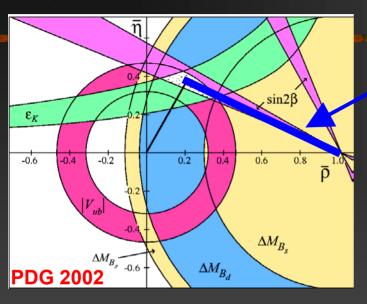
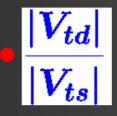
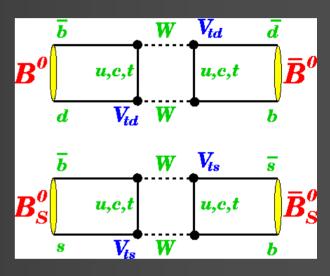
B Mixing and Flavor Tagging at CDF

James Russ

Carnegie Mellon University


for the CDF Collaboration


OUTLINE

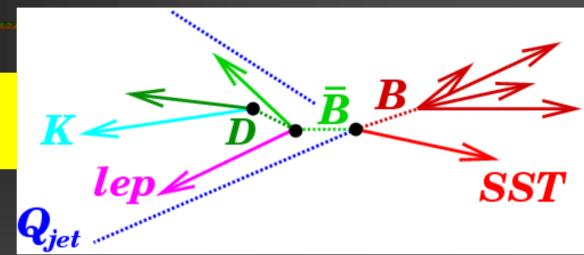

- Motivation and Methods
- Recent B_d Mixing Results from CDF
- Projections for B_s Mixing at CDF

The Name of the Game: B_s Oscillations

Why are we interested in B_s Oscillations?

$$\Delta m_d = rac{ ext{G}_{ ext{F}}^2}{6\pi^2} m_B (f_B^2 B_B) \eta_B \, m_t^2 \, F(rac{m_t^2}{m_W^2}) (|V_{tb}^* \, V_{td}|^2)$$
 CKM elements

Experiment


Lattice QCD

$$rac{oldsymbol{\Delta} m_S}{oldsymbol{\Delta} m_d} = rac{m_{B_S^0}}{m_{B^0}} rac{f_{B_S^0}^2 B_{B_S^0}}{f_{B^0}^2 B_{B^0}} rac{|V_{ts}|^2}{|V_{td}|^2}$$

Tagging B Decays

For B B pair, either use B – primary correlation (SST) or opposite side decay properties (OST)

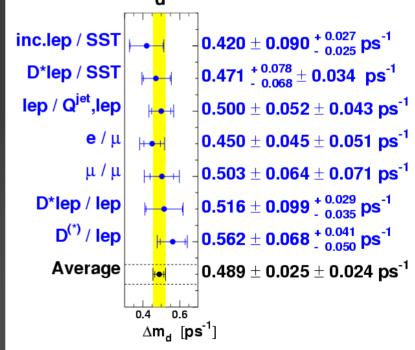
Handles on B Flavor at Production:

- Opposite Side Lepton ($\overline{B} \Rightarrow Q_{lep} < 0$)
- Opposite Side Jet Charge $(\overline{B} \Rightarrow Q_{iet} < 0)$
- Opposite Side Kaon (B \Rightarrow Q_K < 0)

• Same Side pion (Kaon) (B \Rightarrow Q_{π .K} > 0)

How Does CDF Tag the B Flavor?

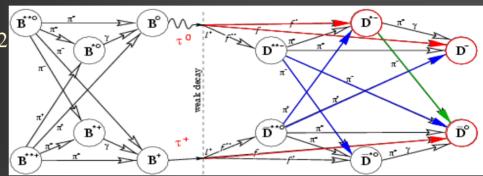
Follow methods pioneered in Run I:


- Soft Lepton Tag (e, μ)
- Jet Charge Tag
- Same-side Tag

Extend Methods for Run II

- New Lepton Taggers
- Extend Jet Charge Tags
- Use TOF, dE/dx for Kaon Tags

Use Exclusive Decays too!

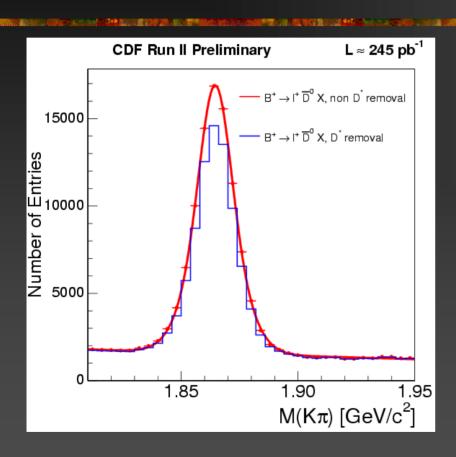

CDF Δm_d Results

A First Step: Tagging in B_d→DXI_V

- Combine Tags
 - Measure tag significance εD² for each tag
 - Establish hierarchy for multiple tags
- Measure ∆m_D using multiple tags
 CDF Semileptonic Data

- Sample Composition is a challenge
- Use only $D^o \to K^-\pi^+$ and $D^+ \to K^-\pi^+\pi^+$ decays, but their origin is complicated.

