orders of magnitude higher
  - Inelastic cross section ~100 mb
  - Challenge is to pick one *B* decay from  $\sim 10^3$  QCD events
- Di-muon trigger
  - pT(μ) > 1.5 GeV/c HIGH LUMI: TRIGGER RATES VERY HIGH
  - B yields 2x Run I (lowered pT threshold, increased acceptance)
- Lepton + displaced-track trigger
  - pT(μ,e) > 4 GeV/c, 120 μm < d<sub>0</sub> < 1mm, pT > 2 GeV/c
  - B yields 3x Run I
- Two displaced-tracks trigger
  - $p_T > 2 \text{ GeV/c}$ , 120  $\mu m < d_0 < 1 \text{ mm}$ ,  $\Sigma p_T > 5.5 \text{ GeV/c}$





### Lifetimes and $\Delta \Gamma_{B_s}$ Motivation

Lifetime ratios  $\tau(\mathbf{B})/\tau(\mathbf{B}^0)$ 1.086±0.017 Test of HQET 3 1.06 - 1.12From simple lifetime  $\tau(\mathbf{B}_{s})/\tau(\mathbf{B}^{0})$ measurement 0.951±0.038 0.99 - 1.01 $\frac{\boldsymbol{\tau}_{B^+}}{\boldsymbol{\tau}_{B_s}}$  $\tau(\Lambda_{\rm b})/\tau({\bf B}^0)$ 0.800±0.053 0.82 - 0.92 $au_{B_0}$  $\tau_{B^0}$ τ(b baryon)  $0.786 \pm 0.034$  $/\tau(\mathbf{B}^0)$ 0.82 - 0.920.8 0.9 0.7 1 1.1 1.2 Lifetime difference lifetime ratio  $B_s \rightarrow J/\psi \phi$  Pseudoscalar  $\rightarrow$  Vector Vector  $B_{s,light}$  CP Even and  $B_{s,heavy}$  CP Odd : Polarized  $B_{s}$ What was the mix of light and heavy in previous measurements? indirect  $\Delta m_{s}$  measurement  $B_{s}$  $SM: \frac{\Delta I_{B_s}}{1.000} = 3.9^{+0.8}_{-1.5} \times 10^{-3}$  $\Delta \, m_{
m s}$  fermilab-pub-01, 197

### Lifetimes

#### Analysis and results

| Decay                                                             | р <sub>т</sub> (В) GeV/с² | p <sub>⊤</sub> (K/ϙ) GeV/c² | <b>Ρr(</b> χ²)     | K/o mass MeV/c <sup>2</sup>   | B mass MeV/c <sup>2</sup> |
|-------------------------------------------------------------------|---------------------------|-----------------------------|--------------------|-------------------------------|---------------------------|
| $B^{\scriptscriptstyle +} \to J/\psi \; K^{\scriptscriptstyle +}$ | > 5.5                     | > 1.6                       | > 10 <sup>-3</sup> | -                             | 5170 – 5390               |
| $B_d \to J/\psi \: K^{*0}$                                        | > 6.0                     | > 2.6                       | > 10-4             | $M_{_{PDG}}(K^{*0}) \pm 50.0$ | 5170 – 5390               |
| ${\sf B}_{s}\to J/\psi\varphi$                                    | > 5.0                     | > 1.5                       | > 10 <sup>-5</sup> | $M_{PDG}(\phi) \pm 6.5$       | 5220 – 5520               |

- Fraction of signal events: 1 parameter
- Mass: Gaus + pol 1: 3 parameters
- Proper decay length
  - Delta function conv with Gaus. + 4 exp conv with gaus.(signal and 3 tails): 8 parameters.
- Unbinned maximum likelihood
  - 1+3+8 = 12 parameters

 $\tau_{B^+} = 1.662 \pm 0.033 (stat) \pm 0.008 (sys) ps$ 

 $\tau_{B^0} = 1.539 \pm 0.051 (stat) \pm 0.008 (sys) ps$ 

 $\tau_{B_s} = 1.369 \pm 0.100 (stat)_{-0.010}^{+0.008} (sys) ps$ 

HFAG *B*<sub>s</sub>: 1.461 ± 0.057ps

*B*<sup>+</sup>: 1.671 ± 0.018ps *B*<sup>o</sup>: 1.536 ± 0.014ps





Real Axis

2004

Tev C

# B Mixing Motivation



## B Mixing Ingredients



- Efficiency  $\varepsilon \equiv$  fraction of tagged events
- Dilution  $D \equiv 2P 1$  with P the correct answer probability
- Tagging effectiveness εD<sup>2</sup> shows statistical power of the tagger
- Flavor taggers can be topologically separated
  - Same-Side is sample dependent : Same side track(SST)
  - Opposite-Side is based on properties of the non-reconstructed b: Soft muon (SMT)/electron(SET) and jet charge(JQT)

