The Why and Where of Data Provenance

Peter Buneman Sanjeev Khanna Wang-Chiew Tan

University of Pennsylvania

DL-2 grant IIS 98-17444 http://db.cis.upenn.edu http://db.cis.upenn.edu/Research/provenance.html

Data Provenance

- When you see some data on the Web, do you know
 - <u>where</u> it came from?
 - <u>why</u> is it there?
- This information (provenance) is typically lost in the process of copying/transforming databases
- Loss of provenance is an acute problem in some scientific databases

Provenance of Data Derived via Queries

- 500 databases in molecular biology
 - only a handful are source data
 - rest are materialized views

Database Inter-dependence is Complex

Provenance of Data Derived via Queries

- 500 databases in molecular biology
 - only a handful are source data
 - rest are materialized views
- We see a piece of data in some view
 - the origins of this piece of data
 - the process by which it was included
- If the data comes from a curated database, can we carry through relevant annotations ?

Database Inter-dependence is Complex

Two kinds of provenance

name		born	period
J.S.	Bach	1685	baroque
G.F.	Handel	1685	baroque
W.A.	Mozart	1756	classical

SELECT	name,	k	orn
FROM	compo	se	er
WHERE	born	<	1700

Where does this value come from?

Stratford-upon-Avon June 2000

Why vs. Where-Provenance

SELECT name, telephone FROM employee WHERE salary > SELECT AVERAGE salary FROM employee

- What specific part of input data contributed to my inclusion in the output ?
 - the entire employee database
- Given that I am in the output, where did my telephone number come from ?
 - just my record in the employee database

The problem at hand

- Given a database D=Q(D₁,...,D_n) and a component c of D, what is the "why" and "where" provenance of c?
- We expect the answer, in each case, to be a set of components of D₁,...,D_n
 - What are the relevant components ?
 - How do we identify them ?

The Goals of this Project

Construct data that knows why it exists and where it came from

- Describe provenance
- Infer provenance
- Annotate data with provenance

A *deterministic* model for semistructured (and structured) data

- Based on common model of semistructured data as an edge-labeled graph.
- Less general
 - Deterministic (outgoing edges are distinct)
- More general
 - Labels can have structure

Relationship with XML

Relationship with XML

An Example

where <db.composer>
 <born> \$b </born>
 <name> \$n </name>
 </db> in "composers.xml"
construct <year I D=F(\$b) born=\$b>
 <name> \$n </name>
 </year>

Find all composers born in the same year

<year born=1685>
 <name> G.F. Handel </name>
 <name> J.S. Bach </name>
 </year>

Why?

The Why-Provenance

The Why-Provenance

An Example

Find all composers born in the same year

<year born=1685; <name> G.F. Handel </name> <name> J.S. Bach </name> </year>

Where?

The Where-Provenance

A Query Language

• A complex query can be transformed into an equivalent canonical form:

 $\mathbf{Q} = \mathbf{Q}_1 \cup \ldots \cup \mathbf{Q}_n$

• Each Q_i has the form

where p_1 in D_1 ,

 p_n in D_n , condition

Each p_i is a "path"-pattern Each D_i is some database name Output e is a "path"-pattern as well

collect e

Stratford-upon-Avon June 2000

How does this help compute provenance?

- We are interested in the provenance of some component of the database.
- This component is specified by a path p (a path expression without variables)
- Map the variables in the output expression e to the path p
- Track these variables though the query to identify provenance

Demo

Computing Data Provenance and Carry Annotations through Queries http://hobbit.cis.upenn.edu:8080

A Join Query

A Join Query

Results

- Previous work (Cui, Widom, and Wiener) provides a solution for relational databases.
 - deals with "why" provenance
- For why-provenance, we get same answers by very different framework
- Where-provenance -- seems new !

Closing Thoughts

- Data provenance is a subtle issue
- Where provenance allows to carry over meaningful annotations
- Annotations are expensive

Closing Thoughts

- Data provenance is a subtle issue
- Where provenance allows to carry over meaningful annotations
- Annotations are expensive
 - I magine recursive annotation trees !
 - What compression techniques work ?
- Meaningful annotations require versioning

Using "persistent" representations

The "compressed" version

END

Stratford-upon-Avon June 2000