How to Combine Tags


- establish tagging hierarchy (most decays aren't tagged)
 - SST: Yes or No?
 - OST: No or Which?
 - SMT
 - JQT(B VTX)
 - JQT(high PT)
- Compare and Combine Tags
 - Agree:

Agree:
$$D_{agree} = \frac{D_{SST} + D_{OST}}{1 + D_{SST} * D_{OST}}$$
Disagree:
$$D_{dis} = \frac{|D_{SST} - D_{OST}|}{1 - D_{SST} * D_{OST}}$$

- Make binned χ^2 fit to 13 parameters:
 - Dilutions for SST(B^o), SST(B+), SMT, JQT(BVTX), JQT(PT) and Δm_d
 - 3 Sample composition parameters (PDG constrained)
 - 2 efficiency parameters
 - 2 lifetimes (PDG constrained)

Bin in 10 proper time bins for each tag option (10) and each decay option (3)

CDF: Good Mass Resolution

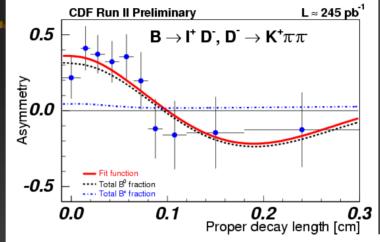
 $L \approx 245 \text{ pb}^{-1}$ **CDF Run II Preliminary** $B^0 \rightarrow I^+ D^{*-} X$ 0.6 MeV 3000 $N(D^*) = 9819 \pm 122$ Entries 2000 Number of 1000 0.145 0.140 0.150 $m(D^*) - m(D^0)$ [GeV]

remove Do from reconstructed D*+

Soft pion: $p_T > 0.4 \text{ GeV/c}$

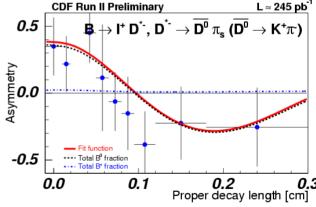
B_d Mixing in SL Decays with 3 tags

RESULTS


• εD² (SST) (%)

B+ 4.69(0.38)

B° 1.04(0.24)


• εD² (SMT) (%) B° 0.32(0.05)

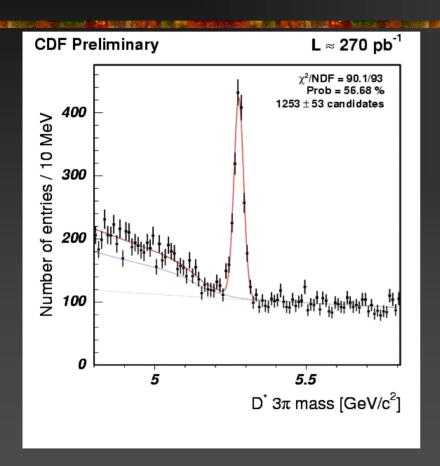
• εD² (JQT) (%) B° 0.49(0.07)

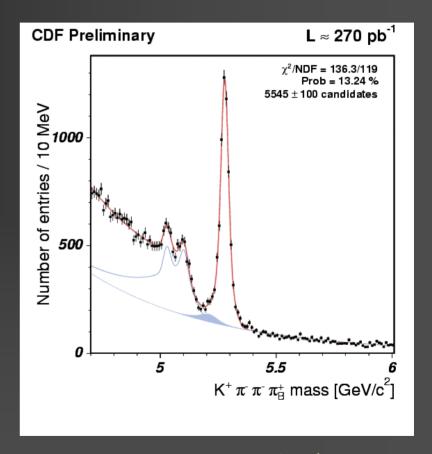
Typical oscillation plots: SMT+SST (2 of 30 plots from fit)

B factories have εD²
~30% Life is tougher at hadron machines!

