

Search for a SM Higgs Boson in the WW Dilepton Decay Channel with 200/pb CDF II Data

Shan-Huei Chuang UW–Madison for the CDF Collaboration

2004 PHENOMENOLOGY SYMPOSIUM

Madison WI April 27 2004

😤 Fermi National Accelerator Laboratory

Why Do Higgs? And $gg \rightarrow h^0 \rightarrow WW^*$?

Event Selection

 $|\eta_{\mu}| < 1.0$

- 1. Select events that have
 - \Box "well-detected" two electron/mµons, each with $E_t > 20$ GeV
 - $\square missing E_t > 25 \text{ GeV}$
 - \Box no jets with E_t > 15 GeV and $|\eta| < 2.5$
 - $\Box \quad \Delta \Phi(\text{missing } E_t,$
 - closest lepton or jet) > 20° for missing E_t < 50 GeV
 - □ not 76 < $M_{Z \rightarrow ee/\mu\mu}$ < 106 GeV
 - opposite lepton charge signs
 dilepton invariant mass M < 1/
 - □ dilepton invariant mass $M_{\parallel} \leq \frac{1}{2}M_{H}$ $|n_{e}| < 2.0$
- 2. Use a binned maximum likelihood method on the $\Delta \Phi_{\parallel}$ distribution of selected events
- 3. Extract the 95% CL σ BR(gg \rightarrow h⁰ \rightarrow WW) limit

Signal Acceptance

MC study shows the tendency of small $H \rightarrow WW^*$ dilepton invariant mass, which is not a property of other SM background processes.

SM $gg \rightarrow H \rightarrow WW^*$ signal acceptance in each dilepton channel for each higgs mass

M _H	M _{II} Cut (GeV)	ee (%)	eµ (%)	μμ (%)	ee+eµ+µµ (%)
140	55.0	0.030±0.001	0.060±0.001	0.034±0.001	0.124±0.002
150	57.5	0.055±0.002	0.110±0.002	0.063±0.002	0.228±0.003
160	62.5	0.093±0.002	0.196±0.003	0.113±0.002	0.402±0.004
170	70.0	0.115±0.003	0.230±0.004	0.131±0.003	0.476±0.005
180	80.0	0.110±0.003	0.219±0.003	0.119±0.002	0.449±0.005

Signal and Background Expectations

SM M _H (GeV)	180	CDE Run II Preliminary I~ 200 pb ⁻¹		
M _{ll} cut (GeV)	80.0			
ttbar	0.02 ± 0.01	$4.5 - \frac{\text{data}}{10 \times \text{H} \rightarrow \text{WW}} = 180 \text{ GeV}$		
ZZ	0.06 ± 0.01	z 4 fakes		
WZ	0.18 ± 0.02	3.5 DY ee DY μμ		
DY ττ	0.03 ± 0.01	3 WZ		
DY μμ	0.43 ± 0.19	2.5 <u>tt</u>		
DY ee	0.87 ± 0.44	2 ^E		
fakes	0.81 ± 0.25	1.5		
WW	6.49 ± 0.76			
total bg	8.90 ± 0.98	0.5		
HWW	0.17 ± 0.02	0 0.5 1 1.5 2 2.5 3		
data	8	$\Delta \Psi_{11}$		

Dilepton $\Delta \Phi$ Distribution

Shan-Huei Chuang @ PHENO 04

Limit on $\sigma \cdot BR(gg \rightarrow H \rightarrow WW^*)$ as a function of Higgs Mass at $\sqrt{\hat{s}} = 1.96$ TeV

CDF Run II Preliminary, $L_{int} \approx 200 \text{ pb}^{-1}$

SM Higgs Mass (GeV)	140	150	160	170	180	
σ(gg→h⁰) (pb)	0.45	0.36	0.30	0.25	0.21	
$BR(H \rightarrow WW^*)$	0.48	0.68	0.90	0.97	0.94	
Integrated Luminosity (pb-1)	184 ± 11					
Total Acceptance (%)	0.124±0.012	0.228±0.023	0.402±0.040	0.476±0.048	0.449±0.045	
Expected Signal (event)	0.10 ± 0.01	0.15 ± 0.02	0.22 ± 0.03	0.22 ± 0.03	0.17 ± 0.02	
WW Background (event)	3.51 ± 0.41	3.82 ± 0.45	4.45 ± 0.52	5.38 ± 0.63	6.49 ± 0.76	
Other Background (event)	0.68 ± 0.16	0.90 ± 0.24	1.34 ± 0.35	1.91 ± 0.47	2.40 ± 0.55	
95% CL Limit - Counting (pb)	18.4	9.8	6.2	8.2	8.8	
Expected Limit – ΔΦ-fitting	18.1	9.8	6.0	7.4	8.0	
95% CL Limit – ΔΦ-fitting (pb)	17.8	9.4	5.6	5.6	6.4	

→ BR(W→lv)² included

Conclusion

- We studied the production of gg→h⁰→WW^{*}→IvIv (I = {e,µ}) at TeVatron.
- We extracted 95% C.L. limits on higgs production at √ŝ = 1.96 TeV as a function of the higgs mass.
- Our results are good yet preliminary. We are making progress on the optimization of our approach while waiting for data increase to advance the results.

Backup

