Current CDF B Physics Results

- CDF Detector
- Lifetimes, Polarization and $\Delta\Gamma_{BS}$
- Mixing
- Charmless B Decay: Branching Ratios and A_{CP}
- X Physics
- FCNC Decay $B_s \rightarrow \mu \mu$
- Conclusion

Matthew Herndon, October 7th, 2004

Johns Hopkins University for the CDF Collaboration SLAC Seminar

CDF and the Tevatron

- 1.96TeV ppbar collider
 - Performance substantially improving each year
 - Record peak luminosity in 2004: 1x10³²sec⁻¹cm⁻², 2x peak in 2003
 - Expect 2x in 2005, 4-9fb⁻¹ by 2009

- **CDF Integrated Luminosity**
 - ~500pb⁻¹ to tape
 - 360pb⁻¹ with good run requirements
 - All critical systems operating including silicon
 - Analysis presented here use from 170pb⁻¹ to 260pb⁻¹
 - Acquiring new data quickly in 2004

CDF Detector

Detector Performance

- Careful calibration of detector response is necessary for conducting precision measurements with small systematic errors
 - Develop large samples for calibrating detector response
 - 3.1M J/ ψ , 400K ψ (2S), and 18K Upsilon(1S) samples for tracking momentum scale and energy loss calibration
 - 500K D* tagged D⁰ → Kπ events for dE/dx and TOF calibration: Note the low tails in dE/dx residual distribution

SENSITIVITY TO NEW HADRONIC MODES O μ m, $\Sigma p_T > 5.5$ GeV/c rndon

5

B Physics & **B** Triggers

TRIGGERS ARE CRITICAL

- Large production rates
 - $\sigma(ppbar \rightarrow bX, |y| < 1.0, p_T(B) > 6.0 \text{GeV/c}) = ~30 \mu b \text{ or } ~10 \mu b$
- Heavy b states produced
 - $B_0, B^+, B_s, B_c, \Lambda_b, \Xi_b$
- Backgrounds are also 3 orders of magnitude higher
 - Inelastic cross section ~100 mb
 - Challenge is to pick one B decay from ~10³ other QCD events
- Di-muon trigger
 - p_T(μ) > 1.5 GeV/c
 - B yields 2x Run I (lowered p_T threshold, increased acceptance)
- Lepton + displaced-track trigger(SVT)
 - $p_T(\mu,e) > 4 \text{ GeV/c}$, 120 $\mu m < d_0 < 1mm$, $p_T > 2 \text{ GeV/c}$
 - B yields 3x Run I(with SVT new for Run 2)
- Two track vertex trigger

• $p_T > 2 \text{ GeV/c}$, 120 $\mu m < d_0 < 1 mm$, $L_{xy} > 200 \mu m$, $\Sigma p_T > 5.5 \text{ GeV/c}$ SLAC Seminar M. Herndon

Lifetimes Motivation

Lifetime ratios

- Test of heavy quark expansion
- Current results agree with theory within 1σ with large experimental errors
- Calculate ratios from the results of the individual lifetime measurements
- Of particular interest are the ratios with the B_s and Λ_b which are not produced at the B factories $\tau(\mathbf{B})/\tau(\mathbf{B}^0)$ 1.086 ± 0.017 1.06 - 1.12 $\tau(\mathbf{B}_{s})/\tau(\mathbf{B}^{0})$ $I B^+$ 0.951±0.038 0.99 - 1.01 $\tau(\Lambda_{\rm b})/\tau({\bf B}^0)$ 0.800±0.053 $\boldsymbol{\tau}_{B_0}$ 0.82 - 0.92τ(b baryon) 0.786 ± 0.034 Presented Here $/\tau(\mathbf{B}^0)$ 0.82 - 0.920.8 0.9 0.7 1.1 1.2 1 lifetime ratio F. Gabbiani et. al. Hep-ph/0407004 6 M. Herndon SLAC Seminar

Lifetimes

Analysis

Decay	p _T (B) GeV/c²	p _⊤ (K/ϙ) GeV/c²	Ρr(χ²)	K/ø mass MeV/c²	B mass MeV/c ²
$B^{\scriptscriptstyle +} \to J/\psi \; K^{\scriptscriptstyle +}$	> 5.5	> 1.6	> 10 ⁻³	-	5170 – 5390
$B_d \to J/\psi \; K^{\star_0}$	> 6.0	> 2.6	> 10-4	$M_{PDG}(K^{*0})\pm 50.0$	5170 – 5390
$B_s \to J/\psi \phi$	> 5.0	> 1.5	> 10 ⁻⁵	$M_{PDG}(\phi) \pm 6.5$	5220 – 5520