 $\Delta m_d = 0.532 \pm 0.037 \pm 0.009 (sc) \pm 0.006 (syst)$

New Step: Fully-reconstructed Decays

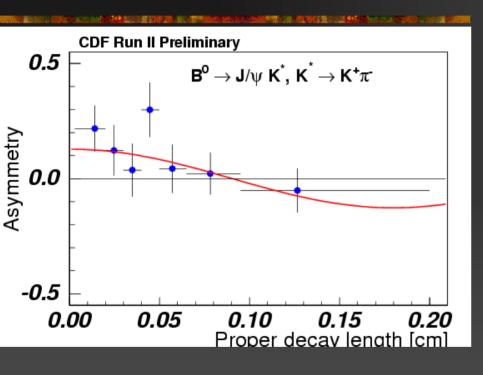

- Semileptonic Decays are not optimal for precision B_s mixing measurement.
 - time-dependent proper time error (K factor issue)
- Hadronic decays have good resolution but lower rate.
- CDF has a first collider measurement of Δm_D using five modes:

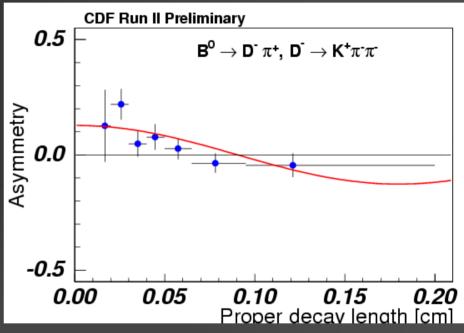

$${\rm B^o} o {\rm J/\psi} \; {\rm K^{*o}} \, ; \, {\rm D^{\text{-}}\pi^{\text{+}}} \; ; \, {\rm D^{*\text{-}}\pi^{\text{+}}} \; ; \, {\rm D^{*\text{-}}} \, \pi^{\text{+}} \, \pi^{\text{-}} ; \, {\rm D^{\text{-}}} \, \pi^{\text{-}} \, \pi^{\text{-}} ; \,$$

Reconstruct Do in both $K^-\pi^+$ and $K^-\pi^+\pi^+$ modes

Use Same Side Tagging

CDF: Fully-reconstructed Mass Plots





$$B^{o} \rightarrow D^{*-} \pi^{+} \pi^{+} \pi^{-} --6(8) \text{ tracks}$$

$$B^o \rightarrow D^-\pi^+ -- 4 \text{ trks}$$

Hadron Mixing Analysis – SST

Fit All 5 Modes Simultaneously

1405 J/ψ K*o evts

 $5545 \text{ D}^{-} \pi^{+} \text{ evts}$

Comparison of B_d Mixing Results

For 11K Fully-Reconstructed Hadronic B Decays with SST:

•
$$\Delta m_D = 0.526 \pm 0.056$$
 (stat.) ± 0.006 (syst.) ps⁻¹

•
$$\epsilon D^2$$
 (SST) = 1.00 \pm 0.35 (stat.) \pm 0.06 (syst.) %

Compare to 115K Semileptonic Decays with SST only:

•
$$\Delta m_D = 0.443 \pm 0.052 \text{ (stat.)} \pm 0.03 \text{ (s.c.)} \pm 0.012 \text{ (syst.)} \text{ ps}^{-1}$$

•
$$\varepsilon D^2$$
 (SST) = 1.1 \pm 0.3 (stat.) \pm 0.2 (s.c.) \pm 0.1 (syst.) %

Hadronic Decays have more analyzing power per event

Interim Summary

Following the general Run I analysis scheme, CDF has:

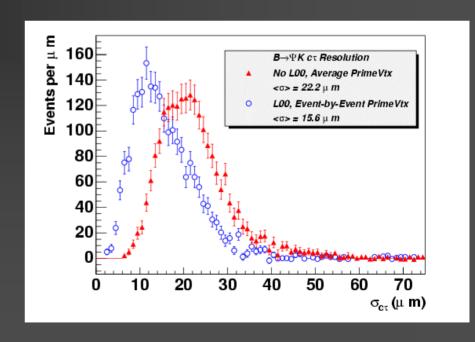
- Demonstrated the effectiveness of combining flavor tags for semileptonic decays and measured εD^2 for the tags.
- Used the Same Side Tag method to measure Δm_d in fully-reconstructed B_d decays.

Work now underway using B_d decays to:

- Improve tagging efficiency with new tags in hand: SMT $\uparrow \sim 2x$; add SET $\sim SMT/2$; JQT $\uparrow \sim 1.4x$
- Include new tags, especially those with TOF and dE/dx

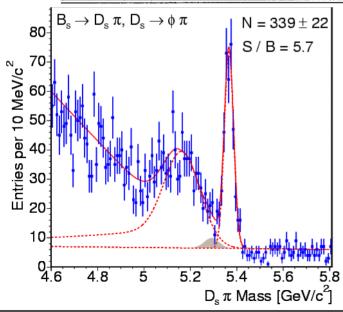
Looking ahead: Issues in B_s Mixing

Proper time resolution is critical for B_s analysis

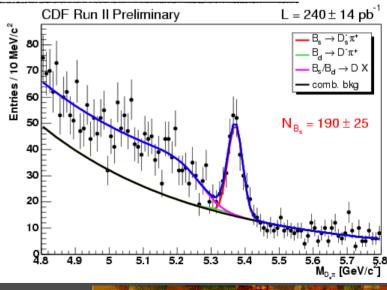

Transverse Flight Path Resolution improves with inner Si layer

Now: Without L00:

 $\overline{\sigma}$ (transverse proper time) = 67 fs


Coming: L00 now useful for 60% of tracks (will go up)

 $\overline{\sigma}$ (transverse proper time) \rightarrow 47 fs



What are B_s Mixing Prospects?