## **B** Mixing Tagging results

- SMT: Find events with Opposite Side  $B\to \mu X$ 
  - Opposite Side  $\mu$  charge gives **SMT** decision
  - Qualities

#### $\epsilon D^2 = 0.698 \pm 0.042$ (stat.)%, ISVT

 $\epsilon D^2 = 0.419 \pm 0.024$  (stat.)%, eSVT

- High Purity, Low efficiency
- Uses likelihood method to combine information, EM/HAD energy and stub matching quantities
- Combined  $\sum \epsilon D^2$  for subsamples(muon subdetector and  $p_T^{rel}$  bins)
- $\sum \epsilon D^2$  evaluated in lepton + SVT data
- JQT: Jet charge of OS b
  - Weighted average Q of jet tracks
  - Qualities
    - Moderate purity, High efficiency
    - Other jets a problem
  - Combined  $\sum ED^2$  for subsamples (with and without vertex tag and for JQ bins)
- SST: Look for fragmentation track that is charge correlated with the produced B εD<sup>2</sup> = 2.0(1.0) ± 0.5 (stat.)%, B<sup>+</sup>(B<sup>0</sup>)

Consider track close to B: In cone and lowest p<sub>T</sub><sup>rel</sup>

will update for ICHEP

### **B** Mixing $\Delta m_d$ (in fully reconstructed modes)

$$B^0 \rightarrow J/\psi K^{*0}$$
,  $J/\psi \rightarrow \mu^+ \mu^-$ ,  $K^{*0} \rightarrow K^+ \pi^-$ 

- Minimum quality cuts applied to preserve signal
  - Mass cuts for  $J/\psi$  and  $K^{*0}$
  - $p_{TB} > 6.5, p_{TK} > 2.5 \text{ GeV/c}, L_{xy} > 100 \mu \text{m}$

 $B^0 \rightarrow D^- \pi^+_B, \pi^-, D^- \rightarrow K^+ \pi^- \pi^-$ 

- p<sub>TπB</sub> > 1.6, |d<sub>0B</sub>|<80μm, L<sub>xy</sub> > 300μm
- Measure  $\Delta m_d$  and SST performance
  - Combine channels
  - Fit for ∆m<sub>d</sub> using a convolution of physical time dependence, cos(∆m<sub>d</sub>t), and the Gaussian proper time resolution
  - Update for ICHEP: More statistics and channels

 $\Delta m_{d} = 0.55 \pm 0.10 \text{ (stat.)} \pm 0.01 \text{ (syst.) ps}^{-1}$   $\epsilon D^{2} = 1.0 \pm 0.5 \text{ (stat.)} \pm 0.2 \text{ (syst.) \%}$ Tev C 2004



### **B** Mixing $\Delta m_d$ (in semileptonic modes)



### Charmless B Decays motivation

- 3 sources of CP Asymmetries: A<sub>CP</sub>
  - A<sub>CP</sub> in mixing: neutral mesons oscillate with different phases mass eigenstates are different from CP eigenstates
  - A<sub>CP</sub> in decay(Direct A<sub>CP</sub>): Decay amplitudes of CP eigenstates not equal
  - A<sub>CP</sub> from the interference between decays with and without mixing
  - Many charmless B decay modes are sensitive to A<sub>CP</sub>
    - $B^+ \rightarrow \phi K^+$ : Direct  $A_{CP}$ 
      - A<sub>CP</sub> rate expected to be small: Probe of new physics
    - $B_s \rightarrow \phi \phi$ : Mixing and direct  $A_{cp}$ 
      - Vector Vector decay never observed before, also small A<sub>CP</sub> rate
    - $B_{s,d} \rightarrow hh$  ( $h = K, \pi$ ): Direct or mixing and direct  $A_{cp}$ 
      - $B_s$  only accessible at the Tevatron
  - Branching fractions of rare modes also interesting



### Charmless B Decays results

- Analysis Cuts  $B^+ \! o \! \phi \, K^+$  ,  $\phi \! o \! K^+ \, K^-$ 

  - p<sub>TB</sub> > 4.0, |d<sub>0B</sub>|<100μm, L<sub>xy</sub> > 350μm
  - Isolation, vertex and track quality
  - Results from likelihood fit to masses, dE/dx and helicity