Quality cuts

- Tight silicon track quality and vertex cuts used to reduce the number of mis-measured events
- Simultaneous fit to the mass and lifetime
 - Exponential lifetime convoluted with a Gaussian for the signal
 - Prompt Gaussian background(used to extract lifetime resolution)
 - 3 exponential tails for long lived or mis-measured background

Lifetimes **Results**

L ~ 260pb⁻¹ **CDF Run II Preliminary** Ratios 50 µm $B^+ \rightarrow J/\psi K^+$ -- data $\tau_{R^+}/\tau_{R^0} = 1.080 \pm 0.042 (tot)$ 10 ct(Sig) candidates per $\tau_{B_{0}}/\tau_{B^{0}}=0.890\pm0.072(tot)$ ct(Bkg_{all}) 10 - ct(Bkg _s) HFAG Heavy flavor averaging group 10 Fit prob: 44.2% B^+/B^0 :1.086 ± 0.017 B_{c}/B^{0} : 0.951 ± 0.038 10 1 Lifetimes 1 -0.1 0.0 0.1 0.2 0.3 $\tau_{B^+} = 1.662 \pm 0.033(stat) \pm 0.008(sys) ps$ ct, cm Almost no negative tails in the $\tau_{B^0} = 1.539 \pm 0.051 (stat) \pm 0.008 (sys) ps$ lifetime distribution $\tau_{B} = 1.369 \pm 0.100 (stat)_{-0.010}^{+0.008} (sys) ps$ New $\Lambda_{\rm b}$ measurement soon using similar technique *B*⁺: 1.671 ± 0.018ps $\tau_{\Lambda} = 1.25 \pm 0.26 (stat) \pm 0.10 (sys) ps$ *B*^{*o*}: 1.536 ± 0.014ps *B*_s: 1.461 ± 0.057ps $\Lambda_{\rm h}$: 1.23 ± 0.08ps

$\Delta \Gamma_{B_S}$ Motivation

- Understanding the CP Composition of B_s decays(look for new physics)
 - $B_s \rightarrow J/\psi \phi$ Pseudoscalar \rightarrow Vector Vector
 - CP eigenstates: $B_{s,light}$ CP Even and $B_{s,heavy}$ CP Odd
 - Two states have different angular decay distributions
 - The CP Even and Odd states are expected to have short and long lifetimes respectively
 - Need to understand the CP composition to interpret the lifetime measurement
- Allows an indirect Δm_s measurement in decays where both CP components are present
 - If Δm_s is very large this becomes one of the only ways to measure Δm_s

$$SM: \frac{\Delta \Gamma_{B_s}}{\Delta m_s} = 3.9^{+0.8}_{-1.5} \times 10^{-3} \text{ FERMILAB-Pub-01, 197}$$

- Time dependent analysis of the decay amplitudes to extract:
 - Simultaneous fit to lifetime and transversity amplitudes
 - Cross check technique with $B^0 \rightarrow J/\psi K^{*_0}$

B⁰ Results

*B*⁰ lifetime and transversity angle results consistent with B factory results HFAG: *B*⁰: 1.536 ± 0.014ps

$\Delta \Gamma_{B_S}$ Results

B Mixing Motivation

- New physics may affect Δm_s/Δm_d
 - New physics particles in the loop can lift the GIM supression of the diagram
- Δm_s prerequisite for a time-dependent B_s CP violation measurement

• B_d oscillations are sensitive to $|V_{td}|$

- Compromised by hadronic uncertainties
- Most cancel in B_d/B_s oscillation ratio

SLAC Seminar

B Mixing Ingredients

- 3 primary ingredients
- Reconstruction of B Mesons: fully and in and semileptonic modes
 - Statistical power dependent on the number of events reconstructed
- Proper time resolution
 - Sensitivity depends exponentially on the square of the proper time resolution
- Flavor Taggers
 - Need to quantify the performance of each type of tagger