Channel	Observed events	Luminosity (pb^{-1})	Yield $(/250 \text{ pb}^{-1})$	S/B
$\overline{D_s\pi(D_s o\phi\pi)}$	339 ± 22	264	320	5.7
$D_s 3\pi (D_s o \phi \pi)$	95 ± 17	264	90	1.0
$D_s\pi(D_s o K^*K)$	190 ± 25	240	200	1.3
$D_s\pi(D_s o 3\pi)$	57 ± 11	124	115	1.75
$\ell u D_s X(D_s o \phi \pi)$	2342 ± 66	245	2400	3.5

Present CDF B_s Data Set: ~ 700 hadronic decays

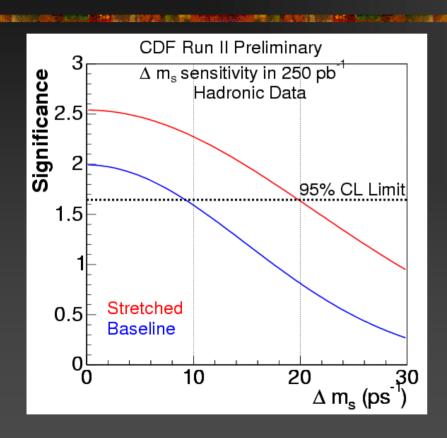
B_s Projections from the Present Data

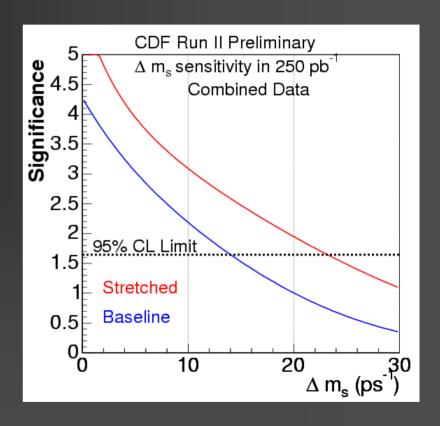
Define two analysis levels:

Baseline:

- $\sigma(\text{transverse proper time}) = 67 \text{ fs}$
- tagging significance $\varepsilon D^2 = 1.6\%$

(already achieved in OST for B_d)

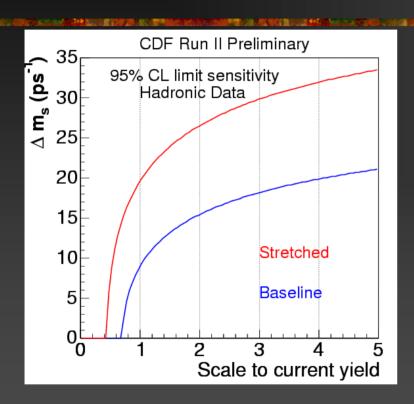

Stretched:

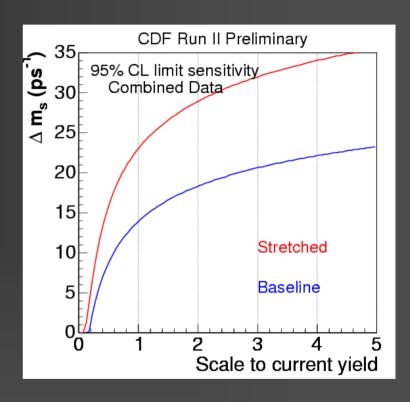

- \triangleright σ (transverse proper time) = 47 fs
- tagging significance $\varepsilon D^2 = 2.6\%$ (additional 1% already achieved in SST for B_d)

Estimate Δm_s Reach for Hadronic and Total B_s Data

Remember that B_s tagging significance may well differ from B_d

95% CL Δm_s Reach from Present Data





Hadrons only: $9 < \Delta m_s < 20$

Hadron + SL: $14 < \Delta m_s < 24$

We WILL Run Longer – What then?

With combined data and somewhat better than baseline tagging and resolution, CDF can reach SM expectation at 95% CL with 4x more events (not luminosity, due to triggers)

18

Summary

- CDF Run II J/ ψ and Two-Track Triggers plus SVT give a good set of fully-reconstructed B mesons of all flavors.
- Nature is a worthy and wily adversary the Run II B_s data set is far short of the projections made before the run, but ...
- Tagging methods in B_d mixing already extend Run I techniques
- Further improvements in triggering, tracking, vertex resolution and tagging are under active development.
- We think that a B_s mixing measurement will be made at CDF if the Standard Model projection is correct.