 $A_{CP}(B^+ \to \phi K^+) = -0.07 \pm 0.17(stat)^{+0.06}_{-0.05}(sys)$ 

BR 
$$(B^+ \to \phi K^+) = (7.2 \pm 1.3 (stat) \pm 0.7 (sys)) \times 10^-$$

HFAG:  $(9.0\pm0.7)\times10^{-6}$ 

- Analysis Cuts  $B_s \rightarrow \phi \phi$ ,  $\phi \rightarrow K^+ K^-$ 
  - Optimized using blind analysis technique
  - $\phi$  mass cut,  $p_{T_0} > 2.5 GeV/c$
  - Id<sub>0B</sub> |<80μm, L<sub>xy</sub> > 350μm

 $BR (B_s \rightarrow \phi \phi) =$ 1.4 ± 0.6 (stat) ± 0.2 (sys) ± 0.5 (norm) × 10^{-5}







### Charmless B Decays $B \rightarrow hh$

- Cuts optimized to maximize  $\frac{S}{\sqrt{S+B}}$
- Unbinned likelihood fit
- $M_{\pi\pi}$ , dE/dx, charge-momentum imbalance  $\frac{BR(B^0 \rightarrow \pi^{\pm} \pi^{\mp})}{BR(B^0 \rightarrow K^{\pm} \pi^{\mp})} = 0.24 \pm 0.06(stat) \pm 0.04(sys)$

$$\frac{f_d \cdot BR \left(B^0 \to \pi^{\pm} \pi^{\mp}\right)}{f_s \cdot BR \left(B_s \to K^{\pm} K^{\mp}\right)} = 0.48 \pm 0.12 (stat) \pm 0.07 (sys)$$

$$\frac{f_s \cdot BR \left( B_s \rightarrow K^{\pm} K^{\mp} \right)}{f_d \cdot BR \left( B^0 \rightarrow K^{\pm} \pi^{\mp} \right)} = 0.50 \pm 0.08 \left( stat \right) \pm 0.09 \left( sys \right)$$

 $BR (B_{s} \rightarrow K^{\pm} \pi^{\mp}) < 7.6 \times 10^{-6}$  $Th: (7-10) \times 10^{-6}$ 

 $A_{CP}(B^0 \to K^{\pm} \pi^{\mp}) = -0.04 \pm 0.08(stat) \pm 0.006(sys)$ 

Babar result:  $A_{CP} = -0.133 \pm 0.030 (stat) \pm 0.009 (sys)$ 4.2  $\sigma$  hep-ex/0407057



| $B^0 \rightarrow \pi \pi$ | 134 | 15%               |
|---------------------------|-----|-------------------|
| $B^{0} \rightarrow K\pi$  | 509 | 57%               |
| $B_s \rightarrow KK$      | 232 | <mark>26</mark> % |
| $B_{s} \rightarrow K\pi$  | 18  | 2%                |

Tev C 2004

M. Herndon

## X Physics B fraction

$$X \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \mu^+ \mu^-$$

- Motivation
  - X observed by Belle in  $B^+ \to XK^+$
  - Production source in ppbar unknown
  - Measurement of prompt production fraction might indicate whether the X is a charmonium state
- Analysis Cuts
  - J/ $\psi$  mass window, P<sub>Tπ</sub> > 400MeV/c
  - Track and vertex quality cuts
- Perform likelihood fit to the proper time distribution
  - X "lifetime" relationship to the B lifetime not treated explicitly
  - Only measuring long lived fraction
  - $\psi(2S)$  II fraction:  $28.3 \pm 1.0 \pm 0.7\%$

*X* ll frac:  $16.1 \pm 4.9(stat) \pm 2.0(sys)\%$ 



Tev C 2004

### Conclusions

- Lifetimes, Polarization and  $\Delta\Gamma_{Bs}$ 
  - *B* lifetimes competitive with PDG
  - *B<sub>o</sub>* polarization consistent with B factories
  - Measure large  $\Delta \Gamma_{BS}$
- Mixing
  - Measure B<sub>d</sub> oscillation compatible with B factories
  - Large number of taggers tested and being used
- Charmless B Decays Branching Ratios and A<sub>CP</sub>
  - See new vector vector mode  $B \rightarrow \phi \phi$
  - No evidence of asymmetries
- X Physics
  - Fraction of long lived X similar to charmonium states
  - X needs more study