B Mixing Flavor Taggers

- Can be topologically separated into same and oposite side taggers
 - Same side track(SST): Fragmentation track correlated with produced B flavor
 - Opposite-Side is based on properties of the non-reconstructed b: Soft muon(SMT)/ electron(SET) and jet charge(JQT)
- Tagging effectiveness εD²: shows statistical power of the tagger
 - Efficiency ε: fraction of tagged events
 - Dilution D: 2P 1 with P the correct answer probability
- Sample dependency of the same side tagger
 - Tagged with particles produced in hadronization
 - Intrinsically different for B⁰, B⁻ and B_s
 - Also B⁰ and B⁻ have B^{**} decays with the correct charge correlation.
 - Kaon same side tagger useful for B_s tagging
 - Same side B_s tagger performance can't be measured from data if setting a limit – must be understood in MC(detailed data/MC comparisons)

BMixing Tagging results

- SMT: Find events with Opposite Side $B \rightarrow \mu X$
 - Opposite Side μ charge gives **SMT** decision
 - Uses likelihood method to combine information, EM/HAD energy, stub matching quantities
 - Qualities
 - High Purity, Low efficiency
 - Combined $\sum \epsilon D^2$ for subsamples(muon subdetector and p_T^{rel} bins)
 - ΣεD² evaluated in lepton + SVT data
- JQT: Jet charge of OS b
 - Weighted average Q of jet tracks
 - Qualities
 - Moderate purity, High efficiency
 - Other jets a problem
 - Combined $\sum \epsilon D^2$ for subsamples (with w/o vertex tag or displaced tracks and JQ bins)
- SST: Look for fragmentation track that is charge correlated with the produced B $\epsilon D^2 = 2.33(1.0) \pm 0.34(0.35)$ (stat.)%, $B^+(B^0)$
 - Consider track close to B: In cone and lowest p_T^{rel}

SLAC Seminar

M. Herndon

εD² = 0.698 ± 0.042 (stat.)%

 $\epsilon D^2 = 0.715 \pm 0.027$ (stat.)%

BMixing m_d(in fully reconstructed modes)

- 7 total modes
- Measure Δm_d and SST performance
 - Combine channels
 - Binned asymmetry fit for Δm_d using a convolution of physical time dependence, cos(Δm_dt), and the Gaussian proper time resolution.

 $\Delta m_d = 0.526 \pm 0.056(stat) \pm 0.005(sys) ps^{-1}$ HFAG: 0.502 ± 0.007ps⁻¹ $\epsilon D^2 = 1.0 \pm 0.35(stat) \pm 0.06(sys)\%$

Proper decay length [cm]

BMixing m_d (in semileptonic modes)

B_sMixing

Limit Sensitivity

Use semileptonic and hadronic decays Combination improves the reach $B_{s} \rightarrow D_{s}^{-} \pi^{+} (\pi^{+} \pi^{-}), \quad B_{s} \rightarrow l^{+} D_{s}^{-} X,$ $D_{s}^{-} \rightarrow \phi \pi^{-}$, 3π , $K^{*}K$ Semileptonic: 2400, hadronic: 725 events

B_s Mixing Projected Reach

- 5σ significance observation
 - CDF Stretched:
 - $\epsilon D^2 = 2.6\%$, $\sigma_t = 47 fs$

 $\Delta m_s = 19 \ ps^{-1}$, with ~6× more events $\Delta m_s = 24 \ ps^{-1}$, with ~10× more events

Charmless B Decays Motivation

- 3 sources of CP Asymmetries: A_{CP}
 - A_{CP} in mixing: neutral mesons oscillate with different phases mass eigenstates are different from CP eigenstates
 - A_{CP} in decay(Direct A_{CP}): Decay amplitudes of CP eigenstates not equal
 - A_{CP} from the interference between decays with and without mixing
- Many charmless B decay modes are sensitive to A_{CP}
 - $B^+ \rightarrow \phi K^+$: Direct A_{CP}
 - A_{CP} rate expected to be small: Probe of new physics
 - $B_s \rightarrow \varphi \varphi$: Mixing and direct A_{cp}
 - Vector Vector decay never observed before
 - also small A_{CP} rate
 - $B_{s,d} \rightarrow hh \ (h = K, \pi)$: Direct or mixing and direct A_{cp}
 - B_s only accessible at the Tevatron
- Branching fractions of rare modes also interesting

Charmless B Decays B⁺ → ϕK^+ Results

$$B^+ \!
ightarrow \phi \, K^+$$
 , $\phi
ightarrow K^+ \, K^-$

- Analysis Cuts

 - $p_{TB} > 4.0, |d_{0B}| < 100 m, L_{xy} > 350m$
 - Isolation, vertex and track quality
 - Results from likelihood fit to masses, dE/dx and helicity
- Results:

 $A_{CP}(B^+ \to \phi K^+) = -0.07 \pm 0.17(stat)^{+0.06}_{-0.05}(sys)$

Babar result: $A_{CP} = 0.054 \pm 0.056(stat) \pm 0.012(sys)$ hep-ex/0408072

 $BF(B^+ \rightarrow \phi K^+) = (7.2 \pm 1.3(stat) \pm 0.7(sys)) \times 10^{-6}$ HFAG: $(9.0 \pm 0.7) \times 10^{-6}$

- Signal
- Backgrounds
 - Combinatorial
 - Partially reconstructed B decays
 - $B \to f_0 K$
 - $B \rightarrow K^{\circ}\pi$, $K\pi\pi$ (Cyan)

Charmless *B* Decays $B_s \rightarrow \varphi \varphi$ Results

- $B_s \rightarrow \phi \phi$, $\phi \rightarrow K^+ K^-$
- Analysis Cuts
 - Optimized using blind analysis technique
 - Optimization performed on signal MC events and φ sidebands
 - ϕ mass cut, $p_{\tau} > 2.5 GeV/c$
 - $|d_{0B}| < 80 \text{ m}, L_{xy} > 350 \text{ m}$

 $BF (B_s \rightarrow \phi \phi) =$ $1.4 \pm 0.6 (stat) \pm 0.2 (sys) \pm 0.5 (norm) \times 10^{-5}$ Th: QCD factorization: 3.68×10^{-5} Th: NF factorization: 1.79×10^{-5}

Hep-ph/0309136, Li, Lu and Yang

M. Herndon

Charmless B Decays B -> hh

- $B_{s,d} \rightarrow hh \ (h = K, \pi)$
- Unbinned likelihood fit
 - $M_{\pi\pi}$, dE/dx, charge-momentum imbalance
 - Excellent mass resolution and high statistics samples for dE/dx calibration allow for small systematic errors
- Branching ratios and A_{CP}(next page)
- BF/Limits on rare two body decays:
 - Not as sensitive as the B factories for B_d decays
 - Only Tevatron has sensitivity for B_s modes

 $BF(B_s \to K^{\pm}K^{\mp}) = 34.3 \pm 5.5(stat) \pm 5.9(sys) \times 10^{-6}$

 $BF(B_s \to K^{\pm} \pi^{\mp}) < 7.6 \times 10^{-6} @90\%$ CL

 $BF(B_s \to \pi^{\pm} \pi^{\mp}) < 3.4 \times 10^{-6} @90\% CL$

 $BF(B_d \to K^{\pm} K^{\mp}) < 3.1 \times 10^{-6} @90\% CL$ HFAG: <0.6 × 10⁻⁶ @90% CL

Charmless B Decays B -> hh

Branching ratios:

 $\frac{BF(B^0 \to \pi^{\pm} \pi^{\mp})}{BF(B^0 \to K^{\pm} \pi^{\mp})} = 0.24 \pm 0.06(stat) \pm 0.04(sys)$

HFAG: 0.25 ± 0.02

$$\frac{f_d \cdot BF(B^0 \to \pi^{\pm} \pi^{\mp})}{f_s \cdot BF(B_s \to K^{\pm} K^{\mp})} = 0.48 \pm 0.12(stat) \pm 0.07(sys)$$

$$\frac{f_s \cdot BF(B_s \to K^{\pm} K^{\mp})}{f_d \cdot BF(B^0 \to K^{\pm} \pi^{\mp})} = 0.50 \pm 0.08(stat) \pm 0.09(sys)$$

 $A_{CP}(B^0 \rightarrow K^{\pm} \pi^{\mp}) = -0.04 \pm 0.08(stat) \pm 0.006(sys)$

Babar result: $A_{CP} = -0.133 \pm 0.030(stat) \pm 0.009(sys)$ 4.2 σ hep-ex/0407057

Belle result: $A_{CP} = -0.101 \pm 0.025(stat) \pm 0.005(sys)$ 3.9 σ hep-ex/0408100 SLAC Seminar M. Herndon

B^o $\pi\pi$	134	15%
Βο Κπ	509	57%
$B_s \rightarrow KK$	232	26%
<i>Β_s Κ</i> π	18	2%

X Physics B Fraction

E

per 20

Candidates

$$X \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \mu^+ \mu^-$$

- Motivation
 - X observed by Belle in $B^+ \to XK^+$
 - Production source in ppbar unknown
 - Measurement of prompt production fraction might indicate whether the X i a charmonium state
- Analysis Cuts
 - J/ ψ mass window, P_{Tπ} > 400MeV/c
 - Track and vertex quality cuts
- Perform likelihood fit to the proper time distribution
 - X "lifetime" relationship to the B lifetime not treated explicitly
 - Measure long lived fraction:

 $X:16.1 \pm 4.9(stat) \pm 2.0(sys)\%$ $\psi(2S):28.3 \pm 1.0(stat) \pm 0.7(sys)\%$

Indirect Searches

- How do you search for new physics at a collider?
 - Direct searches for production of new particles
 - Annihilation of two particles available energy can contribute to formation of one or a pair of new particles
 - Example: the top quark
 - Indirect searches for evidence of new particles
 - Within a complex decay new particles can occur virtually
- In addition to being at the energy frontier the
 - Tevatron is at data volume frontier

- Where to look
 - Many weak decay rates are very low probability
 - Can look for contributions to decay rates from other low probability processes Non Standard Model

A unique window of opportunity to find new physics before the LHC

$B_s \rightarrow \mu \mu$: Beyond the SM

- Look at decays that are suppressed in the Standard Model: $B_{s(d)} \rightarrow \mu^+ \mu^-$
 - Flavor changing neutral currents(FCNC) to leptons
 - No tree level decay in SM
 - Loop level transitions allowed though suppressed
 - + CKM , GIM and helicity(m_l/m_b) suppressed
 - SM: $BF(B_{s(d)} \rightarrow \mu^+\mu^-) = 3.5 \times 10^{-9} (1.0 \times 10^{-10})$
 - G. Buchalla, A. Buras, Nucl. Phys. B398,285
- New physics possibilities
 - Loop and tree level decays
 - Tree: Flavor violating models or R-Parity violating SUSY
 - Loop: MSSM: mSugra, Higgs Doublet
 - 3 orders of magnitude enhancement Babu and Kolda, Phys. Rev. Lett. 84, 228
 - Rate ∝tan⁶β: can set lower limit if decay observed
 G. Kane et al., Hep-ph/0310042
- One of the best indirect search channels at the Tevatron SLAC Seminar
 M. Herndon

$B_s \rightarrow \mu\mu$: Experimental Challenge

Primary problem is large background at hadron colliders

 Analysis cuts must effectively reduce the large background around m_{Bs} = 5.37GeV/c² to find a possible handful of events

 Key elements of the analysis are determining the efficiency and rejection of discriminating variables and estimating the background level SLAC Seminar

$B_{s(d)} \rightarrow \mu^+ \mu^-$ Analysis

Used blind analysis technique

- 4 primary discriminating variables
 - Mass M : choose 3σ window:
 σ = 27MeV/c²
 - $c\tau : L_{xy} \times M/p_{TB} > 200 \mu m$
 - $\Delta \Phi$: $|\phi_B \phi_{vtx}| < 0.10$ rad
 - Isolation: $p_{TB}/(\Sigma trk + p_{TB}) > 0.65$
- Optimization
 - Use simulated signal and data sidebands
 - Independent sets of cuts were factorized for optimization

Improves efficiency and background estimates

 Background estimates were checked in same sign lepton and -cτ samples

$B_{s(d)} \rightarrow \mu^+ \mu^-$ Results

- CDF $B_{s(d)} \rightarrow \mu^+ \mu^-$ results
 - $\alpha \times \varepsilon = 2.03 \pm 0.21\%$
 - Expected background
 - $B_{s(d)}$: 1.05 ± 0.30(1.07 ± 0.31)
 - Observe 1 common event in $3\sigma B_{s(d)}$ mass window which yields a limit of

 $BF (B_{s} \rightarrow \mu^{+} \mu^{-}) < 5.8 \times 10^{-7} 90 \% CL$ $BF (B_{d} \rightarrow \mu^{+} \mu^{-}) < 1.5 \times 10^{-7} 90 \% CL$ (4x more B_{d} produced than B_{s})

D. Acosta et al., PRL 93, 032001 2004

- Less than 1/3 of previous CDF limit: 20.0×10⁻⁷90% CL
- Most recent BaBar B_d results: 8.3×10⁻⁸
 - Tevatron should be competitive in all $B \rightarrow \mu^+ \mu^- X$ modes

$B_s \rightarrow \mu\mu$: Physics Reach

 $m_{16} = 2.5 \text{ TeV}, m_A = 500 \text{ GeV}$ D0 $B_s \rightarrow \mu^+ \mu^-$ result: 240pb⁻¹ 600 $BF(B_{s} \rightarrow \mu^{+} \mu^{-}) < 3.8 \times 10^{-7} 90 \% CL$ 8×10.2 500 CDF $B_{(s,d)} \rightarrow \mu^+ \mu^-$ results: 171pb⁻¹ $\Omega_{\chi}h^{2}>0.13$ $BF(B_{s} \rightarrow \mu^{+} \mu^{-}) < 5.8 \times 10^{-7} 90 \% CL$ 400 GeV 6×10 μ (GeV) Combined: Bayesian approach with a flat prior. Systematic error on fs correlated. Combination by M. $\Omega_{x}h^{2}(2\sigma)$ Herndon 300 $BF(B_s \rightarrow \mu^+ \mu^-) < 2.7 \times 10^{-7} 90 \% CL$ -4×10-7 200 04 SM predictions 2×10-7 $BF(B_{s(d)} \rightarrow \mu^+ \mu^-) 3.5 \times 10^{-9} (1.0 \times 10^{-10})$ 100 100 200 300 400 500 600 700 No sensitivity for SM decay rate $M_{1/2}$ (GeV) $BF B_s \rightarrow \mu^+ \mu^-$: Dashed blue BSM predictions Limiting many models 0 Example SUSY S0(10) 0 Excludes scenarios where M_{A} is Allows for massive neutrino light and tan $\beta \sim 50$: M_A > 450GeV/c²

R. Dermisek hep-ph/0304101,2003

• Accounts for relic density of cold dark matter SLAC Seminar

31

$B_s \rightarrow \mu\mu$: Physics Reach

- In addition to limiting S0(10) models starting to impact standard MSSM scenarios: mSugra $\tan \beta = 50, A_0 = 0, \mu > 0, m_t = 175 \text{ G}$
 - Solid black: $BF(B_s \rightarrow \mu^+\mu^-)$
 - Dashed green: $a_{\mu} = (g-2)_{\mu}/2$
 - Dashed red: Light Higgs Mass
- Red areas: excluded 107 90% CL Upper Limits ${\sf BR}({\sf B}_{\rm s} \mathop{\rightarrow} \mu^+\mu^-) \times$ CDFII Result 171 pb⁻¹ PRL 93, 032001 (2004) li mit expected 2 Extrapolations based on 110 pb⁻¹ using $|\eta(\mu)| < 0.6$, $P_T(B_{\epsilon}) > 6 \text{ GeV/c}$ 100 200 300 500 Runll Integrated Luminosity (pb⁻¹) SLAC Seminar

Limit starting to intersect 115GeV Higgs contour Should be able to considerably increase sensitivity this year (360pb⁻¹ data taken)

M. Herndon

Conclusions

- CDF and the Tevatron have many interesting new measurements
 - Large $\Delta \Gamma_{Bs}$ in $B_s \rightarrow J/\psi \phi$
 - First CDF Run 2 Δm_d
 - A_{cp} in $B_{s,d} \rightarrow hh$
 - First studies of properties of *X* production at a hadron collider
 - Limits on branching fraction of the FCNC Decay $B_s \rightarrow \mu\mu$
- Many of these analysis are still statistics limited
 - Tevatron performance has been quite good in 2004
 - CDF has more data on tape and expects to eventually have 4-9fb⁻¹
 - All these analysis will see considerable improvements in sensitivity
- Still more to come!
 - Bs mixing: All pieces are in progress and many tested in the Δm_d measurement
 - More accurate Λ_b measurements: mass, lifetime, decay branching fractions
 - *B_c* measurements: Mass in fully reconstructed mode and other measurements...

Detector Performance: Backup

- Careful calibration of detector response is necessary for conducting precision measurements with small systematic errors
 - Develop large samples for calibrating detector response
 - 3.1M J/ , 400K $\psi(2S),$ and 18K Upsilon(1S) samples for tracking momentum scale and energy loss calibration
 - 500K D* tagged $D^0 \rightarrow K\pi$ events for dE/dx and TOF calibration

$\Delta \Gamma_{B_s}$ Results Backup

